
FP7 Project ASAP

Adaptable Scalable Analytics Platform

ASAP D5.1
Workflow management model

WP 5 – Adaptive Data Analytics

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
1.0 18 Feb 2015 V. Kantere, M. Fialtov First Version
2.0 27 Feb 2015 V. Kantere, M. Filatov Final Version

Acknowledgement This project has received funding from the European Union’s 7th
Framework Programme for research, technological development and demonstration un-

ASAP FP7 Project

ASAP D5.1

Workflow management model

der grant agreement number 619706.

2

Contents

1 Introduction 6

1.1 Purpose of this Document . 7

1.2 Motivating Applications . 7

1.3 Structure of this Document . 8

2 Workflow Definition 9

2.1 Vertices . 11

2.2 Edges . 14

2.3 Data . 17

2.4 Processors . 18

3 Workflow Execution 21

3.1 The Analysed Workflow . 22

3.2 Execution Semantics of Edges . 24

3.3 Execution Semantics of Vertices . 27

3.4 Execution with Constraints . 29

4 Workflow Manipulation 30

4.1 Operations on Vertices . 30

4.2 Operations on Tasks . 32

4.3 Properties of Processors . 32

5 Workflow Optimization 34

5.1 Optimization via Graph Reconfiguration . 35

5.2 Optimization via Optimal Resource Management 35

5.3 Optimization of Multiple Workflows . 35

6 Related work 36

3

ASAP FP7 Project

ASAP D5.1

Workflow management model

7 Example Use Cases 41
7.1 Detecting and predicting traffic jams . 41
7.2 Peak detection . 45
7.3 NLP-classification . 48

8 Conclusion 52

4

List of Figures

2.1 Notation of figures with workflows . 10
2.2 Workflow examples . 10
2.3 Task examples . 11
2.4 A vertex with multiple tasks . 12
2.5 A vertex with a task with two outputs . 13
2.6 A vertex that represents a SQL query . 13
2.7 Edge with the respective input and output 14
2.8 An edge connecting two vertices with one task each 14
2.9 Example of an edge with different flow metadata of input and output data . 16
2.10Example of an edge with different persistence metadata of input and out-

put data . 16
2.11Example of an edge with different availability metadata of input and output

data . 17

3.1 The original and analysed version of a workflow 22
3.2 Example of a scheduling task . 25
3.3 Example of availability tasks . 26
3.4 Example of an analysed workflow for a vertex that represents a SQL query 27
3.5 Example of an analysed workflow for a vertex that represents complex

computation . 28

4.1 Examples of operation ‘merge’ . 31
4.2 Examples of commutativity . 32

7.1 Workflow for the detection and the prediction of traffic jams 42
7.2 Workflow for the detection of peaks . 46
7.3 Workflow for NLP-classification . 49

5

Chapter 1

Introduction

The analysis of Big Data is a core and critical task in multifarious domains of science and
industry. Such analysis needs to be performed on a range of data stores, both traditional
and modern, data sources that are heterogeneous in their schemas and formats, and
on a diversity of query engines.

The users that need to perform such data analysis may have several roles, like, busi-
ness analysts, engineers, end-users, scientists etc. Users with different roles may need
different aspects of information deduced from the data. Therefore, the various users
need to perform a variety of tasks, like simple or complex data operations and queries,
data mining, algorithmic processing, text retrieval, data annotation, etc. Moreover, they
may need to perform such tasks in different scheduling schemes, for example short or
long-running queries in combinations with a one-time or a continuous output. Finally,
the users may differ in their expertise with respect to their data management skills, as
well as on their interest in implementation specifics. Thus, a system for Big Data ana-
lytics should enable the expression of simple tasks, as well as combinations of tasks, in
a manner that describes the application logic of the tasks and is adaptable to the user
role, interest and expertise.

To fulfil the above requirements we propose a novel workflow model for the expres-
sion of analytics tasks on Big Data. The proposed model allows for the expression of
the application logic while abstracting the execution details of tasks and the details on
the data formats and sources. The model enables the separation of task dependencies
from task functionality, as well as the adaptation of the level of description of execution
semantics, i.e. the execution plan. In this way, the model can be easily, i.e. intuitively
and in a straightforward manner, used by many types of users, with various levels of
data management expertise and interest in the implementation. Therefore, using the
proposed model, a user is not only able to express a variety of application logics for Big
Data analytics, but also to set her degree of control on the execution of the workflow.

6

ASAP FP7 Project

ASAP D5.1

Workflow management model

This means that model enables the user to express specific execution semantics for
some parts of the workflow and leave the execution semantics of other parts abstract.
The latter are decided by the analytics system at the processing time of the workflow.

1.1 Purpose of this Document

This document presents the proposed workflow model. This includes the declaration of
the workflow and the accompanying execution semantics. The workflow is defined in
terms of a graph. Vertices in the graph include single or groups of tasks, and edges in
the graph represent dependencies between the groups of tasks included in vertices. We
discuss the execution semantics of vertices and edges and we propose the creation of
the analysed form of the workflow, which depicts the execution semantics of the original
version. Furthermore, we make an initial discussion on methods that are necessary in
order to manage the workflow in order to optimise its execution. Finally, we depict the
proposed workflow model on specific use cases from the telecommunication domain.

1.2 Motivating Applications

Distributed data processing is the core application that motivates our research in the
ASAP project. Storing and analyzing large volumes and a variety of data efficiently is
the cornerstone use case. A goal of the project ASAP is to design and develop an ana-
lytics platform for the two analytics applications of consortium partners WIND and IMR,
regarding telecommunication analytics and web analytics, respectively. In short, ASAP
aims to build a unified, open-source execution framework for scalable data analytics.
ASAP aims to develop the technology to facilitate the development and execution of
general-purpose analytics queries over irregular data.

Cellular networks data sources bring a new quantity and quality to the analysis of
mobility data. We are interested in the analysis of GSM/UMTS data in the context of ex-
isting and upcoming application scenarios. Possible use cases focus on handling, inter-
pretation and analysis of cellular data. Wind as a TLC Operator is interested in Privacy-
Aware Mobility Mining to improve its portfolio services according to the legal context:
In the new ecosystems the right to the protection of the private sphere must coexist
with the right to access to knowledge and to services as a common good. Through the
analysis of CDR data (voice and SMS) and the correlation with Wind Customers (CRM
data), it is possible to identify the real tourist flows, linking and counting the unique
Wind customer making or receiving calls in states/provinces/cities other than that of
residence. In this way the traffic would be automatically "sorted" and easily traceable

7

ASAP FP7 Project

ASAP D5.1

Workflow management model

and then analyzed. The proposed use case is important from the marketing point of
view, because it can make possible, starting from the CRM data for each customer (and
from her trajectories), to address a Social Network Analysis (SNA) taking into account
the legal constraints coming from the privacy rules.

This analysis may be useful for various situations. Examples are the reconstruction
and optimization of the transportation of things and people, the behavior analysis of
people flows for the promotion of tourism, etc.

The Web Analytics application includes several data flow processes and query work-
flows. In short, developers implement stages of computation pipelines, which are then
synthesized by workflow designers, and executed to answer user queries. Initially, the
use cases are described and specified to target a small data set of almost 18k docu-
ments, averaging 200kb per document; in total 139GB of data. This is so that use cases
are easy to deploy outside of the actual IMR data center, to facilitate research and de-
velopment by the ASAP research partners. The plan is to eventually deploy and test the
ASAP platform on the larger, actual data set in the IMR data center. Chapter 7 presents
one basic indicative IMR use case.

1.3 Structure of this Document

The rest of this document is structured as follows. Chapter 2 presents the workflow def-
inition, Chapter 3 presents the workflow execution, Chapter 4 discusses workflow ma-
nipulation, Chapter 5 discusses workflow optimisation, Chapter 6 summarises related
work and Chapter 7 presents workflow examples for use cases. Chapter 8 concludes
the document.

8

Chapter 2

Workflow Definition

The goal of the workflow is to enable the expression of the logical definition of user
applications, which include data processing, i.e. data accessing and computation, as
well as dependencies between instances of data processing. Computation may refer
to algebraic computation or to more elaborate, algorithmic computation. The workflow
models such applications as a graph. The vertices in the graph represent application
logic and the edges represent the flow of data. Application logic includes (a) the analysis
of data, and (b) the modification of data. Edges are directed and connect the vertices
that produce and consume data. The rationale for adopting a graph model for the
definition of a workflow is that the latter can enable the expression of application logic
in an intuitive manner.

There are three types of vertices in a workflow, namely root vertices, sink vertices
and plain vertices. The root vertices have only outgoing edges and they represent
entry points of the application logic. Figure 2.1 explains the notation in all the figures
that represent workflows and workflow parts. We require that each workflow has at
least one root vertex. The sink vertices have only incoming edges and they represent
final points of the application logic. We do not require that each workflow has one or
more sink vertices. The vertices that are not of type root or sink are plain vertices,
which means that they have both incoming and outgoing edges. For applications that
include many phases of data modifications or analysis, we expect that most vertices in
respective workflows are plain, as they represent points in the application logic where
data are both produced and consumed. Workflows that do not have sink vertices are
those that express an application logic of continuous execution. It is easy to see that
workflows without sink vertices are graphs with cycles. Figure 2.2a shows a workflow
with two root and two sink vertices. Figure 2.2b shows a workflow with no sink vertices,
and, therefore, a cycle. Nevertheless, a workflow may comprise both acyclic sub-graphs
and sub-graphs with cycles. A trivial case of such a workflow is one that expresses the

9

ASAP FP7 Project

ASAP D5.1

Workflow management model

vertex	

edge	

processor	

input	 or	 output	

data	 and	 metadata	

Figure 2.1: Notation of figures with workflows

root$

root$

plain$

sink$

sink$

plain$

(a)

root$

root$

plain$

plain$

plain$

(b)

Figure 2.2: Workflow examples

logic of continuous querying that also outputs processed data, e.g. some final results
to be archived.

