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Executive Summary

This document describes the current status of the implementation of the ASAP unified program-
ming model. The programming model is used to implement individual steps in a workflow. Pro-
grammers who are experts in analytics operations and/or high-performance computing can use this
programming model to implement high-performance analytics operators. The majority of users
would, however, utilize a higher-level workflow description language as defined in ASAP Deliver-
able D5.2 [10].

This document describes three contributions: (i) a compiler to translate a workflow described
in the workflow description language to the low-level programming language defined in ASAP
Deliverable D2.1 [17], or to equivalent Spark code; (ii) a compiler for the low-level programming
language; and (iii) a library implementing a few operators to demonstrate the use and efficacy of
the language and compiler.
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1 Introduction
ASAP aims to make it easy for users to describe and run data analytics queries by selecting the most
suitable and efficient execution engines. There should be no restriction on the type of execution
engine or on the format and medium used for input and output datasets.

ASAP provides a workflow tool, as described in ASAP Deliverable D5.2 [10], to facilitate the
visual creation and adaptation of data analytics queries enabling analytics experts to create and
change queries by dragging operator boxes and dataset flow arrows in a graphical interface into a
suitable pictorial representation of a query workflow.

Subsequent to query creation in the workflow tool, a multi-engine resource scheduling plat-
form, IReS [6] takes the workflow description of the analytics query and co-operates with a set of
runtimes and data stores in order to effect the best implementation and execution of the query.

A bridge is needed between the high level abstract description of a workflow query and the
actual provisioning and execution of codes that can run the query. This bridge is satisfied by the
ASAP compiler for WP2. It maps the user’s high level workflow query, as created within the
workflow tool [10], to codes for the low-level programming language Swan [29] using metadata
which describes how Swan operators are materialized. ASAP’s scheduler can subsequently use
these codes to profile and select optimum runtime engines and data stores.

2 Design

2.1 Metadata Components
The compilation process, from workflow to execution, requires metadata descriptions for mate-
rialized operators and the user’s workflow or analytics query description. It indirectly requires
metadata descriptions for abstract operators.

Abstract operators This is not directly used by the compiler itself but is included here for con-
text. It provides the workflow tool with information on available operators, inputs and out-
puts so these can be presented as options to the data analyst when creating their query at the
graphical interface. The information is limited to what the data analyst needs at the point
of workflow creation. A matching process between abstract and materialized operators al-
lows the scheduler to identify and profile all options for how an abstract operator may be
materialized.

Materialized operators This provides information to the IReS scheduler so it knows how to ma-
terialise operators as described in [6]. The description is more detailed than that provided by
abstract operator descriptions and typically includes:

1. Input/output formats

2. File formats
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”operators”: [{
”name”: ”textDirectoryDataset”,
”cost” : ”0.00”,
”status” : ”stopped”,
”type”: ”dataset”,
”description” : ”textDirectoryDataset” ,
”Constraints”: {

”DataInfo”: {
”type”: ” freetext ”

},
”Engine”: {

”FS”: ”Standard”
},
”type”: ” directory ”

},
”Execution”: {

”path”: ” /var/shared/projects/asap/inputs/operators/ tfidf input / ”
},
” input” : []

},

Figure 1: Materialized dataset

3. Execution engines

4. Argument requirements

5. Default argument values

6. Structure of variable declarations

7. Typedefs options for algorithm data structures

By design we permit alternative descriptions for some operator properties, for example type-
def definitions. This makes it possible to profile execution performance using different al-
gorithm properties in different scenarios. For example we may find that a list data structure
is better for some particular datasets but not others. An example of a materialized dataset is
shown in Figure 1. An example of a materialized operator for TF/IDF is shown in Figure 2.

User’s workflow This is a representation of what the user created in the workflow tool provided
by ASAP Deliverable D5.2 [10]. It records the sequence or graph of operators and inter-
connecting data flows occurring within the query, and is used by the compiler to drive the
generation of Swan code. A workflow description is shown in Figure 3.

