
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D4.1
Execution Engine Design

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 15 Feb 2015 P. Pratikakis, S.

Papagiannaki, M.
Chalkiadaki

Initial Version

0.2 27 Feb 2015 S. Papagiannaki,
M. Chalkiadaki

First Revision

1.0 5 Mar 2015 P. Pratikakis Final Version

Acknowledgement This project has received funding from the European Union’s 7th Framework
Programme for research, technological development and demonstration under grant agreement
number 619706.

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

Executive Summary
This document presents the current design of the execution engine for recursive analytics queries,
as developed in WP4 of project ASAP. The execution engine design is an extension of the Spark
analytics engine. We extend the Spark scheduling algorithm to allow for ongoing analytics queries
to issue sub-queries recursively, by modifying the scheduling actors of Spark to forward query ini-
tializiation and completion messages to the scheduler node. We avoid centralizing the scheduling
algorithm by optimizing for direct communication between worker nodes whenever possible, to
avoid congesion at the scheduler node.

2

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

Contents
1 Introduction 4

1.1 Task Description . 4

2 Dependency-aware query execution engine 4
2.1 Dependence analysis . 5
2.2 Scheduler . 5
2.3 Execution Engine . 6
2.4 Implementation Details . 6

3 Benchmarks 7

3

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

v a l f i l e 1 = sc . t e x t F i l e (” h d f s : / / f i l e 1 ”)
v a l f i l e 2 = sc . t e x t F i l e (” h d f s : / / f i l e 2 ”)
f i l e 1 . map (word1 =>

f i l e 2 . f i l t e r (word2 =>
(word1 . l e n g t h > word2 . l e n g t h))

. c o l l e c t ())
. c o l l e c t ()

Figure 1: example of nested RDD operations

1 Introduction
The main objective of this Work Package is the design and an development of a dependency-aware
query execution engine which incorporates the following functionalities:

• the division of query computations into computation tasks and the representation of them in
the system;

• the analysis of tasks to discover data dependencies;

• the data placement constraints posed by each data store and data schema, and their represen-
tation in the runtime system;

• the scheduler of computation tasks to computation nodes, while taking into account the data
location and data dependencies.

1.1 Task Description
The Task T4.1, which aims at producing Deliverable D4.1, describes the detailed design and an
early implementation of the dependence analysis, the scheduler and the execution engine.

2 Dependency-aware query execution engine
As a base for the dependency-aware query execution engine we employed the Spark [1] execu-
tion engine. Spark uses an abstraction for describing general purpose calculations on datasets by
keeping track of lineage dependencies between the required dataset transformations. Moreover, it
contains a scheduling mechanism for decomposing the calculations in pipelined tasks that can be
executed independently in a cluster by taking into account locality and resource constraints. Our
design extends the Spark execution in order to enable the execution of nested calculations like the
one in Figure 1.

4

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

2.1 Dependence analysis
The fundamental abstraction in Spark are RDDs (Resilient Distributed Dataset) which are im-
mutable partitioned collections, stored in an external storage system, such as a file in HDFS, or
derived by applying operators to other RDDs.

RDDs support two types of operations: transformations which create a new dataset from an
existing one, and actions which return a value to the driver program after running a computation
on the dataset.

All transformations are lazy, therefore each RDD keeps track of all the transformations applied
to the base dataset and they are only materialized when an action requires a result to be returned to
the driver program.

Once an action on a RDD is triggered on the driver side, a job is submitted to the scheduler.
Each job is decomposed in smaller sets of tasks called stages that depend on each other (similar
to the map and reduce stages in MapReduce). The decomposition into stages is achieved by clas-
sifying RDD dependencies into narrow and wide. In case of a narrow dependency, each partition
of the child RDD is derived by at most one partition of the parent RDD. In case of a wide depen-
dency, each partition of the child RDD is derived by several parent partitions. Hence, each stage
contains as many pipelined transformations with narrow dependencies as possible. The boundaries
of the stages are the shuffle operations required for wide dependencies (or any already computed
partitions).

Moreover, the RDD abstraction also enables the data analyst to provide hints how the data
should be partitioned and calculated by providing

• partitioners that define how the elements in a key-value pair RDD are partitioned by key and

• a list of preferred locations to compute each partition on (e.g. block locations for an HDFS
file)

2.2 Scheduler
The Spark scheduler first examines the RDDs lineage graph to build a DAG of stages. Then, it will
try to submit the final stage. However, if the parent stages are not yet available it will recursively
force them to be calculated. Whenever a stage’s parents are available, the scheduler will launch
the necessary tasks in order to compute the missing partitions.

The task scheduler running in the driver side decides which tasks should run in which node
based on resource and locality constraints. For instance, if a task needs to process a partition that
is available in memory on a node, it will be sent to that node. Otherwise, if a task processes a
partition for which the containing RDD provides preferred locations, it will be send it to those
locations.