The formal definition of a workflow is the following:

Definition 1 . A workflow is a directed graph G = (V , E) where V = Vr ∪ Vs ∪ Vp is
a set that consists of three sets of vertices, the root Vr, sink Vs and plain Vp vertices.
The three sets do not overlap, i.e. Vr ∩ Vs ∩ Vp = ∅, and there should be at least one
root vertex, i.e. Vr 6= ∅. Also, E = {E1, . . . , Em} is a set of edges. An edge E ∈ E is an
ordered pair of vertices, i.e. E = {(Vi, Vj)|Vi, Vj ∈ V}.

Vertices and edges of workflows have properties. The properties of a vertex are
related to tasks of the application part represented by this vertex, as well as corre-
sponding metadata. The properties of an edge are related to data flow, and respective
metadata, represented by this edge.

10

ASAP FP7 Project

ASAP D5.1

Workflow management model

P1#

P2#

I1#

I1#

O1#

O2#

task1#

task2#

(a)

P3#

I1#

I2#

O1#

O2#

task3#

(b)

Figure 2.3: Task examples

2.1 Vertices

Each vertex in a workflow represents one or more tasks of data processing. Each task
T is a set of inputs, outputs and a processor. An input inputs data to a processor;
the latter represents the core of the data processing of the task, and, furthermore,
an output outputs data generated from the processor. Therefore, inputs and outputs
are related to descriptions of data and respective metadata. Figure 2.3 shows task
examples. Figure 2.3a shows two tasks that have a shared input and one output each.
Figure 2.3b shows a task with two inputs and two outputs.

Definition 2 A vertex V ∈ V corresponds to non-empty set of tasks T 6= ∅ such that
each task T ∈ T is a set of inputs I, outputs O and a processor P , i.e. T = {I,O, P}.
Each input I ∈ I and output O ∈ O is a pair of data D and metadata descriptors M , i.e.
I = (DI , MI) and O = (DO, MO).

As defined, a vertex may represent one or multiple tasks of the application logic.
These tasks may share or not inputs, but they do not share processors and outputs.
The inputs and outputs of the tasks of a vertex can be related to incoming and outgoing
edges of this vertex, but they do not identify with edges: inputs and outputs represent
consumption and production of data, respectively, and edges represent flow of data.
Similarly, vertices do not identify with processors. This semantic differentiation is nec-
essary in order to allow the management of the dependencies in the workflow through
graph manipulation separately from the management of data processing and compu-
tation in the workflow. Hence, it is easy to see that a vertex of any type, root, sink, or
plain, may consist of tasks with non-empty sets of inputs and outputs, since the latter
do not imply the existence of incoming or outgoing edges, respectively. Nevertheless,
the incoming and outgoing edges of vertices are related in a 1-1 fashion with some
inputs and outputs, respectively, of vertices. Therefore, if EI and EO are the sets of

11

ASAP FP7 Project

ASAP D5.1

Workflow management model

P1#

P2#

I1#

I1# O2#

O3# O1#

I3#

(a)

P1#

P2#

I1#

I1#
O3#

O2#

O1#

(b)

Figure 2.4: A vertex with multiple tasks

incoming and outgoing edges, respectively of a vertex V , and T is the corresponding
set of tasks, then |EI | ⊂ | ∪T.I |, ∀T ∈ T and |EO| ⊂ | ∪T.O |, ∀T ∈ T .

Figure 2.4 shows an example of a vertex with two tasks. (Figure 2.4a is the detailed
representation and Figure 2.4b is a simplified representation where the cycles that rep-
resent data are omitted). The tasks share input I1 and each has one output, O1 and O2
that each are an input to an edge outgoing from this vertex. The input I1 is the output
of an edge incoming to this vertex. Also, one of the tasks has one more output, O3,
which is an additional input, I3, of the other task. The input/output O3/I3 is not related
with any edge, meaning that these data are not input to tasks that correspond to any
dependent vertex. Figure 2.5 shows a vertex with one task, which creates a histogram
of the input data. The task outputs the histogram itself and a set of additional statistics.
These two outputs are separated and are input to two different edges in order to feed
two different tasks. The histogram is further processed and the additional statistics are
logged.

A vertex needs to correspond to at least one task, but it can also correspond to more
than one task of the application. Such tasks may or may not adhere to any sort of rela-
tion, e.g. concerning associations or similarities of their inputs, outputs or processors.
Nevertheless, the reason why the proposed model allows the definition of vertices with
multiple tasks, is to enable the user to express such associations or similarities. There-
fore, the definition of a vertex in a way that it consists of multiple tasks, enables the
definition of workflows that are intuitive with respect to the rationale of the application
logic.

Figure 2.6 shows a vertex that represents a SQL query. The vertex includes separate
tasks for different parts of the SQL query. All the tasks share the input data, and one of
them, the task that represents a join, has an additional input. Each task has an output.
Note that the output data of this vertex, which is the input to the outgoing edge, is
actually the output data after executing the whole group of tasks represented by this

12

ASAP FP7 Project

ASAP D5.1

Workflow management model

create&&
histogram&

histogram&
rela.on&

other&
sta.s.cs&

further&
process&

store&&
in&log&

Figure 2.5: A vertex with a task with two outputs

select	

join	

project	

sort	

I1	
I2	

O1	

O2	

O3	

O4	

O	

Figure 2.6: A vertex that represents a SQL query

vertex. Notably, the output of the vertex can be any of the O1, O2, O3, O4, depending
on the execution plan of this group of tasks. Allowing the user to define vertices with
multiple tasks, enables her to represent in a vertex part of the application logic that she
considers to be, conceptually, one unified complex task, without requiring her to define
at the same time the way that this complex task should be executed, i.e. the execution
semantics of it.

The processors in tasks realise the application logic, which is, as mentioned earlier,
the analysis or the modification of data. Section 2.4 gives details on the concept of the
processor and discusses proposed instantiations.

13

ASAP FP7 Project

ASAP D5.1

Workflow management model

I" O"edge"

Figure 2.7: Edge with the respective input and output

2.2 Edges

Each edge in a workflow corresponds to a pair of an input I and an output O of the
same data D. As mentioned, the I and the O of an edge correspond in a 1-1 fashion
to an I and an O, respectively of a task. The data D are accompanied by metadata
M , which can be different for the input and the output of the same edge. Figure 2.7
depicts the input and the output of an edge. Figure 2.8 shows an edge that connect
two vertices, with one task each. The output of one task becomes the input of the
other, via the dependency created by the edge connecting the two vertices. (Figure
2.8a shows the detailed representation of this example, and Figure 2.8b shows the
simplified representation of this example, where the cycles representing the data are
omitted.)

edge$
P1$ P2$

(a)

edge$
P1$ P2$

(b)

Figure 2.8: An edge connecting two vertices with one task each

Formally:

Definition 3 An edge E = (Vi, Vj), Vi, Vj ∈ V, in the workflow corresponds to a pair of
an input and an output (I, O). Input I is a pair of data D and some metadata MI , i.e.
I = (D, MI), and output O is a pair of data D and some metadata MO, i.e. O = (D, MO).
Input I is equivalent with an output O′ of a task that corresponds to vertex Vi, i.e.
∃T ∈ Vi.T , ∃O′ ∈ Vi.T.O such that I ≡ O′. Also, output O is equivalent with an input I ′

of a task that corresponds to vertex Vj, i.e. ∃T ∈ Vj.T , ∃I ′ ∈ Vj.T.I such that O ≡ I ′.

14

ASAP FP7 Project

ASAP D5.1

Workflow management model

Hence, an edge defines the flow of data from one vertex to another according to
some metadata that describe production and consumption information for these data.
The production and consumption information can be the same or different and are re-
lated to (a) the data flow (b) the data persistence (c) the data reliability. Other types
of metadata may be added in future work. In general,such metadata can be any in-
formation that plays a role in determining the execution plan of the workflow. More
specifically, the metadata types are:

• Flow. Metadata concerning the data flow pattern. The values of this type may be
the following:

– Batch: The data flow in batches. Concerning input data, this means that they
are consumed in batches (e.g. all data need to be available and accessed
for processing to begin), and concerning output data, this means that they
are available in batches, (e.g. produced data are stored in memory but they
cannot be accessed until they are dumped in permanent storage).

– Stream: The data flow as a stream. Concerning input data, this means that
they are consumed in a streaming manner (i.e. data are processed as soon as
they are available as an input), and concerning output data, this means that
they are available in a streaming manner, i.e. as soon as they are produced
(e.g. either from memory or from permanent storage).

• Persistence. Metadata concerning the data persistence in storage. The values
of this type may be the following:

– Persistent: The data are stored in permanent storage. Therefore, concerning
output data, they remain available after a task completes, and concerning
input data, they remain available during and after they are used as input.