2.2 Compiler Module
The compiler reads and stores:
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{
”name”: ” tfidf cilk map ” ,
”cost” : ”0.00”,
”status” : ”stopped”,
”type”: ”operator”,
”description” : ”TFIDF”,
”Constraints”: {

”EngineSpecification”: {
”FS”: ”standard”

},
”type”: ” directory ” ,
”runFile” : ” tfidf cilk map ” ,
”Algorithm”: {

”name”: ” tfidf ” ,
”dstruct type” : ”word map type”

},
”Input” : {

”Engine”: {
”FS”: ”standard”

},
”number”: ”1”,
”type”: ”textDirectoryDataset”

},
”Output” : {

”Engine”: {
”FS”: ”standard”

},
”number”: ”1”,
”type”: ”arffDataset”

}
}

},

Figure 2: Materialized operator
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”workflow”: {
”nodes”: [{

” id ” : ”1”,
”taskids” : [ ”1” ],
”name”: ” tfidf ”

}, {
” id ” : ”2”,
”taskids” : [ ”2” ],
”name”: ”kmeans”

}],
”edges”: [{

”sourceId”: ”1”,
” targetId ” : ”2”

}],
”taskLinks”: [ ],
”tasks”: [{

” id ” : ”1”,
”nodeId”: ”1”,
”name”: ” tfidf ” ,
”operator”: {

”constraints ” : {
” input” : ”1”,
”input0” : ” tfidf input ” ,
”output” : ”1”,
”output0”: ” tfidf output . arff ” ,
”opSpecification” : {

”algorithm”: ” tfidf map” ,
”args”: {”num clusters”: ”4”,

”max iters” : ”5”,
”force dense”: ”true”}

} } } }, {
” id ” : ”2”,
”nodeId”: ”2”,
”name”: ”kmeans”,
”operator”: {

”constraints ” : {
” input” : ”1”,
”input0” : ” tfidf output . arff ” ,
”output” : ”1”,
”output0”: ”kmeans output.txt”,
”opSpecification” : {

”algorithm”: ”kmeans”,
”args”: {”num clusters”: ”4”,

”max iters” : ”5”,
”force dense”: ”true”}

} } } }]

Figure 3: User Workflow Description for TF/IDF followed by K-means
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{
”type”: ”arg declaration” ,
”algorithm.names”: [”tfidf and kmeans”],
”argTemplates”: [{”max iters” : ”const int VARIN = VAROUT;”, ”num clusters”: ”const int

VARIN = VAROUT;”, ”force dense”: ”const bool VARIN = VAROUT;”, ”by words”: ”
const bool VARIN = VAROUT;”, ”do sort”: ”const bool VARIN = VAROUT;”, ”
rnd init”: ”unsigned int VARIN = VAROUT;”}],

”argDefaults”: [{ ”max iters” : ”0”, ”num clusters”: ”8”, ”force dense”: ” false ” , ”
by words”: ” false ” , ”do sort” : ” false ” , ” rnd init ” : ”1”}]

},

Figure 4: Argument declaration rule for TF/IDF and K-means

{
”type”: ” signature rule ” ,
”algorithm.names”: [” tfidf ” , ”tfidf and kmeans”],
” input” : ” get dir listing (FILE PARAM1, dir list);”,
”output” : ”output(DATA PARAM1, FILE PARAM1);”,
”run”: ” tfidf (DATA PARAM1, OP PARAM1, OP PARAM2);”

},

Figure 5: Signature rule TF/IDF and TF/IDF-K-means

1. The metadata for materialized operators

2. The user’s work-flow description

and generates Swan source code [29] which can execute the user’s analytics query.

Phase 1 of the compiler loads descriptions of operators and workflows from the metadata files
into instances of descriptor classes which map operators from the user’s workflow to source
code and subsequently executable code. Figures 4, 5 and 6 show examples of rules (read
from the materialized operators file) for argument declarations, signature and typedef rules
for certain operators, including TF/IDF.

Once this is loaded the compiler can infer rules around the use of individual operators. For
example, it will be able to build the function signature for calls to core functions such input,
output and operator run statements. It can work out what type definitions are required for
different operators, what arguments are permitted to operators such as K-means and what
the default values are if these are not supplied by the user.

