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Executive Summary

This document describes the current status of the definition of the ASAP unified programming
model. The programming model is used to implement individual steps in a workflow. The work-
flow coordination language is distinct and is defined in Deliverable D5.1 “Workflow Management
Model”.

The unified programming model is defined at two levels. It defines high-level operators which
provide a high level of abstraction and simplify programming. These include operations such as
map, filter and group-by. These operators are internally implemented in a task-oriented parallel
programming language that uses advanced concepts in dataflow-based dependence resolution and
region-based memory management to achieve high degrees of efficiency.
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Chapter 1

Introduction

Programming models describe how programs can be constructed and how the resulting construc-
tions are executed. Parallel programming models in particular extend sequential or single-threaded
programming models with syntax and execution methods for executing parallel programs collabo-
ratively with a set of procesors.

Programming models for big data analytics need to satisfy a wide range of properties, ranging
from richness of expression of analytical algorithms, ease of expression of such algorithms, high
performance on small-scale and large-scale distributed systems, fault-tolerance, interfacing with
data management systems, etc. Work package 2 of the ASAP project focusses on the aspects of
high performance and expressiveness.

In order to achieve high performance and expressiveness, ASAP uses two distinct program-
ming languages. The rationale hereto is that one programming language caters for the abilities and
expertise of domain experts whose expertise is, in this instance, in data analytics. The other pro-
gramming language is used internally to develop the ASAP system and is geared towards experts
in parallel and distributed computing. An automated conversion of programs expressed in the high-
level language to the low-level language provides for an overall easy-to-use and high-performance
programming environment.

ASAP aims for expressiveness and productivity in the high-level language by defining opera-
tors that manipulate data sets. The operators are akin to SQL queries in the level of abstraction
aimed for. However, the ASAP operators are embedded in a general-purpose programming lan-
guage in order to allow arbitrary manipulation of data. The operators can, in principle, be defined
in any desired programming language.

ASAP aims for high-performance using a specially designed low-level programming language.
The low-level language is structured around a task-based programming language. Tasks are units
of work and are scheduled to execute on nodes and processors at runtime by the scheduler. Tasks
are furthermore annotated with the precise data sets that they will access. As such, the scheduler
knows precisely where the required data is located and can optimize the scheduling of tasks to
minimize data movement, or decide on the minimal amount of data movement to perform.

One of the key goals of ASAP is to tackle practical deployment issues surrounding the diver-
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sity of programming environments and the heterogeneity of data stores. The ASAP programming
model contributes to this goal by defining a high-performant internal language that supports arbi-
trary workloads, of which graph analytics and map/reduce are only two specific subsets.

This document is structured as follows. In Chapter 2 we review existing programming en-
vironments in the big data landscape. This review mandates our decision to define an internal
(low-level) programming language for experts in parallel and distributed computing and a set of
high-level operators for use by data analysts. Chapter 3 provides details and design rationale for
the internal programming language, while Chapter 4 provides information on the operators. Next,
Chapter 5 gives some thought on the translation of operators to the internal programming language.
Chapter 7 draws conclusion to this document.
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Chapter 2

Review of Existing Programming Models

Parallel programming models for big data to date fall within 2 broad categories: distributed data
flow models like MapReduce have proved very popular and progressive for Big Data Analytics
applications but are considered to be too low level for complex analysis tasks; and graph analytics
models which provide flexibility for specifying complex parallel computations by representing
structured and unstructured data as graphs. A summary of the leading models within each is given
below.

2.1 Distributed Data-flow Models
MapReduce [9] is a functional data flow model for transforming large amounts of data read from
distributed file systems, for example Hadoop Distributed File System (HDFS), on large clusters in
parallel. The input data is partitioned and transformed in parallel by optimised map and reduce
functions on worker nodes. It is a popular framework due to its programmability, scalability and
fault-tolerance. The libraries have been written in many programming languages; application pro-
grammers need only implement key functions, most notably map and reduce, in their language of
choice. Computation is pushed into processing elements that are close to local disks and tasks are
scheduled on machines that contain replicas of the most relevant data partitions.

One of the main criticisms of MapReduce is its lack of support for iterative processing, which
is a key requirement of ASAP’s use case applications. MapReduce tasks are restricted to a two
phase disk-based pipeline operation where the output from map is an intermediate data file which
is consumed by reduce. It is therefore of limited use for algorithms which require asynchronous
iterative processing on stateful entities such as machine learning algorithms. Additionally, the
input is largely restricted to structured input flat files which are insufficient for expressing many
parallel algorithms naturally expressed as graph models with sparse computational dependencies.

Spark [41] overcomes inefficiencies in Hadoop by creating Resilient Distributed Dataset (RDD)
in-memory structures that can be queried and processed iteratively. RDDs allow data held in
external storage systems to be loaded into memory as a read-only collection of objects partitioned
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across a set of machines in a cluster. Access to data represented by RDDs are therefore much
faster than access to data on disk in traditional MapReduce. RDDs contain lineage information
used for rebuilding an object to its current state. This lineage information typically starts from data
in reliable storage. So data can be queried and manipulated repeatedly because it is held in the
clusters memory. Spark exposes RDDs as abstractions in Scala, Java or Python. Transformations
are applied on existing RDDs with operations map, filter, reduce and join. (See section Resilient
Distributed Datasets 4.1.1 for more details on RDD operations). ASAP leverage Spark to overcome
the limitation of iterative processing in MapReduce.

HAMA [31] extends MapReduce to create a Bulk Synchronous Parallel version for large-scale
distributed data processing which, like Spark, is more effecient for iterative data analysis. It layers
the HBase interface on top of HDFS for a flexible data management interface and has been shown
to have better scalability than MPI implementations of MapReduce.

2.2 Graph Analytics Models

Graph Parallel models of late have implemented a variety of novel features to overcome inefficien-
cies in traditional distributed dataflow models such as MapReduce [9]. The models target either a
distributed or shared memory environment. Some designs focus on finding efficiences for partic-
ular domain specific characteristics (sparse/dense graphs, etc.) whilst others take the approach of
defining abstractions to unify models and features for multiple application domains. Some of the
most notable models and their characteristic features are summarised.

2.2.1 Programming Abstraction

Computation in graph analytics models are expressed as vertex programs which run in parallel
on nodes in a graph. Typically users of parallel models are expected to define code for vertex
programs in a high level language such as C++ or Java. The program performs transformations on
data gathered from neighbouring nodes and edges and propagates results in the form of messages
along edges to neighbouring nodes as input for further computation. The mode of computation may
be synchronous or asynchronous. In synchronous mode computation progresses as a sequence of
super-steps [14]. Within each step the vertex program is executed on active vertices. Changes
to the node/edge data are committed at the end of the step and will take effect within the next
step [14]. In asynchronous mode computation on active vertices typically occurs iteratively, so
the same vertex is visited many times. Update values are committed immediately and take take
effect in subsequent computation in neighbouring vertices. In either mode, repeated execution of
vertex programs refines intermediate values and is expected to yield accurate final results when
values converge sufficiently. In some models a single vertex-program can span multiple machines,
for example in Powergraph [14] this makes it possible to achieve an even assignment of edges to
machines.
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1 interface GASVertexProgram(u) {
2 // Run on gather nbrs(u)
3 gather(Du, D(u,v), Dv) Accum
4 sum(Accum left, Accum right) Accum
5 apply(Du,Accum) Du new
6
7 // Run on scatter nbrs(u)
8 scatter (Dnew u ,D(u,v),Dv) (Dnew (u,v), Accum)
9 }

Figure 2.1: Powergraph GASVertexProgram interface

As an example of a programming abstraction, the PowerGraph model [14] defines an interface
for GASVertexProgram (Figure 2.1) and the user of Powergraph must provide definitions of the
functions gather, apply and scatter as well as providing definitions for graph data types.

2.2.2 Distributed Models

Two models which aim to save on message passing overheads are Active Pebbles [38] and Giraph
[24]. Active Pebbles minimises the negative impact of locking contention in message sending by
introducing coalescing and intelligent routing of fine grained light weight messages. It is particu-
larly suited to algorithms that create many fine-grained asynchronous tasks such as Breadth First
Search. Efficiency gains from routing can be observed most in models with higher node numbers
where more savings can be made from avoiding contention.

Giraph [24] is a Bulk Synchronous Parallel (BSP) model which cuts down on message over-
heads by use of message combiner abstraction and aggregators at different levels of graph com-
putation. Giraph fine tunes the partitioning and placement of vertices and their outgoing edges by
creating hooks for user defined custom assignment functions. Giraph supports a mutable graph
topology where added or deleted vertices take effect in subsequent super-steps.

BSP models like the above mentioned are inherently limited in parallelism for iterative com-
putational algorithms such as machine learning. This is due to the necessity for processes to wait,
at barrier synchronisation, for all other processes to reach the same barrier.

Graph models such as GraphLab and Powergraph [20] [14] have been developed to exploit
parallelism for iterative algorithms where computational and data dependencies can be simultane-
ously represented at finer levels of granularity in graph components. Computation is stalled only
between minimally dependent graph components when asynchronous communications occurs be-
tween them. Iterative communication and computation occurs at multiple levels of the graph with
no artificial synchronisation barriers.