– Volatile: The data are not stored in permanent storage or they are stored
only for a limited time. For example, concerning output data, they may not
remain available after a task completes, and concerning input data, they may
not remain available after they are used as input.

• Reliability. Metadata concerning the correctness or completeness of data. The
values may be the following:

– Reliable: The data are considered to be correct and complete1.

– Non-reliable: The data are considered to be either incorrect and/or incom-
plete.

15

ASAP FP7 Project

ASAP D5.1

Workflow management model

average&
batch&data&

filter&
stream&

Figure 2.9: Example of an edge with different flow metadata of input and output data

in#memory)
algorithm)

persistent)data) vola3le) disk#based)
algorithm)

Figure 2.10: Example of an edge with different persistence metadata of input and out-
put data

The above values of the metadata types may, even further, have properties, espe-
cially related to quantification. For example, the flow values may be characterised by
size (e.g. the size of the batches or streams or the range of their varying sizes) or the
rate of their availability in time; the persistence values may be characterised by the
lifetime of data or required guarantees for availability; and the reliability values may be
characterised by probability estimations.

As mentioned, the metadata of the input and the output pair of an edge can be
different. Thus, the values for the same metadata type for the input and the output of
an edge can be different. For example, concerning the data flow, the input value can
be ’batch’, while the output value is ’stream’. Figure 2.9 shows an edge that connects
a vertex with a task that filters some data, with a vertex with a task that computes the
average of the filtered data. The filtering task outputs data in a streaming manner, but
the task that computes the average takes as a input a batch of data. Therefore, even
though the input and output data‘ of the connecting edge is the same, the respective
metadata concerning the flow of data differ.

Concerning the data persistence, for example, the output value can be persistent

1Correctness and completeness of data may have application-specific semantics.

16

ASAP FP7 Project

ASAP D5.1

Workflow management model

algorithm*
data*

data*with**
required*
availability*
guarantees***

algorithm*that*
locks*the*data*

Figure 2.11: Example of an edge with different availability metadata of input and output
data

with a lifetime of 1sec, while the input value can be ’volatile’, meaning no lifetime at
all after consumption. Figure 2.10 shows an edge that connects a vertex with an in-
memory algorithmic task, with a vertex with a disk-based algorithmic task. The in-
memory algorithm outputs data that are stored in the main memory and not in the
disk, thus they are volatile; whereas the disk-based algorithm reads these data from
the disk. Therefore, the persistence metadata of the input and output of the connecting
edge are different.

Figure 2.11 shows another case of different metadata with respect to data persis-
tence. The input and output data of the edge connecting two vertices are both per-
sistent, i.e. stored in the disk, but their availability requirements differ. The algorithm
in the left vertex outputs one copy of some data; the algorithm in the right, i.e. the
dependent, vertex, locks this copy in order to process the data; yet, these data should
be always available for reading by other tasks.

Furthermore, concerning data reliability, for example, the input and the output data
may have different guarantees. A task may output data with some reliability guaran-
tee, e.g. data can be considered correct with a 0.5 probability, whereas the task that
takes this data as a input may require that they can be considered correct with a 0.8
probability.

It is interesting to note that combinations of the metadata values for the input and
output data of an edge create different execution plans. This issue is discussed further
in Chapter 3.

2.3 Data

The data D of inputs and outputs of edges, as well as of inputs and outputs of tasks con-
sists of information on the data source where these data reside, as well as information

17

ASAP FP7 Project

ASAP D5.1

Workflow management model

on the data unit. Formally:

Definition 4 The data D of an input I = (D, MI) or an output O = (D, MO) is a set
D = {S, u,A}, where S is the data source, u is the basic data unit and A includes
additional information. The data source is a pair S = (n, t) of the name n and the type
t of the source. The unit u takes values from a constraint domain D, which includes the
names of the basic units for known types of data sources.

The type t of a data source can be one of the well known ones, e.g. ‘relational’,
‘rdf’, ‘xml’, ‘key-value’ etc. The unit for each type is unique and pre-specified; e.g. the
unit of the relational type is the ’tuple’, the unit for the ’rdf’ type is the ’triple’ and the
unit for the ’key-value’ type is the ’pair’. Moreover, data may include the description
of additional information, such as relation and attributes names, as well as schema in-
formation (e.g. primary and foreign key constraints) and information on the respective
processing engine, (e.g. engines of NoSQL databases, relational DBMSs like MySQL,
etc).

2.4 Processors

The tasks included in vertices take as input data and metadata, process the data using
a processor and output some data and metadata. Each processor can have an abstract
definition and several implementations, i.e. one or more implementations per platform.
For example a processor that implements a ‘join’ for two data inputs, has an abstract
definition, and can be implemented for a relational DBMS and a NoSQL database. In
order for a processor to be used on a specific platform, it is required that this processor
is implemented for the specific platform. The same holds for processors that perform
more complex operations, such as algorithmic computation. A processor definition in-
cludes restrictions on the type and number of inputs and specifies the number and type
of outputs. Defined and implemented processors form a library from which a user can
select processors to describe tasks. Users can define their own processors and should
provide respective implementations, in which input and output data can be in the form
of raw bytes/records/key-value pairs etc.

In the following we give examples of the definition of basic processors, namely the
select, calc and join:

O(select, I) = {r | r ∈ I ∧ SelectPredicate(r)}
O(calc, I) = {r ∪ {attr : value} | r ∈ I ∧ value := CalcExpression(r)}
O(join, I1, I2) = I1 ./ I2 = {t ∪ s | t ∈ I1 ∧ s ∈ I2 ∧ JoinPredicate(t ∪ s)}

18

ASAP FP7 Project

ASAP D5.1

Workflow management model

The input and output data of a processor are accompanied by metadata that de-
scribe their type, format and other characteristics. The metadata defined for each pro-
cessor have a generic tree format (JSON, XML etc). In order to allow for extensibility,
the first levels of the meta-data tree are predefined; yet, users can add their ad-hoc
subtrees to define their customized processors .

The generic metadata tree for data definitions is the following:

1 {<input | output>: {
2 "constraints": {
3 "data_info": {
4 "attributes": {
5 <attr1..n>: {
6 "type": <type>}},
7 "engine": {
8 "DB": <db_meta>}}
9 }}

The generic metadata tree for processors is the following:

1 {<operator_name>: {
2 "constraints": {
3 <input1..n>
4 <output1..m>
5 "op_specification": {
6 "algorithm": <alg_meta>}}
7 }}

The property <alg_meta> for the processors defined above is the following:
For select:

1 {"select": {
2 "select_condition": <select_predicate>
3 }}

All rows for which the <select_predicate> is ‘True’ are returned:
<select_predicate> ::= {<field_name> <comparison_operator> <value>}
<comparison_operator> ::= [’>’ | ’<’ | ’>=’ | ’<=’ | ’==’ | ’!=’]
For calc:

1 {"calc": [{
2 "calc_attr": <calc_attr>,
3 "calc_value": <calc_expression>

19

ASAP FP7 Project

ASAP D5.1

Workflow management model

4 }]}

The calc processor produces data with new attribute <calc_attr> and value calcu-
lated by <calc_expression>:

<calc_expression> ::= <attr_name> <action_operator> [<attr_name> | <value>]
<action_operator> ::= [[’+’ | ’-’ | ’*’ | ’/’] | [’concat’ | ’substring’] | [’u’ | ’n’ | ’\’]] <value>.

The <action_operator> depends of the attribute type.
For join:

1 {"join": {
2 "join_condition": <attr_name | attrs equality>
3 }}

The join processor has a minimum of two input data.
The following is an example of a customised join processor:

1 {"joinOp": {
2 "constraints": {
3 "input1": {
4 "data_info": {
5 "attributes": ["$attr1", "$attr2"]}},
6 "input2": {
7 "data_info": {
8 "attributes": ["$attr1", "$attr2"]}},
9 "output1": {

10 "data_info": {
11 "attributes": ["$attr1", "$attr2"]}},
12 "op_specification": {
13 "algorithm": {
14 "join": {
15 "join_condition":
16 "input1.$attr1=input2.$attr1"}

}}}
17 }}

20

Chapter 3

Workflow Execution

A workflow represents the dependencies among processing tasks that analyse or mod-
ify data, as well as the input and output data of these tasks, together with respective
metadata. The defined workflow structure allows for the user to depict the application
logic in mind in a straightforward and intuitive manner. This is achieved with two design
choices for the workflow structure: (a) the semantic abstraction and separation of the
description of processing tasks from the dependencies of processing tasks, and (b) the
association of vertices with one or multiple tasks.

The first choice enables the user to describe the application logic and the processing
units in the application independently, allowing for easy changes and updates of the
workflow structure, as well as a modular and gradual definition of a workflow. This
choice also allows the user to be agnostic with respect to the execution semantics of
the dependencies between tasks. This execution semantics is determined based on the
combination of input and output data and metadata of edges, and will be discussed in
the following.

The second choice enables the user to depict in the workflow structure the semantic
dependencies of processing units with the depiction of edges and vertices, allowing
her to be agnostic on the execution semantics of the set of processors that correspond
to a single vertex. Therefore, a user can define a vertex with multiple processors,
which, as a group, define a complex operation on the data. Such an operation may
be a traditional way of data querying, for example, a vertex may correspond to a SQL
query of the Select-Project-Join form; or the operation may be a processing module that
comprises simple and complex computation units, like algorithms, for example a data
mining algorithm and some sorting of the output data.