Phase 2 The compiler generates the code by loading skeletal source code from template files.
These contain sections of Swan source code calling into a library with pre-defined functions.
The skeletal code moreover contains placeholders requiring substitution with actual values
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{
”type”: ”typedef”,
”algorithm.names”: [” tfidf ” ],
”algorithm.types”: [ ”word map type”],
”types”: [ ”typedef asap::word list<std::deque<const char∗>, asap::

word bank managed> directory listing type;”,
”typedef asap::word map<std::map<const char ∗, size t, asap::text::charp cmp

>, asap::word bank pre alloc> word map type;”,
”typedef asap::word list<std::vector<std::pair<const char ∗ const, size t>>,

asap::word bank pre alloc> word list type;”,
”typedef asap::sparse vector<size t, float , false , asap::

mm no ownership policy> vector type;”,
”typedef asap::word map<std::map<const char ∗, asap::appear count<size t,

typename vector type::index type>, asap::text::charp cmp>, asap::
word bank pre alloc> word map type2;”,

”typedef asap::data set<vector type, word map type2, directory listing type>
data set type;”

]
},

Figure 6: Typedef declaration for TF/IDF

// Directory listing
get time( begin ) ;

directory listing type dir list ;
asap:: get directory listing ( FILE PARAM1, dir list ) ;
get time (end);
print time ( ” directory listing ” , begin, end);

Figure 7: Example template code for input task of TF/IDF

and/or code sections. The compiler reads the templates and performs these substitions using
operator rules to produce operator codes. An example of one such template code file which
provides template code for the input section for the TF/IDF operator is shown in (Figure 7).
Here FILE PARAM1 will be replaced by user supplied information before code generation.
Additionally the compiler wholly generates code sections for input, output and argument
declarations and initializations

3 Implementation
Python [1] was chosen as the development language for the compiler due to its simplistic syntax
and dynamic typed features which make it flexible and scalable. JSON was chosen as the first
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””” holds data about operator constraints ”””
class OperatorConstraint:

def init ( self , fs , runFile , algname, alg dstructtype, inputs, outputs):
self .EngineSpecification FS = fs
self . runFile = runFile
self .algname = algname
self .algtype = alg dstructtype
self . inputConstraint = []
self .outputConstraint = []
for i in range(0,int(inputs[ ”number”])):

inputConstraint = IOConstraint(inputs[ ”Engine”][”FS”],
inputs[ ”type” ])

self . inputConstraint .append(inputConstraint)
for i in range(0,int(outputs[”number”])):

outputConstraint = IOConstraint(outputs[”Engine”][”FS”],
outputs[”type” ])

self .outputConstraint.append(outputConstraint)

””” holds data about operators ”””
class Operator:

def init ( self , name, description, constraint , inlist , status=”stopped”):
self .name = name
self . description = description
self . constraint = constraint
self .status = status

Figure 8: Class definition for operator

supported metadata language of choice mainly to facilitate early integration with the workflow
tool [10] and scheduler [6].

3.1 Data Structures
Python classes have been defined for representing operators, operator rules and datasets. Their
separate representations allow for a loosely coupled approach where datasets and language con-
struct rules can equally be applied to any or many operators in a workflow schema. Figures 8 and
9 show examples of class definitions for an operator and a signature rule.

Separate instances are created for each occurrence in a workflow and attached to related or
enclosing operator instances.

3.2 Algorithm
The compiler algorithm is driven by:
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class Signature:
def init ( self , input, output, run):

self . input = input
self .output = output
self .run = run

Figure 9: Class definition for signature

1. The flow of operators in the user’s workflow description.

2. The general sequencing and layout of a Swan/C++ program.

Initially the compiler parses metadata from the materialized operators library and creates a
hierarchy of descriptor instances which represent operator and language construct rules. These
may be anything from operator objects to rules for declarations, typedefs and arguments associated
with operators. Code generation proceeds by:

1. Parsing and looping around the user’s workflow of operators.

(a) Referencing the descriptor instances.

(b) Referencing template code files and substituting placeholders.

(c) Printing the code section.

Typically declarations for input, output and operator arguments are generated directly and
wholly from the materialized operator rules, replacing variable names with internally generated
compiler ones and filenames with those supplied by the user.

3.3 Availability
The source code for the workflow compiler and the library of operator implementations in Swan are
available online from github.com/hvdieren/asap_operators/. The workflow com-
piler has been tested on four example workflows. The operators implemented in the library are
K-means clustering, word count, term frequency/inverse document frequency calculation for a set
of documents, numeric dataset input/output in WEKA’s Attribute-Relation File Format (ARFF)
format [8] and a directory listing operator.