PowerGraph [14] extends elements of GraphLab [20] for efficient processing of high degree
power-law graphs by factoring computation over edges. It factors vertex computation over edges
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and avoids the characteristic message passing congestion of highly skewed graphs. In contrast to
GraphLab, PowerGraph supports both BSP and Asynchronous modes of computation. Parallelism
is exploited by streaming vertex cuts where partitioning can be done at the same time as compu-
tation, and execution cycles are saved by caching results from computations so subsequent cycle
computations can be skipped when there has been no change to neighbor values. Communication
overheads are reduced by storing edge data once. Vertex data must be communicated to all ma-
chines its computation is factored over but they define heuristics for partitioning edges to cut down
on vertex data replication.

2.2.3 Shared Memory Models

X-Stream [30] shared memory model provides BSP computation that works with in-memory and
out-of-core graphs on a single shared-memory machine. Sequential bandwidth is larger than ran-
dom access bandwidth so performance gains in X-Stream are made by reading edges sequentially
from file, avoiding random access to edges. It is therefore particularly beneficial where graphs
are edge heavy with data compared to vertex data. The streaming partitions feature means edges
appear in the same partition as their source vertex and it implements work stealing for high-degree
edge partitions. X-Stream implements an efficient 2-tier index/chunk array for fast access into
streamed buffers (used for edges, disk updates and shuffles).

Ligra [32] is a graph traversal framework built on top of Cilk++ for shared memory machines.
It provides abstractions for edge and vertex computations (edgemap and vertexmap). The API
aims to make writing graph traversal algorithms (such as BFS) simple. Of note the representation
of active vertices switches dynamically to more efficient structures sensitive to graph and active
vertex set density. Under future work they plan to make changes to the input graph possible.

Galois [28] is a shared memory system which presents a novel design for a unified model by
defining abstractions for algorithms. It conducts an analysis of algorithms (tao) to extract proper-
ties important for parallelism by expressing actions on data structures. Properties of algorithms are
categorised by 1) detail of the graph topology, 2) how active nodes become active and 3) operator
actions on active nodes. The extent to which dynamics come into play in the building of depen-
dence graphs is determined by the type of algorithm (eg. data/topology driven, ordered/unordered,
structured/unstructured). Galois defines ordered and unordered sets which may be added to at ex-
ecution of iterations. Unlike Ligra, it doesn’t abstract away the internals of iteration loops from
the user; the user must identify active elements directly for each iteration [28]. The decision to use
data structures like dense arrays or adjacency lists for graphs is also left to the user, but there is no
indication that a dynamic switch between these structures is possible in reaction to graph density
changes.

Polymer [42] targets efficiency gains on shared-memory multi-core systems. Sequential inter-
node memory accesses have much higher bandwidth than both intra- and inter-node random ones.
As such Polymer, like X-Stream [30], minimises both random and remote memory access by
optimising graph data layout and access strategies at allocation. This maximises data locality and
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parallelism. For Graph topology data each thread allocates its own data structures. For application
data Polymer constructs a sequentially accessed virtual contiguous memory from discrete physical
addresses. For runtime states, frequently reconstructing virtual address spaces cant be justified
and so Polymer uses a fast lock-free structure lookup table for all partitions. It achieves further
efficiency savings by dynamically changing the leaf data structure from a bitmap to a queue as
algorithms converge. It reduces remote accesses to data on neighboring vertices owned by other
partitions by replicating immutable topology data with agents.

2.3 Direction for ASAP Programming Model
Application development simplified by high-level programming model (map/reduce or vertex pro-
grams). Conceptually simply, but to get performance one must be very careful on how to orches-
trate the repeated application of these operations on the data, and how to manage data.

The ASAP programming model retains the proven approach. We will define high-level op-
erators that have common occurence in data analytics. Data analysts can use these operators as
building blocks to construct complex analyses.

In order to get efficient computation, the ASAP project defines an internal parallel program-
ming model that uses low-level concepts to describe cumbersome notions in parallel computing:
the presence of parallel operations, data management and locality, scheduling, etc. The high-level
operators will be implemented in the internal programming language and will be provided to the
data analysts as a library of internally parallel components.

The remainder of this report describes the internal programming model and a preliminary se-
lection of operators that we wish to support. Moreover, we will show example implementations of
high-level operators in the internal programming language.
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Chapter 3

Internal Programming Model

The internal programming model is designed to implement the operators. As such, it is targeted at
experts in parallel and distributed programming and builds on advanced concepts in parallel and
distributed programming.

The internal programming language builds on a task-oriented abstraction. Programs specify
tasks, indicate dependences or task ordering constraints and provide hints towards memory man-
agement. Upon execution of these programs, a runtime system makes on-the-fly decision towards
mapping tasks to compute nodes, which trades-off load balancing and optimization of data locality.

3.1 Programming Model Definition
The internal programming model builds on the Cilk language [5], an established and high-performance
language for parallel computing, and on the Swan language, a recent experimental extension for
data-flow style execution [36].

In Cilk and Swan, tasks are defined as functions (procedures, methods) and are organized in
a hierarchical structure, i.e., the language builds heavily on recursion. Parallelism is indicated
by a spawn statement. The spawn keyword, followed by a function call, indicates that the called
function may be executed in parallel with the continuation of the parent. As such, every spawn
statement increases the degree of parallelism. Parallelism continues until the calling function ex-
ecutes a sync statement. A function executing a sync statement blocks until all spawned children
have completed.

It is up to the Cilk runtime system to decide which tasks are executed in parallel. The scheduler
makes these choices using work stealing, i.e., parallelism is exploited only when processors are
idle.

Swan extends Cilk by adding the option for data-flow-driven execution [36]. Data-flow depen-
dences between tasks are indicated through program variables: one task may write to a program
variable, while another task may read this variable. This pattern established a data-flow relation-
ship between these tasks. The data-flow relationship enriches the set of parallel programs that can
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be expressed in Cilk, e.g., it allows the expression of pipeline-parallel programs. More importantly,
the data-flow information expresses what data is accessed by a task. The ASAP project will exploit
this aspect of Swan to enable efficient execution of data analytics operators.

Swan assumes a Cilk-like syntax for the spawn and sync statements, extended with task de-
pendency types on function arguments. If a task does not have any arguments labeled with a
dependence type, then this task will spawn unconditionally, as a Cilk spawn. If a task lists at
least one argument with a dependency type, then this task will check whether the dependences are
satisifed, and may not be executed immediately. Similarily, the sync statement may also be uncon-
ditional (wait for all children) or conditional (wait for specific children, or specific variables). The
latter type of sync statement will take a set of objects as arguments, and suspend the task until all
children operating on any of the arguments have completed.

Swan enriches the set of parallel programs that can be specified. While Cilk is traditionally
limited to divide-and-conquer parallelism, Swan can also support pipeline parallelism by virtue of
the task dependences. These dependences can enforce at runtime a scheduling order of tasks that
respects pipeline parallelism constraints [35, 37].

3.1.1 Memory Footprints and Side-Effect Annotations
We define the memory footprint of a task is the set of memory locations, or more abstractly, the
data, that it accesses. The memory footprint is crucial to schedule the task for data analytics, as it
allows us to schedule the task on the node where the data is located.

The footprints of tasks are described by annotating their arguments with side-effects. It is
assumed that tasks do not access global variables. The side-effects indicate whether an argument
is read, written or both by the task. The side-effects induce data-flow dependences between tasks:
a task reading a variable must wait until a prior task that writes to the variable has completed.
Moreover, the language induces also false dependences: a task writing to a variable must wait until
a prior task that reads the variable has completed. If not, the variable may be overwritten by the
former task, which may result in unintended behavior.

The runtime scheduler checks the side-effect annotations of a task when it executes a spawn
statement. If all arguments are ready, then the task may be spawned immediately. Otherwise, the
scheduler will defer the execution of the task. Hereto, it registers the dependence of the task on the
prior executing task(s), such that it can be woken up when the prior task(s) have completed. In the
mean time, the scheduler continues executing the task calling the spawn statement.

Note that if there are no task arguments that describe side-effects, Swan behaves identical to
Cilk.

Following side-effect annotations are utilized in the ASAP internal programming model:

• indep – The task will access argument in read-only method, other tasks need to write to this
data.

• outdep –The task will over-write each single element of the argument. It may also read the
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element which has been writing.

• inoutdep –The task will read and write individual elements of the arguments, or this argument
as a whole.

Swan use the versioned objects to allow efficient and automatic dependency resolution, and
renaming of objects. It allows the runtime system to track producer-consumer relations and to
create multiple versions of these objects during parallelism execution. It is useful to increase
parallelism. Versioned objects are a type of hyperobject [12] as they can automatically provide
distinct views to threads that reference the same variable [37].

Versioned objects encapsulate the meta-data that is used to track task argument dependencies.
A versioned object combines two pieces of information:

• The object metadata that tracks the status of the object, such as task reading, task writing
(input,output,inoutput)

• and a pointer to the dynamically allocated memory which holds an instance of the object.

Versioned objects allow versioning of arbitrary data structures. Versioning (renaming) occurs only
when the spawning tasks with an output dependency. And it happens only if prior readers or
writers are pending. Output dependency (outdep) may call the function of renaming the object, for
instance, when this object is in use by pending tasks at the time of a spwan task. In this procedure,
the child receives the parent’s view (existing version) and the parent receives a new empty view.
For the versioned objects with indep and inoutdep, the parent and child procedures will share the
same view of the object.