21

ASAP FP7 Project

ASAP D5.1

Workflow management model

A"
B"

C"
D"

F"

G"
H" I" J"

(a)

A"

B"

G"

H"

C"

D"

I"

F"

J"

K"

(b)

Figure 3.1: The original and analysed version of a workflow

3.1 The Analysed Workflow

The workflow structure alleviates from the user the burden of determining any exe-
cution semantics for the application logic. The execution semantics of the workflow
includes the execution of tasks of vertices and the execution of input-output depen-
dencies of edges. The determination of the execution semantics of vertices and edges
leads to an execution plan of the workflow. We refer to this plan as the analysed work-
flow. The latter is actually an enhancement of the initial workflow with more vertices,
and substitution of vertices and/or edges in the initial workflow with others.

More specifically, in the analysed workflow, an edge with different input and output
metadata, may be replaced with two edges and a new vertex; the new vertex corre-
sponds to a new task that takes the data and metadata of the input of the initial edge
and produces the data and metadata of the output of the initial edge. In other words,
since the data of the input and the output of an edge are equivalent, this task changes
only the metadata. Such vertices are associative, as they encompass associative tasks.
Also, a vertex that includes multiple tasks, in the original workflow, is replaced, in the
analysed workflow, with a set of new vertices that each includes one task of the original
vertex. The new vertices may or may not be connected with new edges.

Figure 3.1 shows an example with the original and the analysed version of a work-
flow. The original workflow in Figure 3.1a has 9 tasks, 3 vertices with two tasks each
and 3 vertices with 1 task each. The analysed workflow has more vertices: each one of
the 3 vertices with two tasks are replaced with two vertices with 1 task each; also, the
edge connecting vertices with tasks F and I is replaced with two more edges and an
associative vertex, which includes the associative task K. The analysed version shows

22

ASAP FP7 Project

ASAP D5.1

Workflow management model

that the execution of the vertex with tasks A, B is planned as: first, execution of task B;
second, the output of B is input to task A; and third, execution of A. The analysed ver-
sion also shows that the dependency of tasks C, D on tasks A, B in the original version,
means that the output of task A is input to both tasks C and D, which are executed in
parallel. Furthermore, the dependency of task F from tasks C, D in the original version,
is executed with the input of the outputs of both C and D to task F .

Definition 5 An associative vertex Va corresponds to an associative task Ta = {Ia, Oa, Pa},
where Ia = (D, MI) and Oa = (D, MO).

An associative vertex together with a pair of new edges replaces an edge in the
initial workflow. Such new edges are also called associative. We call this triple the
associative triple of an edge.

Definition 6 An associative triple A = (Va, Ea, E ′
a) of an edge E = (Vi, Vj) is a set

that consists of an associative vertex Va and a pair of associative edges Ea, E ′
a, where

Ea = (Vi, Va) and E ′
a = (Va, Vj). If E, Ea and E ′

a correspond to (I, O), (Ia, Oa) and (I ′
a, O′

a),
respectively, then it holds that I ≡ Ia ∧Oa ≡ I ′

a ∧O′
a ≡ O.

Essentially, the eventual replacement of edges with associative triples realises the
execution semantics of the replaced edge, by creating, through the processor of the
associative vertex, an explicit execution plan of the dependency represented by the re-
placed edge. In Section 3.2 we discuss the types of processors for associative vertices.

Furthermore, in the analysed workflow, a vertex that corresponds to multiple tasks
is replaced with an associative subgraph that contains a set of new vertices that cor-
respond to these tasks. This set contains vertices that correspond to the tasks of the
initial vertex: each new vertex corresponds to one task; vertices may correspond 1-1
to tasks, but it can be the case that two or more vertices correspond to the same task1.
Naturally, the incoming edges of the initial vertex may have to be replicated, since they
may correspond to the input of more than one tasks. The outgoing edges, however, re-
main the same, as each corresponds to the output of one task. The replacing subgraph
may also contain new edges that connect the replacing vertices. Such edges represent
the dependencies between tasks related to their execution semantics, and not related
to the semantics of the application logic, as expressed by the user.

Definition 7 An associative subgraph Ga(Va, Ea) of a vertex V consists of a set of new
vertices Va and a set of new edges Ea. If V corresponds to a set of tasks T , then it holds
that ∀V ∈ Va,∃T ∈ T such that V corresponds to T , and ∪V.T ,≡ T .

1Replication of tasks using many associative vertices that correspond to the same task of an original
vertex may be necessary for the optimisation of the workflow execution.

23

ASAP FP7 Project

ASAP D5.1

Workflow management model

Hence, the analysed workflow is the initial workflow where some edges and vertices
are replaced by associative triples and subgraphs, respectively.

Definition 8 An analysed workflow is a directed graph GA(VA, EA), where VA = V∪Vnew

- Vrep and EA = E ∪ Enew - Erep. The set Vrep ⊆ V includes the replaced vertices and the
set Erep ⊆ E includes the replaced edges in a workflow G(V , E). It holds that ∀V ∈ Vrep

∃ Ga(Va, Ea) and ∀E ∈ Erep ∃ A = (Va, Ea, E ′
a). Also, it holds that ∪Va,Va ≡ Vnew, where

Va ∈ ∪Ga and Va ∈ ∪A; and ∪Ea,Ea,E′
a
≡ Enew, where Ea, E ′

a ∈ ∪A and Ea ∈ ∪Ga.

The analysed workflow represents the execution semantics of the application logic
represented by the initial workflow.

3.2 Execution Semantics of Edges

The input and output of an edge describe data and information concerning the produc-
tion and consumption, respectively, of these data. This information, as discussed in
Section 2.2 can be related to properties concerning the flow, the persistence and the
reliability of data. This set of properties may be extended in the future.

The qualitative or quantitative difference in the values of the same property for
the input and output of an edge implies some sort of compatibility or incompatibility
between the tasks in the connected vertices, and creates constraints for the execution
of the dependency represented by the edge. Therefore, the property values of the
input and output metadata require appropriate execution semantics of the edge. An
appropriate associative triple that replaces the edge in the analysed form of the initial
workflow. The associative triple contains an associative vertex that corresponds to a
new task, which realises the execution semantics required by the input and output
metadata of the initial edge. This is an associative task and includes an associative
processor. An associative processor is dedicated to a specific associative task. These
tasks belong to the following categories:

• Scheduling Tasks. This category includes tasks that realise different data flow
patterns, by scheduling the propagation of data from the production to the con-
sumption vertex. Such tasks may realise various degrees of:

– Sequential data propagation: The data are propagated from input to output
in a sequential manner. For example, the trivial case of an edge that has
I = O = (D, {‘stream′, rate = 1msec}), necessitates a task that realises the
execution semantics of a pipeline.

24

ASAP FP7 Project

ASAP D5.1

Workflow management model

average&
batch&data&

filter&
stream&

buffer&
batch&stream&

Figure 3.2: Example of a scheduling task

– Concurrent data propagation: The data are propagated from input to output
in a concurrent manner. For example, the trivial case of an edge that has
I = O = (D, {‘batch′, size = 10MB}), necessitates a task that realises the
execution semantics of a buffer of size that equals 10MB.

Figure 3.2 shows the associative triple that substitutes an edge that connects two
vertices with a filtering task and a task that computes an average value, as in
Figure 2.9. The triple includes a new edge that connects the filtering task with
the associative task, and a new edge that connect the associative task with the
average task. The associative task performs buffering of the streaming input data,
so that they can be input as a batch in the average task. Therefore, the data, but
also the flow metadata of the input and the output for both the new edges are the
same: the left edge has as input and output streaming data, whereas the right
edge has as input and output batch data.

• Availability Tasks. This category includes tasks that realise different patterns of
data persistence, by replicating and moving data in order to change their avail-
ability as formed by the production vertex and guarantee their availability as re-
quested by the consumption vertex. Figure 3.3 shows examples of triples with
associative tasks related to availability. Such tasks may realise various degrees
of:

– Data replication: The produced data are replicated in order to be available for
consumption. The replication may be performed for several reasons. In case
of produced data that are volatile, i.e. they are stored in memory, they are
replicated in permanent storage; in case of produced data that have some
degree of persistence in permanent storage, they are replicated in the same
storage in order to increase their availability in terms of time; in case of pro-
duced data that are totally persistent, they are replicated in the same or other

25

ASAP FP7 Project

ASAP D5.1

Workflow management model

algorithm*
data* algorithm*that*

locks*the*data*copy*

limited*
availability*
(e.g.*1*copy)*

more*
availability*
(e.g.*2*copies)*

(a)

in#memory)
algorithm)

persistent)data) vola3le)
disk#based)
algorithm)

move)
persistent)vola3le)

(b)

Figure 3.3: Example of availability tasks

storage in order to increase availability in terms of processing throughput.

Figure 3.3a shows the associative triple that replaces the edge connecting
two algorithmic tasks, as in Figure 2.11. The associative task makes a copy
of the data output by the first algorithm, so that one copy is available for
other tasks to read, while one copy is locked by the dependent algorithmic
task.

– Data movement: The produced data are moved in order to be available for
consumption. The movement may be performed for several reasons. Persis-
tent data may be moved to other storage in order to be closer to the process-
ing in the consumption vertex and, therefore, increase availability in terms
of processing throughput. Also, persistent data may be moved in order to
reduce the risk of unavailability due to source or engine failures.