4 Low-Level Language (Swan) Compiler
One of the goals of the ASAP Work Package 2 is to implement code transformations for the Swan
task dataflow programming language [29]. These code transformations are intended to restruc-
ture code in order to improve performance. As a first step towards this goal, we have extended the

14
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Table 1: Repositories holding components of the Swan compiler.
Component Repository
LLVM https://github.com/hvdieren/swan_llvm
Clang https://github.com/hvdieren/swan_clang
Runtime https://github.com/hvdieren/swan_runtime
compiler-rt https://github.com/llvm-mirror/compiler-rt

version b6967623458e90b89b4e8a5311c5c9e0758bcb6e
tests https://github.com/hvdieren/swan_tests

Table 2: Data set description.
Input Documents Bytes Distinct words
Mix 23432 62.8 MB 184743
NSF Abstracts 101483 310.9 MB 267914
Gutenberg 52361 19.4 GB 7614691

Clang [12] compiler and defined a front-end parser that recognizes the language extensions defined
by Swan. These include, primarily, the addition of dataflow dependences to tasks in the Cilk lan-
guage [7] and versioned objects that represent the data that flows between tasks. These constructs
are recognized by the Clang compiler and they are correctly translated to common operations in
the LLVM Intermediate Representation (which is clang’s target language) and also include runtime
library calls. The runtime library is an extension of the open source Intel Cilkplus library.

The modified versions of the software tools are available on github as indicated in Table 1. The
tests repository holds specific instructions to setup the Swan compiler. It also presents a few test
cases to check that the compiler is working correctly.

5 Evaluation

The following evaluation section has been published at the First International Workshop on Multi-
Engine Data Analytics (MEDAL) [28]. We have provided additional evaluation on a larger data
set, namely a 20 GB collection of books from the Gutenberg project.

5.1 Setup

We start our investigation at a small scale, focusing on the activities on a single node as these allow
us to better understand the performance of operators and workflows.

Performing analytics on a single node is important as a single-node can be built with a large
amount of working memory (up to 16 TB) and many processing cores (over a 100). Such a system

15

https://github.com/hvdieren/swan_llvm
https://github.com/hvdieren/swan_clang
https://github.com/hvdieren/swan_runtime
https://github.com/llvm-mirror/compiler-rt
https://github.com/hvdieren/swan_tests


ASAP FP7 Project
ASAP D2.2

Programming model and implementation design

could efficiently process many real-world data sets. However, we expect that our conclusions re-
main valid when applied to scale-out systems, as optimizing the performance of nodes in isolation
is crucial to optimize the system overall.

To test the importance of the identified optimizations, we implement two analytics operators
in the Cilkplus extension of C++, a programming language designed for high-performance and
parallel computing at MIT, first developed over two decades ago and continuously refined since
then. Cilkplus, now commercialized by Intel, supports the construction of parallel tasks through
language constructs that express parallelism and vectorization (SIMDization) in an easily acces-
sible way. In the Cilkplus model, each thread of computation is bound to a processing core. The
principles utilized should apply to other languages and parallel constructs, e.g., Java streams.

We study two operators: term frequency–inverse document frequency (TF/IDF) and K-means
clustering. TF/IDF extracts words from text documents and rates the importance of a word on the
basis of its frequency of occurrence within a specific document as well as within the whole set
of documents. K-means clustering is an unsupervised classification technique that allows for the
grouping of similar data items described as numeric vectors.

We evaluate the operators on three data sets: a collection of short news articles from Reuters,
the NSF Abstracts dataset and a collection of books from the Gutenberg project.

5.2 Intra-Node Parallelism
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Figure 10: Self-relative performance scalability of the K-Means operator.

Many problems in data mining are trivially compute-bound, especially learning algorithms us-
ing neural networks, support vector machines and the like, which utilize computationally demand-
ing hyperbolic functions and can require many iterations to train the model. It should go without
saying that algorithms like these can be accelerated using high degrees of intra-node parallelism.

K-means clustering is perhaps one of the cheapest unsupervised learning algorithms. As such,
we will use K-means clustering to demonstrate that data analytics operations benefit from intra-
node parallelism. Figure 10 shows the self-relative speedup of the K-means clustering algorithm
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on our three datasets (Table 2). We use the algorithm to assign documents to one of 8 clusters
based on their normalized TF/IDF scores.