3.1.2 Regions
While Swan is a proven programming language for shared-memory systems [35, 36, 37], an effi-
cient implementation for distributed memory systems (i.e., clusters) requires an additional concept
to manage data transfers and optimize data locality: regions.

Regions are most often used in region-based memory allocation. A region is a large, consecu-
tive chunk of memory from which small pieces of memory may be allocated [13]. The efficiency
of regions is in the de-allocation, as the whole region may be deallocated at once. Some programs
that allocated large numbers of small objects with the same lifetime can benefit significantly from
this.

In the context of ASAP, however, we will use regions to describe large data sets that can be
managed in a distributed memory system [22, 4]. Myrmics [22, 27] is a task-based runtime system
for heterogeneous message-passing that organizes data in regions. It supports nested parallelism
and pointer-based, irregular data structures by replicating the virtual address space across all nodes
in the cluster. This way, regions containing pointers can be freely moved between nodes while
retaining the validity of the pointers.
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1 let x = ref 1 in
2 let y = ref 2 in
3 task(x){
4 x := x + 3;
5 task(x){ x := 42 }
6 wait(x) ;
7 x := !x 4
8 }
9 task(y){ y := !y + 2 }

10 task(x){ x := 0 }

Figure 3.1: Example program

ASAP organizes regions in tree-based structures: the top-level region is the root of the tree
and may contain itself other regions. Every region can have at most one parent, except the root of
a region tree has none. Programmers using the internal ASAP programming language explicitly
decide how deep the region tree is and in which part of the tree data is allocated. The runtime
system distributes the regions across the nodes of the system. Typically, one would match the
structure of the region tree with the organization of the underlying storage systems. E.g., each leaf
region in the region tree would correspond with a single chunk of data stored in HDFS.

Regions are first-class objects in the ASAP programming language. As such, they can be
passed as arguments to tasks and the side-effects of tasks on the regions can be annotated with the
side-effect annotations. These annotations help the scheduler to understand what data is accessed
by a task (e.g., which chunk of HDFS data) and to schedule the task accordingly.

3.2 Operational Semantics

This section presents λTASK, a simple task-parallel calculus with runtime dependency resolution.
We define the semantics of sequential and parallel executions of λTASK programs, and show that
our dependency-aware scheduler is correct, i.e., it produces parallel executions that are equivalent
to a sequential execution of the program.

3.2.1 Example

Consider the simple program in Figure 3.1. This program allocates two memory locations, refer-
enced by x and y and initializes them to 1 and 2 respectively (lines 1–2). It then creates a task that
operates on location x (lines 3-8), a task that operates on location y (line 9) and a task that operates
on x (line 10). The first task recursively spawns another task that also operates on x (line 5).
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Locations ` ∈ L
Values v ∈ V ::= n | () | ` | λx . e
Expressions e ::= x | e e | ref e | e := e | ! e

| task(e) {e} | waiton e
Types τ ::= int | unit | τ → τ | τ ref
Contexts E ::= [·] | E e | v E | ref E | E := e | v := E

| !E | task(E) {e} | waiton E
Task queues q ∈ Q ::= ∅ | e, q
Dependency maps D :: L → Q
Stores S :: L → V
Execution state Σ ::= 〈S,D, e〉 | (Σ‖Σ)

Figure 3.2: A simple task-based parallel language

3.2.2 Language

To simplify the presentation of our algorithms for task scheduling and runtime dependency resolu-
tion, we first formalize a core calculus that abstracts over most complex features of real program-
ming languages.

Syntax Figure 3.2 presents λTASK, a simple task-parallel programming language. λTASK is a
simply-typed lambda calculus extended with dynamic memory allocation and updatable refer-
ences, task creation and synchronization. Values include integer constants n, the unit value (),
functions λx . e and pointers `. Program expressions include variables x, function application
e1 e2, memory operations and task operations. Specifically, expression ref e allocates some
memory, initializes it with the result of evaluating e, and returns a pointer ` to that memory; ex-
pression e1 := e2 evaluates e1 to a pointer and updates the pointed memory using the value of
e2; and expression ! e evaluates e to a pointer and returns the value in that memory location. Ex-
pression task(e1) {e2} evaluates e1 to a pointer and then evaluates e2, possibly in parallel. The
task body e1 must always return () and can only access the given pointer; if e1 is evaluated in a
parallel task, the expression immediately returns (). Finally, expression waiton e evaluates e to
a pointer and blocks the execution until no child task has that memory.

3.2.3 Semantics

We define the operational semantics for both sequential and parallel execution of λTASK programs.

Sequential execution Figure 3.3 presents small-step operational semantics for the sequential
evaluation of λTASK programs. Small-step rules have the form 〈S, e〉 →s 〈S ′, e′〉 where S is the
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〈S, e〉 →s 〈S ′, e′〉

[E-CTX-S]
〈S, e〉 →s 〈S ′, e′〉

〈S,E[e]〉 →s 〈S ′, E[e′]〉

[E-APP]
〈S, (λx . e) v〉 →s 〈S, e[x 7→ v]〉

[E-REF]
`−fresh

〈S,ref v〉 →s 〈S ∪ (`, v) , `〉

[E-DEREF]
S(`) = v

〈S, ! `〉 →s 〈S, v〉
[E-ASSIGN]

` ∈ dom (S)

〈S, ` := v〉 →s 〈S[` 7→ v], v〉

[E-FORK-S]
` ∈ dom (S)

〈S,task(`) {e1}〉 →s 〈S, e1〉

[E-WAITON]
S(`) = v

〈S,waiton `〉 →s 〈S, v〉

Figure 3.3: Sequential semantics

starting store, mapping pointers ` to values v; e is the original program text; S ′ is the store after
taking one step in e; and e′ is the final program text.

Rule [E-CTX-S] defines evaluation inside a context E, defined in figure 3.2. Note that we only
evaluate inside the first subexpression of a task(e1) {e2} expression, as shown by the definition
of evaluation contexts in Figure 3.2. Rule [E-APP] is standard function application by capture-
avoiding substitution of the actual argument for the formal in the function body. Rule [E-REF]
evaluates memory allocation expressions ref v by allocating fresh memory in the store, indexed
by the fresh pointer `, and assigns it to the value v. The result of the evaluation is the pointer
`. Rule [E-DEREF] evaluates pointer dereference expressions ! ` to the value v assigned to ` in
the store. Rule [E-ASSIGN] updates the value stored in a memory location `, when the pointer
is valid (is defined in the store), and evaluates to the stored value. Rule [E-FORK-S] defines the
sequential execution of a task task(`) {e1}. It checks that the requested memory ` exists in the
store, and inlines the task body e1 in the current execution. Finally, in rule [E-WAITON] expression
waiton ` steps to the value v where the ` points to in the store.

Parallel execution Figure 3.4 presents small-step operational semantics for the parallel execu-
tion of λTASK programs. Small-step judgements have the form Σ →p Σ, where Σ is either the
execution state of a task, or (recursively) two parallel execution states, as defined in Figure 3.2.
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Σ→p Σ

[E-SEQ]
〈S \ dom (D) , e〉 →s 〈S ′, e′〉

〈S,D, e〉 →p 〈S ′ ∪ (S ∩ dom (D)) , D, e′〉

[E-CTX-FORK]
〈S,D, e〉 →p 〈S ′, D′, e′〉 ‖Σ

〈S,D,E[e]〉 →p 〈S ′, D′, E[e′]〉 ‖Σ
[E-CTX-1]

Σ1 →p Σ2

Σ1‖Σ→p Σ2‖Σ

[E-CTX-2]
Σ1 →p Σ2

Σ‖Σ1 →p Σ‖Σ2

[E-CTX-3]
Σ1 →p Σ′

1 Σ2 →p Σ′
2

Σ1‖Σ2 →p Σ′
1‖Σ′

2

[E-TASK]
` ∈ dom (S) ∪ dom (D) D′ = D[` 7→ (D(`), e)]

〈S,D,task(`) {e}〉 →p 〈S,D′,()〉

[E-START]

` ∈ dom (S) D(`) = et, q
S1 = S \ {`} S2 = (`, S(`)) D′ = D[` 7→ q]

〈S,D, e〉 →p 〈S1, D
′, e〉 ‖ 〈S2, ∅, et〉

[E-JOIN-1]
Σ t 〈S,D,()〉 = Σ′

Σ‖ 〈S,D,()〉 →p Σ′

[E-JOIN-2]
Σ1 t 〈S,D,()〉 = Σ′

1

Σ1‖ (〈S,D,()〉 ‖Σ2)→p Σ′
1‖Σ2

[JOIN-1]
dom (S1) ∩ dom (S2) = ∅ dom (D1) ∩ dom (D2) = ∅
〈S1, D1, e〉 t 〈S2, D2,()〉 = 〈S1 ∪ S2, D1 ∪D2, e〉

[JOIN-2]
Σ1 t 〈S,D,()〉 = Σ′

1

(Σ1‖Σ2) t 〈S,D,()〉 = Σ′
1‖Σ2

Figure 3.4: Parallel semantics
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The parallel execution state of each task is a triple 〈S,D, e〉 of a store S, a dependency map D that
maps memory pointers to a queue of tasks and the task body e.