Figure 3.3b shows the associative triple that replaces the edge connecting an
in-memory and a disk-based algorithmic task, as in Figure 2.10. The asso-
ciative task moves the data from the main memory to the disk, so that the

26

ASAP FP7 Project

ASAP D5.1

Workflow management model

select&

join&

I1&

I2&
O1&

O2&

O3&

O4&

O&

project&

sort&

Figure 3.4: Example of an analysed workflow for a vertex that represents a SQL query

dependent algorithm can access them.

• Cleaning Tasks. This category includes tasks that realise different patterns of
data reliability, by controlling and mending the quality of the data as formed by the
production vertex and guarantee their reliability as requested by the consumption
vertex2. Such tasks may realise various degrees of:

– Data checking: The produced data are checked for the correctness and com-
pleteness in order to decide if the reliability requested by the processing in
the consumption vertex can be guaranteed.

– Data mending: The produced data are processed in order to be corrected
and/or completed, so that the reliability requested by the processing in the
consumption vertex can be guaranteed.

Each task category corresponds to a library of processors that implement specific
instances of this category. Such a library contains actually code for processors, and it
can be extended with new processors.

3.3 Execution Semantics of Vertices

A vertex in the initial workflow corresponds to a set of tasks that are defined, by the
user, to be performed as a unit in the application logic. The degree of detail, in terms
of processing, of such a set, depends on the nature of the application, the user role, the
user experience and knowledge in creating workflows etc. This means that different
users may describe the same part of an application logic in different granularity, and,
consequently, by defining a different set of vertices with a small or big number of tasks

2Note that such tasks may involve also human interaction and may be performed online or offline.

27

ASAP FP7 Project

ASAP D5.1

Workflow management model

algorithm*I1*

join*

I2*
O2*

O1*

(a)

algorithm*
I1*

join*
O2*O1*

(b)

algorithm*
I1*

join*
O2*O1*

move*

(c)

Figure 3.5: Example of an analysed workflow for a vertex that represents complex com-
putation

each. For example, such an application logic may refer to a SQL query, with a Select-
Project-Join-Sort form. If the user is a business analyst, then she may define one single
vertex that corresponds to all four tasks, i.e. Select, Project, Join, Sort, as in Figure 2.6,
or, if the user is a programmer, she may define one vertex per task, as in Figure 3.4. In
the last case, the user has to also define a set of edges that connect the four vertices.
This set of edges, (which may be empty, in case of parallel execution), in essence,
indicates how the user perceives the execution semantics of the tasks. Therefore, the
user may impose the execution semantics for a set of tasks, or she may be agnostic
to this. In the last case, the execution semantics of these tasks should be defined in
the analysed workflow. This is achieved by replacing the initial vertices with associative

28

ASAP FP7 Project

ASAP D5.1

Workflow management model

subgraphs, that define the respective execution semantics. In the example of the SQL
query above, the vertex corresponding to the four tasks is replaced by a subgraph that
contains one vertex per task. This subgraph is actually a query execution plan, e.g. a
plan that is created by a DBMS optimiser. The structure of this plan depends on the set
of tasks, as well as on the type of the execution platform and engine.

Figure 3.5 shows another example of an application logic that can be described dif-
ferently by different users, who aim to define different levels of detail with respect to
the execution planning of this logic. Figure 3.5a shows a vertex that includes two tasks,
an algorithmic processing on some input data, and a join of these data with some other
data. The user that defines this vertex is not interested, or does not know the execution
details of this complex task that includes two separate simpler tasks. Using this repre-
sentation, she aims to depict that these two tasks should be executed together, after
the tasks of the vertices on which this vertex depends, and before the tasks of vertices
that depend on this vertex. Figure 3.5b shows that another user, represents the same
two tasks with two connected vertices, with which she dictates that the join should be
executed on the data processed first by the algorithm. Furthermore, Figure 3.5c shows
that another user, dictates even more detail in the execution plan of these two tasks,
by adding one more vertex that includes a task that moves the data, e.g. from one disk
to another.

The associative subgraph that replaces a vertex in the initial workflow may not lead
to the optimal execution of the workflow. As discussed in Chapter 5, such a subgraph
may be changed in the optimised workflow, in order to optimise efficiency, or even
some other performance quality.

3.4 Execution with Constraints

The creation of the analysed workflow as described in the previous sections assumes
that there are no execution constraints, other than the dependencies of tasks in the
application login. However, the application logic may be accompanied by other con-
straints, attached to tasks, such as deadlines and milestones. Such constraints need to
be taken into account in the definition of the overall execution semantics. Therefore, in
an extension of the current work, we will extend the definition of the original and the
analysed workflow accordingly.

29

Chapter 4

Workflow Manipulation

The application logic expressed by a workflow should be implemented and executed in a
manner that is efficient or, in general, optimal in terms of some performance qualities,
such as data availability or reliability. Optimality can be achieved by changing the
execution of the original workflow. In order to change the workflow execution we need to
change the structure of the analysed form of the workflow. In this chapter we discuss an
initial proposal of methods for manipulating the workflow in order to change its structure
and execution. The goal is to propose methods that do not change the application
logic while changing the structure of the workflow. Such methods can use one of the
following:

• Operations. The restructuring of the workflow can be performed using opera-
tions defined to change the vertices or the tasks included in vertices.

• Properties. The restructuring of the workflow can be performed employing prop-
erties of processors in the tasks included in vertices.

4.1 Operations on Vertices

Since the workflow is a graph, we can restructure it by changing either the paths be-
tween vertices or by adding and/or removing vertices. Changing the paths between
vertices implies the change of inputs and output edges (and, therefore, data and meta-
data) of existing vertices, (and, therefore, existing groups of tasks, in general), without
any guarantee that the conceptual dependencies among tasks, and furthermore, final
outputs, as these are defined in the application logic, are preserved. Therefore, we do
not proceed with the proposal of methods that change the graph edges.

30

ASAP FP7 Project

ASAP D5.1

Workflow management model

P1# P2#
merge# P1#

P2#

(a)

P1#

P2#

merge# P1#

P2#

(b)

Figure 4.1: Examples of operation ‘merge’

Oppositely, changing the vertices, implies substituting the existing vertices with
new ones, for which, it may be possible to guarantee that the conceptual dependen-
cies among tasks, and, furthermore, final outputs of the workflow, as defined in the
application logic, are preserved. Therefore, we are designing methods for changing the
workflow structure by applying operations on vertices. As an initial proposal of such
operations, we describe the operations merge and split.

Merge. The merge operation takes as an input two vertices and produces one new
vertex that includes the tasks of both initial vertices. The vertices that are merged can
be connected with an edge, i.e. together they represent some task dependency(ies), or
not, i.e. there is no task dependency between them. The goal of the merge operation
is to allow for a united optimisation of the tasks included in the two initial vertices.
Figure 4.1a shows a sequential arrangement of the two merged vertices, and Figure
4.1b shows a parallel arrangement of the two merged vertices.

Split. The split operation takes as input one initial vertex and produces two new
vertices that, together, include all the tasks included in the initial vertex. The two new
vertices may or may not be connected. The goal of the split operation is to lead to
separate optimisation of subgroups of tasks included in the initial vertex.

31

ASAP FP7 Project

ASAP D5.1

Workflow management model

select&select& calc& calc&

(a)

select1'

select2'

join' join' select3'

(b)

Figure 4.2: Examples of commutativity

4.2 Operations on Tasks

Beyond operations on vertices, we intend to propose operations on tasks included in
vertices. One such operation can be the union of tasks. The union operation can take as
an input two or more tasks and produce one new that is able to produce the outputs of
all these tasks. As an example, the union of two sequential instances of select is always
possible and produces one new select instance, where selectPredicate is a combination
of predicates of the initial select instances.

4.3 Properties of Processors

In order to change the workflow structure, beyond operations applied on vertices and
tasks, we need to employ properties of processors, such as: distributivity, associativity
and commutativity. Such properties need to hold, for operations on tasks and vertices
to be performed with a correct output, i.e. the output as defined by the user in the
original workflow. We intend to prove such properties for defined processors. Naturally,
each defined processor is a special case in terms of how it processes the input data,
and, thus, we need to prove the properties for processors individually or in groups.

Figure 4.2 shows the rearrangement of tasks for pairs of basic processors defined

32

ASAP FP7 Project

ASAP D5.1

Workflow management model

in Section 2.4. The commutativity property is not always satisfied in such pairs. For
the pair calc - select the rearrangement in Figure 4.2a cannot be made if the select
processor takes as input data produced by calc. The opposite rearrangement can be
performed always. For the pair select - join the restriction is equality of selectPredicate
of the two select processors. The rearrangement of the pair join - select in Figure 4.2b
can be made always. For the pair calc - join the restriction is equality of CalcExpression
and attri in the calc processors.

33

Chapter 5

Workflow Optimization

As described in the previous chapter, currently we are developing methods for handling
the workflow. These methods will be employed for the creation of the optimised ver-
sion of the workflow, in terms of performance (usually performance is interpreted as
efficiency, but we may explore other performance qualities, such as fault-tolerance).

The optimisation of the workflow will be first explored on subgraphs of the analysed
workflow. Such subgraphs may contain several paths and can be considered as com-
plex tasks. Identification and optimisation of complex tasks has two merits on the long
run: first, the optimisation of the workflow is modular, therefore the search space for
solutions is smaller and easier to explore; second, we will be able to create a library
of optimised complex tasks, which we can use as templates for the optimisation of the
same (or similar tasks) in other workflows.