The self-relative speedup shows how much performance is improved by utilizing multiple CPU
cores. The speedup obtained is sensitive to the data set operated on: The NSF Abstracts data set
has about 100,000 documents and is sped up nearly 8 times using intra-node parallelism. The Mix
data set has around 23,000 documents, which is sufficient only for a 2.5 x speedup. The Gutenberg
data set has double the number of documents of Mix and achieves twice the speedup. This effect
is explained by the parallel loops in K-means clustering, which are all loops iterating over the
documents. As the number of documents grows, so does the parallel scalability.

The execution time of our implementation is furthermore short in comparison to other imple-
mentations. We compared the execution time of our K-means clustering implementation against
WEKA [8] (version 3.6.13). Using the “SimpleKMeans” algorithm, a single-threaded K-Means
algorithm, on the same data sets requires over 2 hours, after which we aborted the execution. In
contrast, executing our implementation sequentially required 3.3s and 40.9s for the Mix and NSF
Abstracts data sets respectively. Note that while we did not see the execution of WEKA through
to the end, we have verified that our WEKA installation works correctly on small data sets.

While our implementation is significantly faster than WEKA, this is not automatic. Several
key optimizations were required to achieve the performance of our algorithm: (i) Using sparse
vectors to represent inherently sparse data. (ii) Re-cycling data structures throughout the K-means
iterations to avoid redundant data copies and memory pressure. E.g., we do not create new objects
during the iterations of the K-means algorithm.

The conclusion of this experiment is thus that (i) intra-node parallelism is an important oppor-
tunity to accelerate data analytics, especially on larger data sets; (ii) the implementation and the
choice of data structures has a huge influence on execution time; (iii) parallelism can be exploited
without casting the algorithms in map/reduce form.

5.3 Parallel Input

A code that is well-optimized and where CPU is a bottleneck can also benefit from parallelizing I/O
operations. Under these circumstances, CPU utilization is high and I/O resources are underutilized,
including local disk and network resources. Intra-node parallelism can thus increase the utilization
of disk and network resources.

In this section we study the problem of calculating the term frequency–inverse document fre-
quency (TF/IDF) [24] property of a set of documents. Our implementation collects term frequen-
cies (word counts) for each of the documents in the set. Moreover, a list of all unique terms across
the documents is constructed. This list is annotated with the number of documents where the
word occurs. In a first phase, the per-document term frequencies and the overall term-document
count properties are collected using dedicated hash tables, mapping a word to a term frequency
or an overall document count. In a second phase, we calculate for each document the per-term
TF/IDF score using the hash tables described above. For each document, a sparse TF/IDF vector
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Figure 11: Self-relative parallel scalability of the TF/IDF operator.

is constructed, sorted by term IDs and written to the output file in Attribute-Relation File Format
(ARFF) format [8]. The first phase can be executed in parallel for each of the documents. The
main limitation to obtain speedup here is bandwidth to the storage system. The second phase is
not parallelized as the ARFF format does not facilitate parallel output.

While the TF/IDF problem is mainly concerned with data input, tokenization and hash table
operations, it benefits strongly from intra-node parallelism (Figure 11). It speeds up by nearly
6-fold for the Mix data set and by 7-fold for the NSF Abstracts data set. The Gutenberg data set,
which is substantially larger, speeds up nearly 10-fold. Parallelizing output is important as well.
However, file formats are often designed in such a way that parallel I/O becomes hard.

5.4 Workflow Fusion

As pointed out above, I/O is both costly and hard to parallelize. As such, avoiding I/O is always a
good optimization. Figure 12 shows the execution time of the TF/IDF–K-Means workflow when
executing the TF/IDF and K-Means operators as discrete operators that communicate by storing the
intermediate TF/IDF scores on disk, versus a merged operator without storage of the intermediates.
The results clearly demonstrate that dumping data to disk has a high latency. In this experiment,
the data is dumped to a local hard disk. Both the output of the TF/IDF scores and the subsequent
input are executed by a single thread because the file format utilized (ARFF [8]) does not easily
support parallel I/O. In contrast, transforming the data when it is stored in-memory is much faster
and parallelizes well.