Rule [E-SEQ] allows the parallel execution to revert into serial execution for any expression in
the program. When a task 〈S,D, e〉 sequentially takes a step in e, any outstanding dependencies D
remain unchanged in the new task state 〈S ′, D, e′〉.

Rule [E-CTX-FORK] states that when a subexpression e of a task 〈S,D,E[e]〉 creates a new
task Σ, then Σ executes in parallel with its parent task E[e].

Rules [E-CTX-1], [E-CTX-2] and [E-CTX-3] define that the execution of two parallel tasks
Σ1‖Σ2 takes a step, when the parent task Σ1, or the child task Σ2, or both, recursively take a step.

Rule [E-TASK] defines the execution of a task(`) {e} expression by creating a new task for
the evaluation of expression e. The memory location needed should be owned by the creating task,
either immediately ` ∈ dom (S), or by one of its children ` ∈ dom (D). Then, the task expression
e is added to the queue D(`) of tasks waiting for `, and the whole expression evaluates to ().

Rule [E-START] defines the beginning of a task et that operates on a memory location `. A new
task can be started at any time that its dependencies are satisfied, hence the starting state 〈S,D, e〉
of the conclusion does not constrain the original task e. The first premise requires the location
` to exist in the current store. The second premise requires the new task to be at the top of the
queue for that location in D. The third and fourth premises split the store S into two parts, store S1

containing everything in S except the memory ` required by the new task, and store S2 containing
only `. The last premise defines the new dependency queue for `, which does not contain the new
task et. Finally, the resulting state in the conclusion is the parallel execution of two tasks, the
original starting task with the new store and dependencies 〈S1, D

′, e〉, in parallel with the new task
〈S2, ∅, et〉. The newly created task et does not yet have subtasks and its dependency map is empty.

Rule [E-JOIN-1] defines that when a task 〈S,D,()〉 ends and it does not have child tasks that
are still running, its state is merged with its parent task. In the last two rules of Figure 3.4, [JOIN-1]
and [JOIN-2] we recursively define a join operator t that, given an execution state Σ and a finished
task 〈S,D,()〉, produces an execution state Σ′ where the finished task is “collected” and merged
with the “oldest” task running in Σ′. Rule [JOIN-1] is the base-case where Σ is a single task
〈S1, D1, e〉, where the join is valid if both the stores and the outstanding dependency maps refer to
disjoint memory locations. Rule [JOIN-2] is the recursive case, where Σ is the parallel execution
state of two other states Σ1 and Σ2, in which case the join always happens with the leftmost (and
longest-lived) execution state Σ1.

Rule [E-JOIN-2] defines the end of a task 〈S,D,()〉 that is executing in parallel with a parent
execution state Σ1 and children tasks Σ2. In this case, we join the finished task with its parent
execution state Σ1. Note that the top-level task of the program cannot be joined with any other
task. There is no fundamental reason for that restriction, but adding support for that would add
unnecessary complexity by requiring another semantic rule for that case.
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1 template<typename Functor>
2 vertexSubset VertexMap(vertexSubset U, Functor F) {
3 vertexSubset Out;
4 swan for(vertexSubset:: const iterator i=U.begin(); i<U.end();i++)
5 if (F(i )==true)
6 Out.insert ( i ) ;
7 return Out;
8 }

Figure 3.5: The VertexMap operator expressed in Swan.

3.3 Examples
Ligra and Polymer which are based on Cilk language for a single machine. Swan is also basis of
Cilk. So, we can use the task-based language model to rewrite these graph analytics programs.
For instance, rewite the Ligra’s VertexMap algorithm and EdgeMap algorithm for graph analytics
in swan, which applies an operation to every vertex in a set, may be represented in Swan as in
Figure 3.5. Here, U is the subset of vertices of a graph where the functor F is applied. Functor F
can run in parallel, in Swan, which can use spawn statements to parallelism. In shared-memory
systems, it is assumed that F can access its argument as well as any location in shared memory
such as the edge list and any vertex targeted by an out-edge of F’s argument. However, it is also
assumed that executing F on multiple distinct vertices is free of data races. VertexMap returns a
vertexSubset representing the subset Out = {u ∈ U | F (u) = true},where U is the subset of
vertices passed to vertexMap.

The Ligra edge map function example coded in Swan is provided in Figure 3.6.
For a given graph G = (V,E), U is a vertex subset representing a set of vertices U ⊆ V . The

EdgeMap operator appplies the function F to all edges with source vertex in U and target vertex
satisfying C. F is applied to each element in the active edge set. EdgeMap returns the vertex
subset containing active vertices: Out = {v | (u, v) ∈ Ea ∧ F (u, v) = true}

In this framework, F and C can execute in parallel, in Swan, which can use spawn statements
to indicate parallelism. The edge map function will call one of sparse-edge-map and dense-edge-
map based on |U | and the number of outgoing edges of U. The threshold in here determines when
edgeMap switches between edgemapSparse and edgemapDense based on the threshold value. If
the vertex subset size plus its number of outgoing edges is less than threshold value, edgeMap
calls edgemapSparse, and otherwise calls edgesmapDense. Edge map sparse loops will through all
vertices present in U in parallel and applies F to all of u ∈ U neighbors neighbor in G in parallel.
It returns a vertex subset will represented sparsely. In edge map dense, it throughs all the vertices
in V in parallel.
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1 template <typename Functor1, typename Functor2, typename vertex>
2 void edgeMapDense(graph<vertex> G, vertexSubset U, Functor1 F, Functor2 C) {
3 int numVertices = G.v;
4 vertex ∗G = G.U;
5 vertexSubset Out;
6
7 swan for(vertexSubset:: const iterator i=U.begin(); i<numVertices; i++){
8 Out[i ] = 0;
9 if (C(i)==true) {

10 for( int j=0; j<G[i].getInDegree; j++){
11 int ngh = G[i ]. getInNeighbor(j) ;
12 if (F(ngh)==true){
13 Out.insert ( i ) ;
14 }
15 }
16 }
17 if (C(i)==false) break;
18 }
19 return Out;
20 }

Figure 3.6: The EdgeMap operator expressed in Swan.
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Operators

A significant inefficiency in MapReduce [9] results from the costly operation of writing to and
subsequently reading from data sets held on disks at each transition to the next pipeline. An-
other drawback of the distributed data flow model is its inability to represent and compute graph
algorithms. It is proposed we leverage GraphX [15] to overcome these shortcomings for ASAP.
GraphX will allow graphs to be cast to flatter data-flow structures whilst preserving graph views so
we can also take advantage of graph optimisations. Additionally GraphX builds on Spark’s RDDs
to remove the need for intermediate disk storage of datasets between pipeline stages.

4.1 Data Distribution

4.1.1 Resilient Distributed Datasets

A RDD [41] is a collection of objects partitioned over distributed nodes in a cluster for computation
in parallel. Each Spark operation makes a transformation on an RDD and in doing so generates a
new immutable object. The lineage of the RDD is retained for fault tolerance.

In Spark, the programmer can optionally specify that an RDD should persist over multiple it-
erations. This would allow significant performance gains in iterative algorithms. Users can choose
to persist RDDs in memory or on disk. They may opt for serialisation to save space and/or choose
to replicate RDDs to other nodes in the cluster.

GraphX leverages RDDs making it possible to persist data in memory between dataset transfor-
mations and make great performance savings by removing the need for expensive disk I/O activity.

In GraphX data is loaded as a graph from graph input formats (eg. edge list, ...). But its use of
separate collections for vertices and edges means a flatter data-flow representation of a graph can
be created and computed in a distributed data-flow engine style. Equally, through the use of graph
abstractions and APIs, logic graph representations can be built in the form of triplets and allow for
the expression and optimisations of iterative graph algorithms [15].

By leveraging RDDs, GraphX can keep data in memory greatly reducing access times for
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iterative algorithms. Additionally RDDs allow GraphX to reduce memory overhead by index re-
use across views and iterations. It achieves low cost fault tolerance through lineage data built into
RDDs [41].

4.2 Definition

The parallel model adapted for ASAP is GraphX and Spark. Notably GraphX will leverage the fault
tolerance, persitent properties available with Spark’s RDD to allow efficient in-memory iterative
processing on graph applications.

4.2.1 Spark Operators

Operations on RDDs fall into the category of transformations or actions. Transformations return a
new RDD formed by execution of user defined code. In contrast actions return a value (rather than
an RDD) which has been generated from user defined code [2].

RDDs are only computed when Spark needs to return a result to its driver program. RDDs
are only computed when Spark needs to return a result to its driver program. Therefore if you
transform an RDD, it may be computed each time unless you persist it in memory [2].

Transformational Operators

Some of Spark’s main transformation operations include [2]:

map(func) Return a new distributed dataset formed by passing each element of the
source through a function func.

filter(func) Return a new dataset formed by selecting those elements of the source
on which func returns true.

intersection(otherDataset) Return a new RDD that contains the intersection of elements in the
source dataset and the argument.

reduceByKey(func) Values for each key are aggregated using the given reduce function
aggregateByKey(func) Values for each key are aggregated using the given combine functions
join(otherDataset) Joins datasets under a common key
coalesce(numPartitions) Decrease the number of partitions in the RDD.
repartition(numPartitions) Reshuffle the data in the RDD randomly to create either more or fewer

partitions and balance it across them.