A challenge in the optimisation of a workflow is that the latter contains tasks that
span multiple data stores and query engines. As an example, a query may include
processors on two types of data, e.g. relational and key-value. In such cases, it is
necessary to perform two types of optimisation: active optimisation and lazy optimisa-
tion. We call ‘active’ the optimisation that is performed on individual data stores and
engines, and we call ‘lazy’ the optimisation that is performed between data stores and
engines. Active optimisation is actually passed on to the respective platforms, whereas
lazy optimisation has to be performed in a intra-platform manner. To realise lazy optimi-
sation we will need to develop special tasks, with which we will augment the analysed
workflow. These tasks may have to implement translation or modification of data, data
movement and replication. For example, consider that the processor in the example
mentioned above is a join between a relational and key-value store; in this case, data
from the key-value store may need to be transformed, trivially, in relational tuples and
stored in the relational store. In general, the goal of such tasks will be the splitting
and/or merging of initial tasks on multiple sites and platforms.

34

ASAP FP7 Project

ASAP D5.1

Workflow management model

Furthermore, we will pursue optimisation of the analysed workflow in presence of
execution constraints, such as deadlines and milestones. In case of constraints, first
we should determine incompatibilities among accompanying constraints. Then, the
modular workflow optimisation should be performed by prioritising subgraphs with con-
straints.

The optimisation of a workflow will be pursed on two axes, namely: optimisation via
graph reconfiguration and via optimal resource management.

5.1 Optimization via Graph Reconfiguration

The first axis of optimisation will be the reconfiguration of the graph of the analysed
workflow. To do this we will employ results from our research on the development of
methods for the manipulation of the workflow. We will devise a methodology to apply
the developed methods, on the lines of traditional query plan optimisation.

Although, static optimisation of the workflow may be possible in presence of statis-
tical estimations for the performance of implemented processors on different platforms
and for various data sources, we aim to develop techniques for the dynamic optimi-
sation of the workflow, as this is executed. Distributed data processing is dynamic by
nature and it is difficult to statically determine optimal concurrency and data movement
methods a priori. More information is available during runtime, like data samples and
sizes, which can assist in optimizing the execution plan further.

5.2 Optimization via Optimal Resource Management

The resources available to the user may vary over time and over different executions
of the same workflow. It becomes paramount to be able to efficiently use all available
resources to run a workflow as fast as possible during one instance of execution and
predictably over different instances of execution.

5.3 Optimization of Multiple Workflows

Beyond optimising single workflows, we will work on the optimisation of multiple work-
flows. We will aim to find common or similar subgraphs that we can optimise once and
execute once or a few times.

35

Chapter 6

Related work

As business processes become more data-intensive and more reliant on the use of com-
puters, larger volumes of data are recorded faster and with greater precision. This trend
has spurred significant increase in the complexity of analytics tasks. Additional difficul-
ties arise from the need to deal with the multiple data types (e.g., relational, key-value,
graph, etc.) that various services produce or consume. Modern workflows have become
increasingly long and complex [6]. Also, the processing in workflows can be greatly di-
verse, ranging from simple data operations to implementations of complex algorithms,
e.g. data mining algorithms, graph processing algorithms, etc, or custom procedures
related to specific businesses. Finally, various constraints and policies may be applied
to workflow execution, related to performance, deadlines, and optimisation of various
dimensions, related to as efficiency, cost, fault-tolerance etc.

An important and big domain that urges for the solutions of such problems in data
analytics, is the management of big scientific data. In [8] distinguished researchers
recognise the need to address issues of creation, reuse, provenance tracking, per-
formance optimization, and reliability of scientific workflows. Furthermore they note
that scientific applications require workflow systems that support dynamic event-driven
analyses, handling streaming data, accommodate interaction with users, intelligent as-
sistance and collaborative support for workflow design, and enabling result sharing
across collaborations. The proposed workflow model and the ongoing work on work-
flow management aims to the achievement of these goals.

Current research and industry try to cope with the above situation and overcome
the problems of variety, complexity, size and dynamicity of analytics tasks, from an
engineering and a scientific point of view. Overall, solutions have aimed to (a) create
programming models, (b) develop execution engines, and (c) design workflow manage-
ment systems.

36

ASAP FP7 Project

ASAP D5.1

Workflow management model

Concerning programming models, modern research on big data analysis has focused
mostly on employing the MapReduce [3] programming paradigm. The latter organ-
ises the processing on distributed servers, with parallel task execution and intermittent
communication and data transfers between data shards and system parts, aiming at
redundancy and fault-tolerance. Another programming model considered for big data
analysis, is the Bulk Synchronous Parallel (BSP) model [22]. BSP has been proposed
for designing parallel algorithms and it serves a purpose similar to the Parallel Random
Access Machine (PRAM) model. BSP differs from PRAM by not taking communication
and synchronization for granted. An important part of analyzing a BSP algorithm rests
on quantifying the synchronization and communication needed. While BSP was pro-
posed as a model for parallel processing, it is a good fit for distributed systems, too. As
such, it was recently adopted by Google in the design of Pregel [11]. Its main advantage
over the MapReduce model is that BSP is superior in handling graph-based and iterative
computations, which are common in machine learning algorithms.

The proposed workflow model is designed with the anticipation of parallel program-
ming, using models such as MapReduce and BSP. The workflow provides for the defi-
nition of abstract processors that realise simple and complex processing tasks; such
processors can be implemented employing a parallel programming model. Moreover,
the proposed workflow model provides for the parallel execution of data processing,
employing such processors; the actual degree and plan of execution parallelisation can
vary depending on the implementations of the processors, and can be depicted in the
analysed version of the workflow. Furthermore, our intension is to enable the manipu-
lation and the optimisation of the analysed version a priori or dynamically, so that the
degree and plan of execution parallelisation can be controlled and changed before or
during execution.

Concerning execution engines, MapReduce has given rise to the Hadoop Ecosystem,
including a number of DBMSs that can be deployed in a distributed cloud-based envi-
ronment, such as Pig [13] and Hive [21]. Hadoop++ [5] tries to cleanly extend Hadoop
by applying relational DB techniques and re-using the notion of physical execution plan.
Spark [19] is another execution engine, created for analytics and optimized for iterative
MapReduce computations. Spark uses an in-memory data representation to avoid un-
necessary storage of intermediate data and can express complex workflows with mul-
tiple MapReduce steps. Moreover, Spark includes a large library of machine-learning
tools and support for SQL-like queries. Furthermore, Nephele [2] is the execution engine
of Stratosphere [1], a research project which focuses on developing the next-generation
Big Data Analytics Platform and addressing the shortcomings of MapReduce implemen-
tations. Stratosphere transformed to the Flink [7] project, which aims at in-memory

37

ASAP FP7 Project

ASAP D5.1

Workflow management model

data analytics and is related to Apache. Flink is a data processing system and an alter-
native to Hadoop’s MapReduce component. It comes with its own runtime, rather than
building on top of MapReduce. As such, it can work completely independently of the
Hadoop ecosystem.

The ASAP framework, which will employ the proposed workflow model, is comple-
mentary to the above technologies, as it can be deployed on top of them, for the higher-
level management of application workflows.

Concerning workflow management systems, they have emerged in order to provide
easy-to-use specification of tasks that have to be performed during data analysis. An
essential problem that these systems need to solve is the combination of various tools
for workflow execution and optimization over multiple engines into a single research
analysis / system. The field of workflow management is a relatively new field of re-
search, but there are already some promising results.

One of the oldest research projects to deal with the general problem of querying mul-
tiple heterogeneous data sources is Artemis [16]. Artemis uses ontologies and meta-
data, and integrates metadata in terms of semantics. The project identifies the problem
of continuous metadata integration. ASAP will tackle this problem employing methods
for continuous scheduling of workflows that is adaptive to parameter calibration and
requirements for deadline and millstones. Furthermore, the proposed workflow model
enables the the creation and execution of associative tasks that process and integrate
intermediate results.

The system HFMS [17] builds on top of previous work on multi-engine execution op-
timization [18]. Their study is more focused on optimization and execution across multi-
ple engines. The design of flows, (workflows in our terminology), in HFMS is agnostic to
a physical implementation. Data sets need not be bound to a data store, and operators
need not be bound to an execution engine. HFMS handles flows as DAGs (i.e. Directed
Acyclic Graphs) encoded in xLM, a proprietary language for expressing data flows. Al-
ternatively, flows may be written in a declarative language (e.g., SQL, Pig, Hive) and
imported. xLM captures structural information, design metadata (e.g., functional and
non-functional requirements, physical characteristics like resource allocation), operator
properties (e.g., type, schemata, statistics, engine and implementation details, physi-
cal characteristics like memory budget), and so on. Flows can be optimized at a logical
level. HFMS uses many optimization strategies, such as operator swap, parallelization,
recovery points, function shipping, data shipping, decomposition, etc. On physical level
optimization occurs for single engine and multi-engine execution. The actual engines
used are the Hadoop MapReduce distributed execution engine and a centralized Post-
greSQL [15] database.