The presence of intra-node parallelism is an important differentiator as to whether I/O bears
much overhead or not. On a single-threaded execution, I/O increases execution time by 36.9%. On
16 threads, however, I/O makes the execution 3.84 times slower because it does not parallelize.
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Figure 12: Execution time of the TF/IDF–K-Means workflow when executing the TF/IDF and K-
Means operators as discrete steps communicating through file I/O, versus a merged operator with
storage of the TF/IDF scores. Uses the NSF Abstracts input.
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Figure 13: Execution time of the TF/IDF–K-Means workflow on the Mix input using a
std::unordered map (u-map) or a std::map.

5.5 Data Structures

Algorithms use data structures to store input, output and internal data sets, The choice of these data
structures impact performance. In the case of TF/IDF, the key data structures are the dictionaries
storing unique words and their frequencies. Figure 13 shows the execution time of TF/IDF–K-
Means workflow on the Mix data set and a varying number of threads. Results for the largest NSF
Abstracts data set are more dramatic.

The results demonstrate that the input and word-count step (“input+wc” in Figure 13) is faster
when using the std::map data structure as opposed to the std::unordered map data struc-
ture. The first is implemented as a red-black tree, while the latter is implemented as a hash table.
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Moreover, the unordered map is pre-sized to hold 4K items to minimize resizing overhead.
While reading documents and counting words is faster with a map, the subsequent data trans-

formation step is slower using a map, especially on one thread. This follows as the input and
word-count phase is write-intensive, consisting of frequent insertion of values in the dictionary.
Insertion in the unordered map (a hash table) is inefficient due to (i) resize operations, which re-
quires re-hashing all elements, (ii) memory pressure, as the array underlying the hash table is by
construction both sparse (to approximate O(1) operations) and very large (due to the data sets
used). In contrast, the transformation step performs only lookups on the hash table, which are
known to be faster on the unordered map O(1) as opposed to the map O(log n).

However, the transformation step scales much better with an increasing number of threads when
using the map: it scales to 6.1 x on 16 threads using the map, while it scales only to 3.4 x using the
unordered map data structure. This is in part due to the memory consumption. In particular, using
the Mix data set, main memory consumption is 420 MB with the map, while it rises to 12.8 GB
using the unordered map.

Likewise, the output phase performs lookups only on the dictionaries and thus favours the
unordered map. Moreover, the output phase is hard to parallelize.

We conclude that selection of the internal data structures has a significant impact on execution
time. Moreover, different steps of a workflow may execute faster using different data structures. As
such, the choice of internal data structure must be taken judiciously, depending on the overall time
taken by each step of the workflow and also on the extent to which each phase can be parallelized.

5.6 Related Work

The performance of data analytics frameworks is an important concern. Various studies have been
performed to probe into the efficiency of distributed data analytics frameworks such as Hadoop
and Spark. It is known that generalized data management systems such as structured databases
incur a performance penalty through generalization. Such a result can be fairly extrapolated to
unstructured big data stores and processing frameworks. These studies, however, indicate deep
performance issues that transcend “the cost of generalization.”

Pavlo et al compare map/reduce systems against distributed DBMSes [21]. They observe that
the basic control flow of map/reduce has existed in parallel SQL database management systems
(DBMS) for over 20 years. They compare the map/reduce and parallel SQL paradigms and find
interesting trade-offs in performance between these approaches. They find that importing data in
the DBMS takes substantial time and configuration of one of the tested databases and required
repeated vendor assistance. The DBMS, however, proved 2.3X faster than map/reduce on 100
nodes. They conclude that map/reduce is less efficient and attribute this to its design, in particular
the lack of an index over the data.

Ousterhout et al analyse real-life peta-scale workloads executing over Spark [20]. They find
that CPU is more often a bottleneck than I/O and that network performance has little impact on job
completion time. Moreover, they find that straggler nodes can be identified and that in most cases
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the cause for straggling can be identified. The authors also note that their analysis is a snapshot in
time. They expect that the results of their analysis will change as data analytics systems evolve.
As such, the performance bottlenecks will also change.