Table 4.1: Spark transformation operators
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Action Operators

Some of the main actions are:

reduce(func) Aggregate the elements of the dataset using the provided function
collect() Return all the elements of the dataset as an array at the driver program.
saveAsTextFilePath() Write the elements of the dataset as a text file in the local filesystem,

HDFS or any other Hadoop-supported file system.
foreach(func) Run a function func on each element of the dataset.

Table 4.2: Spark action operators

4.2.2 GraphX Operators
GraphX operations take user defined functions and produce new graphs with transformed proper-
ties and structure [1]

The three main transformational operators in GraphX, which maintain structure and indices for
efficiency of re-use are [1]:

mapVertices Yield a new graph with the vertex property changed by the user defined
map function.

mapEdges Yield a new graph with the edge property changed by the user defined
map function.

mapTriplets Yield a new graph with the edge property changed by the user defined
map function using source and destination vertex properties.

Table 4.3: GraphX transoformation operators

Additionally, there are a set of structural operators which generate new version or subsets
of the graph based on for example reversing the edge directions, generating subgraphs of a graph
or merging parallel edges. Join operators allow us to join data in a graph with other RDDs.
For example, the joinVertices operator joins the vertices with the input RDD and returns a new
graph with the vertex properties obtained by applying the user defined map function to the result
of the joined vertices. The aggregator operator mapReduceTriplet is key to many algorithms
for aggregating information about the neighborhood of vertices. It applies a user defined map
function to each triplet and applies the results to target and/or source vertices. There are operators
to compute the degree of each vertex, and an operator to cache a whole graph which is useful when
a graph is repeatedly computed [1].

27



Chapter 5

Translation of High-Level Primitives to
Low-Level Language

Region-based memory allocation organizes the allocation of data in regions, which are large,
consecutive chunks of memory. Regions are also efficient to transfer pointer-based data struc-
tures in large chunks between nodes in a cluster [23]. We assume regions may be organized in
a tree structure using specific allocation routines: swan region new(), swan region malloc() and
swan region free(). For instance, the vertices in graph analytics are typically represented by a large
array. We can represent the array as a tree of regions where the leaves of the trees are chunks of
memory that hold large slices of the array.
Given this data organization, we aim to design programming abstractions that allow the automatic
translation of the code given previously for VertexMap to code along the lines depicted in Fig-
ure 5.1. Code like this above would be generated from the short version given in Section 3.3,
page 23, and will not written directly by the programmer. The point behind using regions is that
the scheduler can decide to send spawned tasks to specific nodes in the cluster depending on what
nodes are storing the regions used in the arguments. The construction of the Out RegionArray may
furthermore be implemented using the concept of reducer hyperobjects [12]. The code above still
needs to resolve issues with the accesses made by the functor F. To this end, we can borrow ideas
from other graph frameworks, such as the graph-parallel abstractions of PowerGraph[14]. It can
split vertices crossing node boundaries, and gather split values together finally. It also can borrow
the ideas of Polymer [42] for NUMA-aware graph partitioning.
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1 template<typename Functor>
2 RegionArray<bool> swan for region(
3 RegionArray<int> vertices, RegionArray<bool> U,
4 size t Low index, size t Up index, indep<Functor> F) {
5 RegionArray<bool> Out;
6 RegionArray<bool>::region type ∗ lo region, ∗ up region;
7 lo region = vertices .get region(Low index);
8 up region = vertices .get region(Up index);
9 if ( lo region == up region ){ // target vertices in a same region

10 RegionArray<bool>::region type ∗ region = lo region;
11 swan for(I=region>begin(Low index),E=region>end(Up index);I!=E;++I){
12 if ( F(∗I ) == true ) Out.insert ( ∗I ) ;
13 }
14 } else { // Traverse region tree recursively .
15 // This assumes a binary region tree
16 RegionArray<bool>::region type ∗ region, ∗ left, ∗ right ;
17 region = lo region>common ancestor(up region);
18 left = region> get left sub region () ;
19 right = region>get right sub region () ;
20 RegionArray<bool> OutLeft, OutRight;
21 OutLeft = swan spawn swan for region(
22 vertices .getArrayForRegion(left),
23 U.getArrayForRegion(left),
24 std :: max(left>getStartIndex() ,Low index),
25 std :: min( left >getEndIndex(),Up index),
26 F);
27 OutRight = swan spawn swan for region(
28 vertices .getArrayForRegion(right),
29 U.getArrayForRegion(right),
30 std :: max(right>getStartIndex() ,Low index),
31 std :: min(right>getEndIndex(),Up index),
32 F);
33 swan sync;
34 Out = OutLeft + OutRight;
35 }
36 return Out;
37 }

Figure 5.1: Low-level code for the VertexMap operator for graph analytics.
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Chapter 6

Case Study on The ASAP Internal
Language

6.1 Introduction

We have performed a case study on the implementation of map-reduce programs on the ASAP
internal programming language. This study uses a surrogate programming language, Cilk, which
does not contain all of the features of the ASAP internal language. We will compare the ex-
pressiveness and performance of Cilk when applied to map-reduce programs against a specialized
map-reduce programming system, in particular Phoenix++. This comparison provides evidence
that (i) the ASAP internal programming language provides a high degree of expressiveness and
ease of programming and (ii) the ASAP internal language promises to out-perform specialized
runtime systems for map-reduce.

This study is limited in its application to a shared-memory (single node) setting. Later in this
project we will extend it to the distributed memory (cluster) setting.

6.1.1 Map-Reduce

The map-reduce programming model is centered around the representation of data by key-value
pairs. For instance, the links between internet sites may be represented by key-value pairs where
the key is a source URL and the value is a list of target URLs. The data representation exposes
high degrees of parallelism, as individual key-value pairs may be operated on independently.

Computations on key-value pairs consist, in essence, of a map function and a reduce function.
The map function transforms a single input data item (typically a key-value pair) to a list of key-
value pairs (which is possibly empty). The reduce function combines all values occurring for each
key. Many computations fit this model [8], or can be adjusted to fit this model.
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Figure 6.1: Schematic overview of Phoenix++ runtime system

6.1.2 Phoenix++ Implementation

The Phoenix++ shared-memory map-reduce programming model consists of multiple steps: split,
map-and-combine, reduce, sort and merge (Figure 6.1). The split step splits the input data in
chunks such that each map task can operate on a single chunk. The input data may be a list of
key-value pairs read from disk, but it may also be other data such as a set of HTML documents.
The map-and-combine step further breaks the chunk of data apart and transforms it to a list of key-
value pairs. The map function may apply a combine function, which performs an initial reduction
step of the data. It has been observed that making an initial reduction is extremely important to
performance as it reduces the intermediate data set size [34].

It is key to performance to store the intermediate key-value list in an appropriate format. An
naive implementation would hold these simply as lists. However, it is much more efficient to tune
these to the application [34]. For instance, in the word count application the key is a string and
the value is a count. As such, one should use a hash-map indexed by the key. In the histogram
application, a fixed-size histogram is computed. As such, the key is an integer lying in a fixed
range. In this case, the intermediate key-value list should be stored as an array of integers. For this
reason, we say the map-and-combine step produces key-value data structures, rather than lists.

The output of the map-and-combine step is a set of key-value data structures, one for each
worker thread. Let KV-list j = 0, . . . , N − 1 represent the key-value data structure for the j-th
worker thread. These N key-value data structures are subsequently split in M chunks such that
each chunk with index i = 0, . . . ,M − 1 in the intermediate key-value list j holds the same range
of keys. All chunks i are then handed to worker thread N , which reduces those chunks by key.
This way, the reduce step produces M key-value lists, each with distinct keys.

Finally, the resulting key-value lists are sorted by key (an optional step) and they are subse-
quently merged into a single key-value list.

Phoenix++ allows the programmer to specify a map function, the intermediate key-value data
structure, a combine function for that data structure, the reduce function, a sort comparison func-
tion and a flag whether sorting is required.
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1 int fib ( int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x = cilk spawn fib(n 1) ;
6 int y = cilk spawn fib(n 2) ;
7 cilk sync;
8 return x+y;
9 }

10 }

4 

2 

1 0 

3 

1 

2 

1 0 

Figure 6.2: Fibonacci example (left) and the spawn tree for fib(4) (right).

6.2 Map-Reduce Using Cilk

The map-reduce format is a specific parallel skeleton. As such, any general-purpose programming
language can implement it. In this work we focus on the Cilk language [11], in particular because
of its support for generalized reductions [12]. We use Intel’s Cilkplus version of the language, but
Cilk Arts’ Cilk++ may be used as well except for the array notation, an Intel-specific addition to
the language that facilitates vectorization.

6.2.1 Cilk

Cilk is a task-oriented parallel programming model. The key way to create parallelism in Cilk is
by a spawn statement, which has a syntax similar to a function call, except that it is preceded by
the cilk spawn keyword. The spawn statement indicates that the spawned function may execute
in parallel with the continuation of the containing function. The scope of parallelism extends until
the containing function executes a cilk sync statement. Once the cilk sync statement has
completed, one can be sure that all side effects of the functions that were spawned by the containing
function have taken effect.