38

ASAP FP7 Project

ASAP D5.1

Workflow management model

While their approach to multi-engine workflow optimization is on the same path as
the approach we take in ASAP, there is an essential difference: HFMS focuses in local
optimisations of specific operators and operations, ASAP aims at an overall optimisa-
tion of the workflow execution. Moreover, the proposed ASAP workflow model aims at
modularity of workflow manipulation, expressibility of application logic, and adaptabil-
ity to the user interests and role, goals that are out of the scope of the HFMS flow model
definition.

Pegasus [14] is another workflow management system that allows users to easily
express multi-step computational tasks. The workflows are formalized in the form of a
DAX (i.e., Directed Acyclic graph in XML), in which the tasks are represented as nodes
and task dependencies as edges. Pegasus offers APIs for Java, Python and Perl, offers
support for MySQL, PostgreSQL, Oracle and Microsoft databases and can run on Amazon
EC2 infrastructure. The Pegasus workflow description is separated from the description
of the execution environment [4] and [10]. Keeping the workflow description resource-
independent i.e. abstract, provides a number of benefits: (1) workflows can be portable
across execution environments, and (2) the workflow management system can perform
optimizations at ‘compile time’ and/or at ‘runtime’. A drawback of the abstract workflow
representation approach with compile time and runtime workflow modifications is that
the workflow being executed can be different than what the user anticipated when she
submitted the workflow. As a result, in Pegasus a lot of effort is devoted toward devel-
oping a monitoring and debugging system that can connect the two different workflow
representations in a way that makes sense to the user.

The proposed workflow model overcomes such problems, by separating the defini-
tion of the dependancies and the processing tasks in the application logic. In this way,
the user has control in the detail of execution semantics that she describes, and, more-
over, the execution semantics determined by the system, through the creation of the
analysed version of the workflow, do not change the dependencies in the application
logic defined by the user.

Taverna [12] is an open source domain-independent workflow management sys-
tem, which includes a suite of tools used to design and execute scientific workflows.
Research in [23] is focused on the issue of the analysis of data from heterogeneous and
‘incompatible’ sources. Taverna allows user to define how her data flows between the
services (web services, Java services, R scripts and so on), without having to worry how
she is going to invoke these services. Also, Taverna provides several underlying tools to
orchestrate tasks in a pipeline (data flow) by user. The Taverna suite is written in Java
and access to databases is performed through JDBC.

While Taverna includes tools for the composition and enactment of bioinformat-
ics workflows (for the life sciences community), the composition of workflows is done

39

ASAP FP7 Project

ASAP D5.1

Workflow management model

through a graphical user interface and does not provide sophisticated methods for the
efficient execution of workflows.

Apache Tez [20] is an extensible framework for building high performance batch
and interactive data processing applications, coordinated by YARN in Apache Hadoop.
Tez improves the MapReduce paradigm by improving its speed, while maintaining the
ability of MapReduce to scale to petabytes of data. Tez models data processing as a
DAG, with a simple Java API used to express it. The task design in Tez is based on the
Input-Processor-Output model, as in the task definition in the proposed workflow model.
Typically, inputs and outputs exist in pairs; outputs generate ‘DataMovementEvent(s)’,
which are processed by inputs. The inputs know how to process such events and how
to interpret data. This is a key difference from the proposed workflow model, in which
inputs and outputs of dependent tasks are not connected and do not have to exist in
pairs. Our model dictates that inputs and outputs of edges, and not of tasks, represent
the dependencies between tasks and realise the relation between their inputs/outputs.
In this way, tasks are inherently independent from each other, allowing modular ma-
nipulation of tasks and task groups, as well as separate manipulation of task execution
and dependencies in the application logic. Furthermore, Tez works over a singe dataset,
whereas the proposed model, in the ASAP framework, enables the definition of work-
flows on multiple, distributed and heterogeneous datasets.

Finally, other projects have also dealt with the problem of workflow definition and
execution. The Stratosphere project [1] tackles the challenge of executing workflows
with the PACT programming model, based on the Nephele execution engine [2]. This
approach introduces the notion of workflows in cloud-based systems, but the solution is
not mature enough to give the necessary efficiency or full-fledged capabilities of adap-
tive execution. Furthermore, GraphX [9] is a distributed graph processing framework
on top of Spark. It provides an API for expressing graph computation that can model
the Pregel abstraction. It also provides an optimized runtime for this abstraction.

40

Chapter 7

Example Use Cases

The Telecommunication Analytics and the WebAnalytics applications include many pos-
sible query workflows, on-line queries, off-line long-running computations and ad-hoc
analytics. This chapter presents several indicative use cases selected for relevance to
the ASAP research.

7.1 Detecting and predicting traffic jams

An important use case of telecommunications analytics is the detection and prediction
of traffic jams. The telecommunication data are anonymised at regular times. The use
case involves the processing of the anonymized location data for clustering along time
and space. Figure 7.1 depicts the respective workflow. Data with respect to location
and time predicates are selected and joined. Then parallel processing, calc1 and calc2,
calculate ranges of space coordinates and time periods, respectively. These are further
processed to cacluate speed, calc3. The speed values are input to an implementation
of the k-Means algorithm that performs clustering according to a pre-defined set of
criteria. Criteria may include specific area, the cut-off speed, or other parameters of
the clustering algorithm. The results of the clustering algorithm are stored to several
databases (relational and graph databases). The computed and stored clusters can
be queried to discover traffic that occurs with regularity (detecting transport system
bottlenecks) or without any regularity (anomalies, car accidents etc).

1 {"DATA": {
2 "constraints": {
3 "data_info": {
4 "attributes": [

41

ASAP FP7 Project

ASAP D5.1

Workflow management model

data$

select$ join$

calc1$

calc2$

calc3$ kMeans$

results$

Figure 7.1: Workflow for the detection and the prediction of traffic jams

5 {"customer_id": {"type": "Varchar(15)"}}
,

6 {"coord": {"type": "(Integer, Integer)"}
},

7 {"time": {"type": "Integer"}}
8]}}
9 }}

Limiting the scope of analysis:

1 {"SELECT": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["customer_id", "coord", "

time"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["customer_id", "coord", "

time"]}},
9 "op_specification": {

10 "algorithm": {
11 "select": {
12 "select_condition": [
13 "lb < input.coord < rb",
14 "st < input.time < et"
15]}}}}
16 }}

where lb - left bound, rb - right bound, st - start time, et - end time

42

ASAP FP7 Project

ASAP D5.1

Workflow management model

1 {"JOIN": {
2 "constraints": {
3 "input1": {
4 "data_info": {
5 "attributes": ["customer_id"]}},
6 "input2": {
7 "data_info": {
8 "attributes": ["customer_id"]}},
9 "output1": {

10 "data_info": {
11 "attributes": ["customer_id", "coord1",

"coord2", "time1", "time2"]}},
12 "output2": {
13 "data_info": {
14 "attributes": ["customer_id", "coord1",

"coord2", "time1", "time2"]}},
15 "op_specification": {
16 "algorithm": {
17 "join": {
18 "join_condition":
19 "input1.customer_id=input2.

customer_id"}}}}
20 }}

1 {"CALC1": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["coord1", "coord2"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["scoord"]}},
9 "op_specification": {

10 "algorithm": {
11 "calc": [{
12 "calc_attr": "scoord",
13 "calc_expression": "coord1-coord

2"}]}}}

43

ASAP FP7 Project

ASAP D5.1

Workflow management model

14 }}

1 {"CALC2": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["time1", "time2"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["stime"]},
9 "algorithm": {

10 "sort": {
11 "sortingOrder": ["stime"

]}}},
12 "op_specification": {
13 "algorithm": {
14 "calc": [{
15 "calc_attr": "stime",
16 "calc_expression": "time1-time2"

}]}}}
17 }}

1 {"CALC3": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["scoord", "stime"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["speed"]}},
9 "op_specification": {

10 "algorithm": {
11 "calc": [{
12 "calc_attr": "speed",
13 "calc_expression": "scoord/stime

"}]}}}
14 }}

44

ASAP FP7 Project

ASAP D5.1

Workflow management model

1 {"K-MEANS": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["speed"]}},
6 "output1..n": {
7 "data_info": {
8 "attributes": ["speed", "type"]}},
9 "op_specification": {

10 "algorithm": {
11 "clustering": {
12 "criteria": "speed_limits"}}}}
13 }}

speed_limits for different types of users (pedestrians, cyclists, drivers)

7.2 Peak detection

Another important use case is the detection of peaks in the telecommunication traf-
fic. This use case focuses on a dataset named Call Detail Records (CDR), which stores
records of calls and is anonymised. CDR contains only recent data, e.g. the data of
the last day. The use case involves processing of the anonymized CDR data by first
selecting a spatial region and a temporal period (select). For this region and period,
the number of calls is calculated (calc1). Data and calculations from CDR are archived
(archive) in other storage (history). After calls are count, the application proceeds with
algorithmic processing that detects peaks (calc2). The objective of this processing is to
detect peaks in load, according to a set of criteria. Criteria may include the minimum
size of a region and/or period, the cut-off distance, or other parameters for selecting
regions and periods. These parameters should be adjustable by the analytics engineer,
marketing expert, etc., who uses the peak analysis results. The results of this workflow
are added to a database (relational or graph DBMS) that contains peaks detected in
previous data. The database of peaks can then be queried by a user to discover clus-
ters of calls that occur with regularity e.g., every week, discover clusters of calls that
occur without any regularity, ; or similar ad-hoc queries based on the pre-computed
peak data. The workflow for this use case is shown in Figure 7.2.