Han et al perform a similar analysis for graph analytics frameworks [9]. They identified com-
mon optimizations and framework-specific optimizations, identifying which brought most perfor-
mance improvement. They also identified potential areas for improvement, e.g., load balancing and
adjacency list data structures that are memory and mutation-efficient (Giraph) and reducing com-
munication overheads in GraphLab’s asynchronous mode. Satish et al [25] similarly study graph
analytics frameworks. Their study proposes hand-optimised implementations of the graph analyt-
ics operations and uses these to identify important bottlenecks in the frameworks. They find that
their hand-optimized codes can outperform programmer-friendly frameworks by up to 560-fold.
More importantly, they identify that GraphLab, Giraph and Socialite have poor network utilization.
This is in stark contrast with Spark and map/reduce which have been reported as CPU-limited.

McSherry, Isard and Murray propose a different way to assess the efficiency of distributed data
analytics frameworks [16]. The “COST” metric determines the “Configuration that Outperforms a
Single Thread.” The idea is to compare the performance of a workload executing on a distributed
data analytics framework against an implementation of the algorithm executing within a conven-
tional programming language. In their case, the reference implementation was single-threaded C#
code. They apply the COST metric to a number of applications and data analytics frameworks.
For instance, they find that Naiad [18] has a COST of 16 cores for calculating PageRank on the
Twitter graph, while GraphLab [13] has a COST of 512 cores. GraphX [30] has an unbounded
COST, i.e., it is never as fast as the single-threaded implementation no matter how many cores and
nodes are used. The authors point out that such high overheads simplify creating scalable systems,
i.e., it is much easier to scale an inefficient software system over a large cluster than it is to scale
an efficient software system.

Several authors have investigated analytics frameworks for shared-memory systems. The ar-
gument for data analytics on single nodes is based on (i) the possibility of building nodes with
up to 16 TB of working (DRAM) memory and (ii) the higher efficiency and simplicity of de-
veloping shared memory software systems as opposed to distributed memory system solutions.
The latter argument is especially important for graph processing workloads which are extremely
communication- and synchronization-intensive. As such, Shun and Blelloch [26] have developed
Ligra, a light-weight graph analytics system for shared memory systems that scales well to large
core counts. For graphs that do not fit in working memory at once, Kyrola et al have designed
GraphChi [11], a graph analytics framework for graphs stored on disk. GraphChi partitions graphs
in shards. It then reads shards of the graph in memory, performs calculations on the shard, ap-
plies the changes to disk and then moves on to the next graph. GraphChi is efficient due to its
partitioning technique which retains good and predictable locality of edge destinations within each
shard. Zhang et al take the Ligra approach further and optimize graph analytics for non-uniform
memory architectures (NUMA) [32]. NUMA systems are partitioned and each CPU socket has
faster access to its associated partition of the memory than to other partitions. They use the same
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graph partitioning technique as GraphChi to partition the graph across NUMA partitions and to
bias main memory accesses to the local NUMA memory.

Research has also been invested in map/reduce frameworks [5] for shared memory systems [23,
31, 27]. Mao et al have proposed optimizations to Phoenix [15]. In particular, they point out the
need for NUMA-aware memory allocation. Chen et al optimize Phoenix by tiling, a data locality
optimization technique [3]. Several authors have proposed map/reduce systems to program acceler-
ators, including the Sony/Toshiba/IBM’s Cell Broadband Engine [4, 22] and Intel’s Xeon Phi [14].
On a different note, Arif et al have evaluated how standard parallel programming languages weigh
up to parallelizing map/reduce applications [2]. In particular, they have found that OpenMP [19]
has insufficient support for reducing container data structures, e.g., arrays and key-value maps.
OpenMP focusses its reduction operations on scalar values.

6 Conclusion
The deliverable describes the first version of the ASAP compiler which transforms a workflow
description in high level form to 0 codes for execution on heterogeneous engines. In the design at-
tention was given to ensure the compiler would be flexible and extensible and facilitate integration
with interfacing components [10] and [6] by using compatible metadata schemas.

The compiler has been tested on a series of simple workflows including, TF/IDF, k-means
and a combined in-memory TF/IDF-K-means operation. These have shown successful mappings
between workflows and executions in the Swan execution environment. Profiling shows efficiency
gains in selecting the in-memory tfidf-k-means workflow. Current work is underway to install
Swan/C++ operator codes within the data centers in the ASAP framework so we can re-create
the workflow executed by the Spark engine, and execute it with Swan codes. This will provide
further validation of the compiler as a transformation from analytics workflows to heterogeneous
executions environments.
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