Cilk is a faithful extension of the C/C++ languages. When the cilk spawn and cilk sync
statements are removed from the program, then a correct sequential C/C++ program is obtained.
This program is called the serial elision of the Cilk program. In the absence of data races, every
Cilk program is equivalent to the serial elision of that program.

The simplicity of the Cilk language is often illustrated by a parallel program that calculates the
nth Fibonacci number (Figure 6.2). A recursive specification defines the nth Fibonacci number
as the sum of the n − 1th and n − 2th Fibonacci numbers. Recalculating these numbers in par-
allel generates a fairly scalable parallel program (although this is an inefficient way to calculate
Fibonacci numbers). The return values x and y of the recursive spawns are available for further
computation after the cilk sync statement.
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The spawn tree for this program (Figure 6.2, right) shows the recursive function calls. Each
node corresponds to a call to fib and the number in the node corresponds to the argument to fib.
The spawn tree should, ideally, be a balanced tree. This structure works beneficially with the Cilk
scheduler. Programs with unbalanced spawn trees may incur excessive scheduling overhead.

Cilk programs are executed by a randomized work-stealing scheduler [11]. The scheduler
consists of a number of worker threads, usually one per CPU core. Each worker has a spawn deque
(double-ended queue), on which it pushes and pops work items. The execution of a Cilk program
starts on a single worker with sequential execution. When a spawn statement is encountered, the
worker continues with the execution of the spawned function. The continuation of the containing
function is pushed on the worker’s spawn deque. When the spawned function has completed,
the continuation is popped from the spawn deque, in the same order as a sequential program is
executed.

Idle workers attempt to steal continuations from other workers’ spawn deques. Workers are
selected at random. If the selected worker has continuations on its spawn deque (apart from the
top-most continuation that is being executed), then the bottom-most continuation is stolen and
transferred to the thief’s spawn deque. It is subsequently executed.

A Cilk program expresses parallelism by means of its spawn tree. The key property of the Cilk
work stealing scheduler is that it selects parallelism from the top of the spawn tree down. As such,
stolen work items are initially extremely coarse-grain. In a balanced spawn tree, the first work item
stolen represents half of the work in the parallel section of the program. It has been shown that the
number of work stealing activities is proportional to the span of the program [3]. When the spawn
tree is balanced and the majority of work is distributed evenly across the leaves of the tree, then
the span is proportional to the 2-logarithm of the degree of parallelism.

Programs with unbalanced spawn trees are, however, executed less efficiently. The same rule
applies, but now the span of the program is, in the worst case, proportional to the total amount of
work in the program. Cilk generally performs better on programs with (nearly) balanced spawn
trees. In some cases, when the leaf tasks perform little work, the overhead of executing the re-
cursively spawning procedures that generate a balanced spawn tree is excessive. In such cases, an
unbalanced search tree may perform better.

6.2.2 Parallel For

Parallel for loops are a common idiom. Such loops can be cast to the spawn/sync structure by
creating a function that recursively divides the iteration range of the for loop. The recursion stops
when the range is “too short”, in which case the range is stepped through sequentially and the
loop body is executed for those iterations. Cilk provides the cilk for syntax to perform this
translation behind the scenes. A cilk for loop is like a C/C++ for loop with restrictions applied
to the format of the initializer, conditional expression and increment expression [16].

A cilk for construct may also use C++ iterators as control variable, e.g., STL iterators. In
this case, it is required that the iterator is a random access iterator [33].
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A cilk for loop is terminated by an implicit cilk sync. However, this implicit cilk sync
synchronizes only the iterations of the cilk for loop, but does not synchronize the loop with
prior spawn statements.

6.2.3 Generalized Reductions

The Cilk language provides definitions for generalized reductions that are associative but not nec-
essarily commutative [12]. As the reduction operation need not be commutative, many operations
such as list prepend/append and hash-map insert can now be expressed as reduction operations. In
these cases it is guaranteed that the reduction variable contains the same value as computed by the
serial elision of the Cilk program.

A Cilk generalized reduction is defined by three components: a data type, an associative op-
eration and an identity value for that operation. These components are defined in a monoid data
structure that serves as the basis for a reducer class definition.

Figure 6.3 shows the definition of a Cilk reducer for a hash-map data type. It is assumed
that the template parameter map type defines a hash-map type that is compatible to the C++
standard’s std::map. The definition consists of a Monoid class (Line 3), which defines the base
type (through the monoid base template parameter), the identity value (through an initialization
function, Line 10) and the reduction function (Line 4). It is assumed that hash-maps are reduced
by taking the join of all keys and that the values for common keys are further reduced using an
operator +=. This behavior is specified in the reduce function.

Note that the reduction operation should ideally execute in constant-time, otherwise the execu-
tion time of the program will depend on the number of reduction operations performed [18]. The
number of reduction operations is, in any case, proportional to the number of steal operations [12].

The monoid class definition plays a crucial rule in the operation of reducers. Reducers dynam-
ically create copies of the reduction variable, and reduce those copies, as needed. These copies
are called views. There can be at most one view of the reduction variable per Cilk worker at any
time. The view is maintained when a worker spawns a task. When an idle worker steals a con-
tinuation from another worker’s deque, a new view is created for the thief and initialized with the
identity element. Views are reduced when a worker completes a spawned task leaving its spawn
deque empty, or when a worker executes a cilk sync statement. Further details are provided by
Frigo et al [12].

Throughout the execution, the relative order of tasks is maintained to reflect the order of tasks
as they are executed in the serial elision. The view used during a certain interval of the execution
is reduced only with views corresponding to the intervals that directly precede or follow the first
interval. This ensures the reducer calculates the same value during any parallel execution as it does
during the serial elision.

The running example (Figure 6.3) defines a map reducer class. The member value imp
(Line 14) is declared as an instance of the reducer class, specialized by the Monoid definition.
The object imp manages the creation, lookup and destruction of views. The map reducer class
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1 template<class map type>
2 class map reducer {
3 struct Monoid : cilk :: monoid base<map type> {
4 static void reduce(map type ∗ left, map type ∗ right) {
5 for(typename map type::const iterator
6 I=right>cbegin(), E=right>cend(); I != E; ++I)
7 (∗ left ) [ I> first ] += I>second;
8 right >clear () ;
9 }

10 static void identity (map type ∗ p) const {
11 new (p) map type();
12 }
13 };
14 cilk :: reducer<Monoid> imp ;
15
16 public:
17 map reducer() : imp () { }
18 typename map type::value type & operator[](
19 const typename map type::key type & key) {
20 return imp .view() [key];
21 }
22 typename map type::const iterator cbegin() {
23 return imp .view() .cbegin();
24 }
25 typename map type::const iterator cend() {
26 return imp .view() .cend();
27 }
28 void swap(map type & other) {
29 return imp .view() .swap(other);
30 }
31 map type & get value() {
32 return imp .view() ;
33 }
34 };

Figure 6.3: Example of a hash-map reducer for counting occurrences of words.

further provides access to the underlying view through the operator [] in order to add items
to the hash-map.

Figure 6.4 shows how the map reducer may be used in parallel code. The cilk for con-
struct creates parallelism. Each concurrently executing loop iteration references the same instance
of the map reducer class, but the cilk::reducer object imp serves up different views in

35



ASAP FP7 Project
ASAP D2.1

Preliminary Definition of ASAP Programming Model

1 map reducer<std::map<std::string,size t>> map;
2 cilk for (std :: vector<std:: string>:: const iterator
3 I=vec.cbegin(); I != vec.cend(); ++I) {
4 map[∗I]++;
5 }

Figure 6.4: Example use of the map reducer: a word count is calculated in parallel for all words in
a vector by accumulating the count in a hash-map.

concurrently executing iterations. All views are reduced prior to completion of the cilk for
loop.

6.2.4 Array Notation
Intel Cilkplus supports an array notation that facilitates auto-vectorization [16]. The array notation
allows for 3 fields in an array section expression: a[i:l:s], where i is the start index of the
array section, l is the length and s is the stride. Each element of the array notation is optional,
but at least one colon must be present. Default values are 0 for i, the length of the array for l,
provided it is known at compile-time, and 1 for s. E.g., a[:] indicates the full array if its size is
statically known, while a[:10:2] indicates the elements at indices 0, 2, 4, 6, 8.

Expressions may be built up using array notations, e.g., the statement c[:] = a[:]+2*b[:];
is equivalent to

1 for( int i=0; i < n; ++i)
2 c[ i ] = a[ i ] + 2∗b[i ];

assuming each array was declared with length n.
One can also map functions over all elements of an array section. E.g., a[:] = pow(b[:])

applies the function pow to each element of array b and stores the result in the corresponding ele-
ment of array a. Reductions are specified using built-in functions that may be applied to arbitrary
array sections. E.g., sec reduce add(a[::2]) returns the sum of the array elements at
even positions of a.

The key advantage of the array notation is that it enables the compiler to auto-vectorize the
code. Vectorization can be important towards performance as map-reduce programs often exhibit
a data streaming pattern.