1 {"DATA": {
2 "constraints": {
3 "data_info": {

45

ASAP FP7 Project

ASAP D5.1

Workflow management model

data$

select$ calc2$
calc1$

archive$

history$

result$

Figure 7.2: Workflow for the detection of peaks

4 "attributes": [
5 {"customer_id": {"type": "Varchar(15)"}}

,
6 {"coord": {"type": "(Integer, Integer)"}

},
7 {"time": {"type": "Integer"}},
8 {"duration": {"type": "Integer"}},
9 {"tel_number": {"type": "Varchar(12)"}}

10]}}
11 }}

Limiting the scope of analysis:

1 {"SELECT": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["customer_id", "coord", "

time"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["customer_id", "duration"

, "tel_number"]}},
9 "op_specification": {

10 "algorithm": {
11 "select": {
12 "select_condition": [
13 "lb < input.coord < rb",

46

ASAP FP7 Project

ASAP D5.1

Workflow management model

14 "st < input.time < et"
15]}}}}
16 }}

where lb - left bound, rb - right bound, st - start time, et - end time

1 {"CALC1": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["customer_id"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["scoord"]}},
9 "op_specification": {

10 "algorithm": {
11 "calc": [{
12 "calc_attr": "count",
13 "calc_expression": "count()"}]}}

}
14 }}

1 {"AVERAGE": {
2 "constraints": {
3 "input1": {
4 "data_info": {
5 "attributes": ["count"]}},
6 "input2": {
7 "data_info": {
8 "attributes": ["calls_num", "exp_val"]}}

,
9 "output": {

10 "data_info": {
11 "attributes": ["count"]}},
12 "op_specification": {
13 "algorithm": {
14 "update": ["exp_val"],
15 "append": [{
16 "to": "calls_num",
17 "what": "count"

47

ASAP FP7 Project

ASAP D5.1

Workflow management model

18 }]}}}
19 }}

1 {"CALC2": {
2 "constraints": {
3 "input1": {
4 "data_info": {
5 "attributes": ["count"]}},
6 "input2": {
7 "data_info": {
8 "attributes": ["exp_val"]}},
9 "output": {

10 "data_info": {
11 "attributes": ["is_peak", "diff"]}},
12 "op_specification": {
13 "algorithm": {
14 "calc": [{
15 "calc_attr": "is_peak",
16 "calc_expression": "(count-

exp_val) > tolerance"},
17 "calc_attr": "diff",
18 "calc_expression": "count-

exp_val"}]}}
19 }}

7.3 NLP-classification

This use case captures a typical form of the current IMR Web analytics pipeline. Figure
7.3 presents a workflow for this use case. Data are selected from the document store
based on some conditions (select). These data are processed in order to extract some
text (calc), and the extracted text is moved to a different data store and stored there
with other text and annotations (move). The output data are further processed via
NLP-classification.

1 {"DATA": {
2 "constraints": {
3 "data_info": {
4 "attributes": [

48

ASAP FP7 Project

ASAP D5.1

Workflow management model

data$ select$
move$ NLP/

classifica2on$

result$

calc$

Figure 7.3: Workflow for NLP-classification

5 {"text": {"type": "Varchar"}}
6]}}
7 }}

Selecting documents from the document store:

1 {"SELECT": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["text"]}},
6 "output": {
7 "data_info": {
8 "attributes": ["text"]}},
9 "op_specification": {

10 "algorithm": {
11 "select": {
12 "select_condition": [
13 "q in input.text"
14]}}}}
15 }}

where q - the submitted initial query
CALC stage extracts the textual content from the documents, then appends the ex-

tracted plain texts to the annotated documents as additional metadata.

1 {"CALC": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["text"]}},

49

ASAP FP7 Project

ASAP D5.1

Workflow management model

6 "output": {
7 "data_info": {
8 "attributes": ["text", "annotation"]}},
9 "op_specification": {

10 "algorithm": {
11 "calc": [{
12 "calc_attr": "annotation",
13 "calc_expression": "extract_text

()"}]}}}
14 }}

1 {"MOVE": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["text", "annotation"]},
6 "engine": {
7 "DB": "Elasticsearch"}},
8 "output": {
9 "data_info": {

10 "attributes": ["text", "annotation"]},
11 "engine": {
12 "DB": "HDFS"}},
13 "op_specification": {
14 "algorithm": {
15 "convert": [{
16 "from": "Elasticsearch",
17 "to": "HDFS"}]}}}
18 }}

In the final stage of this use case performs NLP classification on this data. The stage
also appends classification results to the annotated documents as additional metadata.

1 {"NLP-classification": {
2 "constraints": {
3 "input": {
4 "data_info": {
5 "attributes": ["text", "annotation"]}},
6 "output": {
7 "data_info": {

50

ASAP FP7 Project

ASAP D5.1

Workflow management model

8 "attributes": ["text", "annotation", "
classification"]}},

9 "op_specification": {
10 "algorithm": {
11 "classification": {
12 "technique": "tfâĂŞidf"}}}}
13 }}

51

Chapter 8

Conclusion

This document describes the proposed workflow model for the expression of analytics
tasks on Big Data. This includes the declaration of the workflow and the accompanying
execution semantics. The model enables the separation of task dependencies from
task functionality. Using the proposed model, a user is able to express a variety of
application logics and to set her degree of control on the execution of the workflow.
Furthermore, we make an initial discussion on methods that are necessary in order to
manipulate the workflow with the further goal to optimise its execution. Finally, we
depict the proposed workflow model on specific use cases from the telecommunication
and web analytics domains.

52

Bibliography

[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix
Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter,
Mareike Höger, Kostas Tzoumas, and Daniel Warneke. The stratosphere platform
for big data analytics. The VLDB Journal, 23(6):939–964, December 2014.

[2] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/pacts: A programming model and execution framework for
web-scale analytical processing. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 119–130, New York, NY, USA, 2010. ACM.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. CACM, 51(1), January 2008.

[4] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, and
Kent Wenger. Pegasus: a workflow management system for science automation.
Future Generation Computer Systems, 2014. Funding Acknowledgements: NSF
ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-1053575.

[5] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, and
Jörg Schad. Hadoop++: Making a yellow elephant run like a cheetah (without it
even noticing). Proc. VLDB Endow., 3(1-2):515–529, September 2010.

[6] M. Ferguson. Architecting a big data platform for analytics, 2012.

[7] Apache flink. http://flink.apache.org/.

[8] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis
Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. Examining the
challenges of scientific workflows. IEEE COMPUTER VOL, 40(12):24–32, 2007.

[9] Apache graphx. https://spark.apache.org/graphx/.

53

http://flink.apache.org/
https://spark.apache.org/graphx/

ASAP FP7 Project

ASAP D5.1

Workflow management model

[10] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 22:1–22:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[11] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[12] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Tim Carver, Matthew R.
Pocock, and Anil Wipat. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20:2004, 2004.

[13] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, SIGMOD
’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[14] Pegasus. http://pegasus.isi.edu/.

[15] Postgresql. http://www.postgresql.org/.

[16] R. Tuchinda, S. Thakkar, Y. Gil and E. Deelman. Artemis: Integrating scientific
data on the grid. In Conference on Innovative Applications of Artificial Intelligence
(IAAA), page 25.

[17] A. Simitsis, K. Wilkinson, U. Dayal, and Meichun Hsu. Hfms: Managing the lifecycle
and complexity of hybrid analytic data flows. In Data Engineering (ICDE), 2013
IEEE 29th International Conference on, pages 1174–1185, April 2013.

[18] Alkis Simitsis, Kevin Wilkinson, Malu Castellanos, and Umeshwar Dayal. Optimizing
analytic data flows for multiple execution engines. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, pages
829–840, New York, NY, USA, 2012. ACM.

[19] Apache spark. https://spark.apache.org/.

[20] Apache tez. http://hortonworks.com/hadoop/tez/.

54

http://pegasus.isi.edu/
http://www.postgresql.org/
https://spark.apache.org/
http://hortonworks.com/hadoop/tez/

ASAP FP7 Project

ASAP D5.1

Workflow management model

[21] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning
Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. Hive-a petabyte scale
data warehouse using hadoop. In Data Engineering (ICDE), 2010 IEEE 26th Inter-
national Conference on, pages 996–1005. IEEE, 2010.

[22] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[23] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan R. Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul
Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham Nieva
de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole A. Goble. The tav-
erna workflow suite: designing and executing workflows of web services on the
desktop, web or in the cloud. Nucleic Acids Research, 41(Webserver-Issue):557–
561, 2013.

55

FP7 Project ASAP

Adaptable Scalable Analytics Platform

End of ASAP D5.1
Workflow management model

WP 5 – Adaptive Data Analytics

Nature: Report

Dissemination: Public

	Introduction
	Purpose of this Document
	Motivating Applications
	Structure of this Document

	Workflow Definition
	Vertices
	Edges
	Data
	Processors

	Workflow Execution
	The Analysed Workflow
	Execution Semantics of Edges
	Execution Semantics of Vertices
	Execution with Constraints

	Workflow Manipulation
	Operations on Vertices
	Operations on Tasks
	Properties of Processors

	Workflow Optimization
	Optimization via Graph Reconfiguration
	Optimization via Optimal Resource Management
	Optimization of Multiple Workflows

	Related work
	Example Use Cases
	Detecting and predicting traffic jams
	Peak detection
	NLP-classification

	Conclusion