Finally, the SchedulerBackend module, which resides also in the driver program, generates a
message containing the serialized task for each task and sends it to the scheduled executor.

5

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

2.3 Execution Engine
The executor once receives the task, deserializes it and runs it. Tasks are divided into ResultTasks
and ShuffleMapTasks. The final stage consists of various ResultTasks while the intermediate stages
consists of ShuffleMapTasks. The output of ResultTasks is sent back to the driver while the out-
put data of the ShuffleMapTasks are written to the local file system waiting for subsequent tasks
(reducers) to download them.

Whenever a task requires intermediate data from parent stages will make remote pull requests
to download them.

Finally, upon the end of the execution, the executor notifies the driver program about the task
execution result status.

2.4 Implementation Details
The Spark engine is implemented in Scala, a functional, object oriented language that is compiled
to JVM bytecode.

The Scala concurrency model relies on the Akka library, which implements the actor model.
Each Akka actor is a lightweight task that can send or receive messages.

The overview of the scheduling mechanism is depicted in Figure 2. Each bubble represents an
Akka actor. The main cluster messages for Spark scheduler-executor communication are:

1. RegisterExecutor : When an executor is initiated, it sends a message to master to register
itself

2. LaunchTask : Master sends a serialized task

3. StatusUpdate : The executor updates master with the task state(RUNNING,FAILED,FINISHED)

4. KillTask : Master orders an executor to stop executing a task

However, the Spark would fail to execute the nested calculation in Figure 1. The reason is that
some RDD metadata are known only by the driver program while such a calculation requires such
an information to be shared also with the executors.

An execution attempt would be the following: The outer collect method forces the computation
in the driver program to start. Since no shuffle operations are involved, the DAG graph will consist
of only one stage. This stage will contain one transformation of the RDD representing the file1 in
the Hadoop to an RDD derived by appliying the map function. The scheduler will try to submit this
stage and since there are not waiting parent stages it will proceed with creating and submitting the
missing tasks. Then the TaskScheduler will create tasks which literally will force the nested code
to be executed for each word of the file1. Each task will be serialized and sent to an idle executor.
As soon as the executor will receive the task, it will try to apply the computation on its partitions of
the RDD. At this point the computation in the spark engine would fail since the executor is missing
information in order to perform the computation.

6

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

Figure 2: Spark runtime design overview

Therefore, we introduce some extra control messages to the Scheduler-Executor protocol.
When the executor tries to invoke the nested map operation, it figures out that it is on executor
mode, thus cannot create RDDs, so it sends a CreateRDD message to SchedulerBackend with (rd-
did,”map”,function) as arguments. Then the scheduler, looks up the RDD with the specified id,
and using reflection, invokes the ”map” method, creating the desired RDD. Then the Scheduler
sends back to the executor the id of the created RDD (SendRDD msg). Now the worker creates
promise of the RDD based on the id received. When the nested collect is called the executor sends
the CollectRDD message, asking the Scheduler to collect the file2 RDD, and send back the result.

Figure 3 shows the sequence of messages that have to be sent.

3 Benchmarks
To test our early prototype of dependence analysis and scheduler extensions for recursively nested
queries, we have used the current implementation of the Peak Detection application, as presented
in the Telecommunication Analytics application deliverable D9.2. We have re-implemented the
application twice to run on Spark execution engine and also to use our extension of Spark using
nested queries. We have run both applications on data sets of various sizes using two clusters of two
and five nodes, respectively. Table ?? presents the results of running the original Peak Detection
on a single node using SQLite, the “flat” distributed implementation using Spark, and the “nested”
distributed implementation.

Note that the nested implementation is the slowest of the three; that is to be expected as it is
an early prototype execution engine running a benchmark not designed for it nor requiring nesting

7

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

Figure 3: Executor asks the master to perform an RDD operation

Data Size Original Spark Spark Nested Spark Spark Nested
SQLite 5 nodes 5 nodes 2 nodes 2 nodes

1.2k 0 16 16 11 11
12k 0 16 15 11 11
108k 0 16 16 11 12
1.1M 0 19 21 13 15
11M 1 22 80 15 144
107M 10 35 4120 23 9169

to express. It is always the case that if a query can be expressed as a “flat” computation then that
is the best way to schedule it. However, the results satisfy project Milestone MS6, since this early
implementation of the nested scheduler satisfies dependencies and runs the application successfuly
on both clusters, without any bottlenecks of scalability.

8

ASAP FP7 Project
ASAP D4.1

Execution Engine Design

References
[1] Apache Incubator. Spark: Lightning-fast cluster computing, 2013.

9

FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D4.1
Execution Engine Design

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public

	Introduction
	Task Description

	Dependency-aware query execution engine
	Dependence analysis
	Scheduler
	Execution Engine
	Implementation Details

	Benchmarks