6.2.5 Map-Reduce Template
Map-reduce applications can be encoded quite easily in Cilk, given the presence of cilk for to
apply the map task in parallel, and the functionality of reducers to correctly implement the reduc-
tion phase. Please note again that writing Cilk does not require programmers to worry extensively
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1 MR ∗ mr = ...;
2 MR::reducer t output;
3 cilk for (auto I=mr>begin(), E=mr>end(); I != E; ++I) {
4 mr>map(∗I, output);
5 }
6 // Optional
7 cilk pub::sort ( output.get value() .begin() ,
8 output.get value() .end(), MR::cmp t() );

Figure 6.5: Map-reduce template with balanced spawn tree

about scheduling issues or the application of reduction operations. This is taking care of by the
runtime.

Figure 6.5 shows template code for a map-reduce program in Cilk. Application-specific types
and functions have been extracted in an application-specific namespace “MR”. It is assumed the
programmer has defined the MR::reducer t data type that describes intermediate key-value
data structures and the way by which it can be reduced, conforming Section 6.2.3. Moreover, it is
assumed the programmer has defined the functions MR::begin() and MR::end() that define
the range of data elements to iterate over. These functions return C++ random iterators.
When dereferenced, these iterators return a data element of type MR::partition t which is
passed to the application specific function MR::map() together with a reference to a reducer
object.

Finally, an optional sorting step may be applied to the reducer data structure using the application-
specific comparison function of type MR::cmp t. Sorting is performed in parallel, using a parallel
merge-sort/quicksort algorithm [26]. Depending on the source data structure, sorting may require
to first copy the data to a sortable data structure, e.g., change from a hash map to an array.

One may observe that there is little boiler-plate code in the code template (Figure 6.5).
The balanced code template (Figure 6.5) is applicable when the input data can be iterated over

using an STL iterator. This is not always the case. E.g., text files need to be parsed, which often
requires sequential access. Figure 6.6 shows an unbalanced template for map-reduce. In this
case, the user defines a function MR::partition() that isolates a single work item and returns
false when no more work items can be found. Each work item is subsequently passed on to the
MR::map() function.

Note that the unbalanced template generates an unbalanced spawn tree. As such it potentially
scales less well than the balanced template.

Figure 6.7 summarizes the data types and methods that the programmer should provide for
either code template.

The Cilk code templates allow a natural specification of map-reduce problems as illustrated
by the implementation of wc (Figure 6.8). The program consists of a loop that first partitions the
input data on word boundaries. Once a partition is identified, a task is spawned off to compute the
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1 MR ∗ mr = ...;
2 MR:: partition t chunk;
3 MR::reducer t output;
4 while(mr>partition (chunk)) {
5 cilk spawn [&](MR::partition t work) {
6 mr>map(work, output);
7 }(chunk);
8 }
9 cilk sync;

10 // Optional
11 cilk pub::sort ( output.get value() .begin() ,
12 output.get value() .end(), MR::cmp t() );

Figure 6.6: Map-reduce template with unbalanced spawn tree

1 class MapReduceApplication {
2 typedef ... partition t ;
3 typedef ... reducer t ;
4 void map( const partition t &, const reducer t & );
5 // Unbalanced template
6 bool partition ( partition t & ) ;
7 // Balanced template
8 typedef ... iterator ; // random access
9 iterator begin() ;

10 iterator end();
11 // Optional comparison for sorting
12 typedef ... cmp t;
13 };

Figure 6.7: Overview of template members for the MR class describing application-dependent types
and methods.

word counts for a partition. These tasks may execute in parallel with each other as well as with the
partitioning code. The hash-map reducer (Figure 6.3) is used to reduce the hash maps constructed
by individual tasks.

Note that Phoenix [34] does not allow overlap between partitioning of the input data and ap-
plying the map task.
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1 typedef unordered map<const char ∗, size t> umap;
2 void wc( char ∗ data, size t size, umap & out dict,
3 size t chunk size=1UL<<20 ) {
4 map reducer<umap> dict;
5 size t pos = 0;
6 while( pos < size ) {
7 // Partition input at word boundary
8 size t end = std ::min(pos + chunk size, size);
9 while(end < size && !non word char(∗end))

10 end++;
11 data[end] = ’\0’ ;
12
13 // Process partitions in parallel
14 cilk spawn [&](char ∗ chunk, size t len) {
15 size t i=0;
16 while(i < len) {
17 size t start = i ;
18 // Search the end of the word
19 while(i < len && !non word char(chunk[i]))
20 i++;
21 if ( i > start ) {
22 chunk[i] = ’\0’ ;
23 dict [&chunk[start ]]++;
24 }
25 }
26 }( &data[pos], endpos );
27 pos = end;
28 }
29 cilk sync;
30 // O(1) operation to hide reducer object from caller
31 dict .swap(out dict) ;
32 }

Figure 6.8: Cilk implementation of wc.

6.3 Map-Reduce Benchmarks
We have implemented all 7 Phoenix++ benchmarks in Cilk. Table 6.1 describes their properties
when programmed in the Phoenix++ programming model. The first column shows the key multi-
plicity as m:e, where m indicates how many map tasks can generate a unique key and e indicates
how many keys can be emitted by a map task. These properties were listed in the Phoenix++
publication [34], however, we found the report deviates from the distributed code. For matmul
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Table 6.1: Phoenix++ implementation details: the map task multiplicity, combiner data type,
whether key-value pairs are sorted, merge task and reduction operation.

map combiner sort reduction
histogram *:768 array N array add
lreg *:5 array N array add
wc *:* hash Y hash map join
kmeans *:K array N array add
matmul *:0 n/a N n/a
pca 1:1 array N array add
strmatch *:0 n/a N n/a

Table 6.2: Cilk implementation details: the reduction type and whether the implementation has a
balanced spawn tree (bal), uses multi-level parallelism (nest), vectorization (vec) and sorting (sort).
The matmul code deviates from the map-reduce template.

reduction bal nest vec sort
histogram fixed-size array add B N (Y) N
lreg 5-scalar struct add B N Y N
wc hash table union U N N Y
kmeans cluster center add B N (Y) N
matmul n/a B N N N
pca scalar integer add B Y Y N
strmatch none U N N N

and strmatch, the multiplicity *:0 indicates that the map tasks emit zero key-value pairs. Instead,
shared memory operations are used to produce output results. This goes against the spirit of the
map-reduce model.

The second column of Table 6.1 shows the intermediate key-value data structure used. In most
cases, a generic key-value list is optimized to an array indexed by an integer key. In the case of
word count, intermediate key-value pairs are stored in a hash map indexed by a character string
key.

Details of the Cilk implementations of the benchmarks are provided in Table 6.2. The reduction
data structures are similar to those used in the Phoenix++ versions of the code. In some cases, they
are specialized further to the benchmarks and are semantically richer, e.g., a struct of scalars vs.
an array for lreg. The table further indicates whether the balanced (B) or unbalanced (U) template
is used, and also if the benchmark uses nested parallelism, vectorization or sorting. The label (Y)
indicates that vectorization is possible, but did not return performance improvements.
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6.4 Evaluation

We evaluate the programming systems on a dual-socket 2 GHz Intel Xeon E5-2650 v2, totaling 16
threads. The operating system is CentOS 6.5 with the Intel C compiler version 14.0.1. We compare
against Phoenix++ version 1.0 using the large, medium and small input data sets and command line
flags provided with it.

6.4.1 Performance Evaluation
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Figure 6.9: Results (a): Applications dominated by map time (compute-bound)

Figures 6.9–6.11 present the speedup using Cilk and Phoenix++ over the sequential version
of the benchmarks. These codes have not been vectorized. Figure 6.9 shows the benchmarks
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Figure 6.10: Results (b): Memory-bound applications

dominated by computation in the map phase: matmul, pca and kmeans. Kmeans is an itera-
tive map-reduce application. Phoenix++ requires repeated serialization and de-serialization of the
centers to key-value lists. This is redundant and reduces scalability.

For matmul we use two matrix multiply implementations distributed with MIT Cilk [11]. The
matmul version uses recursive decomposition of the problem where on each level of recursion the
problem is split along its largest dimension. The rectmul version splits the target matrix along both
dimensions on each level of recursion and has a much higher degree of parallelism. Moreover, its
leaf task, a 16x16 block multiply, is highly optimized. In Figure 6.9, performance is normalized
to the sequential version of matmul. It is clear that specifically optimized codes outperform a
generic map-reduce framework like Phoenix++. This exposes the pitfall that applying the map-
reduce concept to every problem is not sensible. Moreover, note that the map-reduce runtime is
used inappropriately for matrix multiply as it accesses shared memory from within the map task
and does not emit key-value pairs.

The memory-bound benchmarks histogram and lreg show good scalability on both program-
ming systems (Figure 6.10). Both benchmarks perform very few operations per input byte, namely
4 integer operations for histogram and 7 for lreg. The scalability of the Cilk version saturates for
the highest core counts, which suggests that the Cilk scheduler carries a higher burden than the
Phoenix++ scheduler.

Finally, the benchmarks wc and strmatch use the unbalanced Cilk template (Figure 6.11).
The performance of strmatch is identical to that of the Phoenix++ version while wc outperforms
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Figure 6.11: Results (c): Applications with unbalanced spawn trees.

Phoenix++ due to an improved hash table implementation, which is described below.
Overall, we observe that the Cilk codes are outperformed by the Phoenix++ codes only on

histogram and marginally on wc when executing the small input data set.

6.4.2 Performance Considerations
Internal Data Structures
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Figure 6.12: Performance of wc with various hash table implementations.

Our initial Cilk implementation of wc performed poorly. The reason hereto was that we used
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the default C++ STL unordered map. This hash map data structure performs badly for this
application (Figure 6.12, line “STL umap”) because it is optimized to balance performance against
space. In a typical map-reduce application, however, insert operations dominate the execution
time, so there is no scope to trade-off performance.

We optimized the STL unordered map by defining a resizing policy that restricts the hash table
size to a power of 2 and a hash function that selects the lowest bits of the integer key to select a
bucket in the hash table. This version performs better (Figure 6.12, line “pow2 umap”), but is still
not as performant as the Phoenix++ hash table as the STL code uses dynamically allocated linked
lists to store elements that map to the same bucket.

We further optimized the Phoenix++ hash table to store the full-length hash values in the hash
table along with the key. This is possible as the hash function computes a hash that is independent
of the hash table size. The hash table selects the appropriate bits from this to index its table. Storing
the full-length hash saves time recalculating hash values when the hash table is resized. Moreover,
we initialize the hash table to an application-specific size. This is possible because we know both
the chunk size and the average number of words per character of text. We assume there is one
unique word for every 16 bytes in a chunk. The optimized hash table out-performs the Phoenix++
hash table by 7.9% to 17.4% on 16 threads (Figure 6.12, line “opt umap”).

We conclude that map-reduce applications are extremely sensitive to the performance of the
data structures due to the generally low amount of computation per data structure access. This
observation also motivated the specialization of data structures in Phoenix++ [34]. However, the
only data structure that posed problems is the hash map in wc. All other applications use fixed-
length arrays or structures, which introduce no performance overhead.

Vectorization

Cilk’s array notation allows the expression of vectorizable code. This improves the speedup of pca
on 16 threads from 15.2 to 17.9 over unvectorized sequential code (Figure 6.9). Note that applying
the array notation to pca is trivial.

We furthermore applied the array notation to lreg. The regression computation requires integer
multiplications, for which our x86-64 target has no efficient vector operations. The vector multi-
plications offered reduce the number of elements in a vector while increasing the precision of each
element in order to handle possible overflows correctly. In this code, however, this is redundant
as the initial coordinates are 8 bits wide and the target of the multiplication is 64 bits. As such,
the main loop is not vectorized. However, the array notation results in more efficient assembly
code. Also, the reduction operation is vectorized efficiently, resulting in an overall performance
improvement by 8.99% over non-vectorized Cilk code on the large data set.

We also applied vectorization to histogram and kmeans. In these benchmarks, the vectorized
code is restricted to the reduction operation, which contributes to a minor fraction of total execution
time. We have not shown these results.
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Figure 6.13: Traces for the wc benchmark executing on Phoenix++ (left) and Cilk (right). Legend:
Map tasks (dark green), reduction (red), merge (light green) and sort (greyish blue). Cross marks
show hash table resizes while black lines in map tasks indicate a rapid succession of resize op-
erations. The Cilk version executes more slowly in this measurement because substantially more
trace events are recorded.

Nested Parallelism

Finally, a language like Cilk allows nested parallelism, while Phoenix++ does not. In the case of
pca, this means that Cilk allows to express a higher degree of parallelism than Phoenix++. We
verified that removing nested parallelism from the Cilk implementation reduced the speedup on 16
threads from 15.2 to 13.9.

6.4.3 Analysis

Figure 6.13 illustrates the difference in execution pattern between Phoenix++ and Cilk. On the
left hand side, an execution trace is shown for Phoenix++ showing the activity on each of the 16
threads. The trace shows sharply delineated phases where all threads first co-operate on the map
task, then the reduce task, subsequently sort and finally merge. There is strong thread imbalance
between stages.

We recorded a trace for the Cilk version when using the Phoenix++ hash table for fair com-
parison (Figure 6.13, right). Here, the map and reduce tasks are interleaved as a result of work
stealing. wc follows the unbalanced pattern, implying that one hash table reduction is performed
per map task. The Cilk version spends 60% more time in reduction compared to the Phoenix++
version.

In the case of Cilk, the merge step consists solely of serialization, i.e., transforming the hash
table to a key-value list. The merge step is executed by a single thread. Sorting is executed in
parallel but the contribution of individual threads is not recorded in the trace.

The trace reveals that hash tables are resized much more frequently in the Cilk version, about
5.5x times more often. This occurs because the size of a hash table is reset for every new map task
and must gradually grow, while Phoenix++ has one hash table per thread and does not resets its
size during the map phase.
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6.4.4 Discussion

Our performance evaluation demonstrates that the specialization applied to the Phoenix++ runtime
does not offer increased performance. Implementations of the same algorithms in a generic parallel
programming language deliver significantly higher performance in all but one algorithm. The only
major performance issue we encountered was the sensitivity of the wc benchmark on its unordered
hash map data structure.

One may draw different conclusions from this work, either with practical consequences or
conceptual consequences. A practical consequence is that the implementation of Phoenix++ needs
to be revisited. Alternatively, one may decide to develop a specialized map-reduce runtime system
building on the Cilk language, which should theoretically deliver the same results as we have
found.

We believe, however, that the concept of a specialized map-reduce programming system for
shared memory systems is conceptually broken. While map-reduce systems offer various advan-
tages for distributed memory systems, such as support for fault-tolerance, data movement and
straggler detection [8], they can provide only two benefits for shared memory systems: perfor-
mance and ease of programming. On the down-side, the map-reduce model puts restrictions on
the expressiveness of programs. The class of programs that can be represented in the map-reduce
model is limited theoretically [10], but also from a practical point of view, e.g., see [19, 17]. To
deliver performance, a shared memory map-reduce system like Phoenix [34, 6, 25, 21] offers two
things: (i) a manner to express the map-reduce parallel pattern and (ii) data structures that are
highly tuned to the application properties. Of these, (i) is offered by your favourite parallel pro-
gramming language and (ii) can be delivered by means of a library.

As for the ease of programming, the Cilk code pattern is not complicated to apply. More-
over, a subtly undefined aspect of map-reduce is the commutativity of reductions [39]. This as-
pect of the programming model is most often not even documented, for instance in the Phoenix
systems [29, 40, 34]. However, executing non-commutative reduction operations on a runtime
system that assumes commutativity can lead to real program bugs [7] even in extensively tested
programs [39]. We believe strongly that the non-commutative nature of Cilk reductions provides
a better programming abstraction than the commutative abstractions applied in the majority of
map-reduce runtimes.

Moreover, it has been documented repeatedly that not all algorithms fit the map-reduce model.
Forcing an algorithm in the map-reduce straight-jacket is demanding for the programmer and will
most likely lead to reduced performance. Matrix multiply and K-means are just two examples of
algorithms that should not be programmed as map-reduce problems.

6.5 Conclusion
We have evaluated the suitability of the internal programming language for implementing map-
reduce style applications. We performed this study by using a subset of the internal language,
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named Cilk, and found that it provides better performance than specialized map-reduce systems
on shared-memory machines. We will extend this result to distributed memory machines using the
region concept, as discussed in Chapter 3.

We implemented a number of map-reduce benchmarks in the Cilk parallel programming lan-
guage. Comparison against Phoenix++, a state-of-the-art shared-memory map-reduce runtime,
shows that the Cilk versions of the code increase performance by 40–95%, while performance is
reduced by 10% for one application, which has the lowest number of operations per byte trans-
ferred.

The key conclusions from this study are that, in order to achieve best performance, one should
(i) use high-performance data structures with minimal overhead, (ii) avoid representing the data as
key-value pairs unless required, especially in iterative map-reduce problems, and (iii) use existing
optimized implementations of kernels when available. Note that these considerations are not hid-
den from the programmer by specialized map-reduce systems such as Phoenix or even Hadoop.
As such, they must be known to data analysts. The ASAP project will remove this requirement
on the data analyst by providing suitable operator abstractions, while such implementation details
will be hidden in the implementation of the operators, i.e., at the level of the internal programming
language.
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Chapter 7

Conclusion

Analytics platforms provide high degrees of programmability by providing operators that describe
common data manipulation operations at a high level of abstractions. These are easy to use for data
analysts. The operators hide the details of parallel and distributed computing, data management,
fault tolerance, etc. Internally, however, these operators are implemented in a parallel or distributed
programming framework, but this is hidden from the data analyst.

The ASAP programming model follows a similar structure. We define high-level operators that
describe commonly occurring patterns of operation. Moreover, we extend the way that these high-
level operators may be combined. In particular, we allow nesting of operations on data sets in order
to better manage important aspects of the computation, such as degree of parallelism, granularity
of parallelism, locality optimization, etc.

Moreover, we define an internal programming language to implement the operators. The inter-
nal language is task-oriented, where tasks are operations on specific data sets. These data sets are
describe explicitly by means of regions. Regions were originally introduced as a memory manage-
ment technique, but in this case regions can also be used to manage large data sets in a distributed
computing environment.

This document provides our current snapshot of the definition of the internal programming
language and the high-level operators. We expect that some changes and extensions will be made
during the course of the ASAP project.
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Acronyms

HDFS Hadoop Distributed File System. 8, 9, 21

RDD Remote Distributed Dataset. 19–21
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