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Executive Summary

This document describes the Swan programming language, designed for high-performance
analytics, and demonstrates its application to a variety of analytics workloads, covering
map-reduce workloads, graph analytics and text analytics.
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1 Introduction

Data analytics workloads are consuming large amounts of computation time. As such,
a detailed study of their computational patterns and properties is merited. The goal of
Work Package 2 is to study these workloads in detail and to develop a programming
language that enables programmers to express analytics workloads in such a way that
they can be executed at high performance.

We developed the Swan language, an extension of the Intel Cilk parallel program-
ming language, that facilitates high-performance execution of data analytics work-
loads. Swan adds three features to Cilk, namely: (i) data-flow extensions to express
arbitrary parallel patterns and enable virtualization of memory; (ii) a scheduling hint
for fine-grain parallel loops, and (iii) a scheduling hint to exploit locality-awareness in
Non-Uniform Memory Access (NUMA) systems.

To a large extent, this work applies to shared memory systems, i.e., it is concerned
with a single node in a data center. It should be noted, however, that servers with
terabyte-scale main memory exist and offer a highly competitive alternative for work-
loads exhibiting frequent synchronization. The work is however not limited to shared
memory systems as we apply some of our ideas also to Spark. Moreover, data-flow
extensions may be used to orchestrate parallelism also in distributed memory systems
without affecting the principles of the programming model [12, 72].

We demonstrate the usefulness of Swan for the data analytics problem by apply-
ing it to several analytics workloads. In first instance, we apply Swan to Map-Reduce
workloads (Section 3). Map-reduce workloads are conceptually simple and are eas-
ily implemented using parallel loops with reducers. Contrary to popular frameworks
such as Hadoop, our reducers have clearly defined semantics and do not require the
commutativity property.

Next, we apply the Swan language to the problem of graph analytics (Section 4).
Graph analytics differ from map-reduce problems in many respects. Most importantly,
graph analytics problems involve irregular computations and have a high dynamic
range of parallelism. In our study, we found that graph analytics are highly sensitive to
the organization of the memory system in a server. We demonstrate how NUMA-aware
scheduling has a significant impact on the performance of graph analytics.

Furthermore, we demonstrate how several of the map-reduce workloads as well as
the graph analytics workloads benefit from the fine-grain scheduling hint (Section 5).
The fine-grain scheduling hint expresses that certain parallel loops have very low op-
erational intensity, i.e., they perform very few computations per byte transfered through
the memory system. This property appears in several map-reduce workloads and, due
to the high dynamic range of parallelism, also in a significant number of parallel loops
in the graph analytics workloads.

Next, we turn our attention to text analytics problems. Text analytics problems again
have the property of low operational intensity. In our case study of term frequency/in-
verse document frequency, however, this property implies that performance is highly
sensitive to the organization of the data structures, the memory management of inter-
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mediate data and efficiently managing parallelism. On the basis of this, we propose a
number of operators and a library that are generally useful in text analytics. These are
explained in Section 6. Finally, we demonstrate that our proposals for HPTA are also
applicable to Spark (Section 7).

Overall, these case studies demonstrate that Swan is an appropriate programming
language to express a variety of data analytics workloads. Rigorous performance eval-
uation, involving a comparison against state-of-the-art solutions for each of the prob-
lem domains, demonstrates that the goal of high-performance analytics is achievable
with Swan.

2 The Swan Parallel Programming Language

Swan is an extension to the Cilk parallel programming language, which was originally
designed at the Supercomputing Technologies group at MIT, and is currently supported
by Intel under the name Cilk Plus [39]. Swan extends Cilk by adding dataflow depen-
dences to express more complex parallel patterns than Cilk. One of these is pipeline
parallelism. Moreover, Swan adds annotations to parallel for loops that help to increase
performance.

2.1 The Cilk Parallel Programming Language

The following is a brief overview of the key aspects of Cilk. Full details are provided
online [17].

2.1.1 Spawn and Sync

Parallelism is expressed by indicating that two (or more) pieces of code may execute
in parallel. Typically, this implies that these pieces of code do not write to variables or
memory locations that the other reads or writes to. These pieces of code may be any
legal C/C++ code. In practice, Cilk requires that at least one piece of code is extracted
in a function or isolated in a C++ lambda expression (an anonymous function).

Parallelism is introduced by adding the cilk spawn keyword to the function call
statement. We say that the function is spawned rather than called. The spawned func-
tion may execute in parallel with the remainder of the calling function. This is called the
continuation of the calling function. The parallelism exists until a cilk sync statement
is encountered, or until the end of the calling function, whichever is encountered first.

The Cilk runtime is allowed to execute the spawned function in parallel with the
continuation of the calling function, but is not obliged to do so. In fact, the Cilk runtime
only executes in parallel as many spawns as is required to keep all CPU cores busy.
Beyond this, it executes the spawned statements in a sequential manner, as this is
much more efficient. Adding spawn statements to a program, thus, has little overhead
in case they are not selected for parallel execution by the runtime.
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void qsort( int ∗begin, int ∗end) {
if (begin != end) {
−−end; // Exclude last element (pivot) from partition
int ∗ middle = std :: partition (begin, end,

std :: bind2nd(std::less<int>(), ∗end));
std :: swap(∗end, ∗middle); // move pivot to middle
cilk spawn qsort(begin, middle);
qsort(++middle, ++end); // Exclude pivot and restore end
cilk sync;

}
}

Figure 1: Quicksort expressed in Cilk.

cilk for ( int i=0; i < n; ++i) {
a[ i ] = ...;

}

Figure 2: Parallel loops in Cilk.

An example of Quicksort expressed in Cilk is shown in (Figure 1). Quicksort first
partitions the range of values to sort using a pivot. It then recursively sorts the range
of values less than the pivot and the range of values larger than the pivot. As these
subranges are independent (non-overlapping), they can be sorted in parallel. This is
indicated by labelling the first recursive call with cilk spawn.

Note that one could also add the cilk spawn keyword to the second recursive call.
This is however redundant as it was already apparent that this call may execute in
parallel with the first recursive call.

2.1.2 Parallel for loops

The spawn/sync mechanism is very versatile, (Figure 2). It can be used to express par-
allel for loops, a common idiom, as well. However, this is somewhat tedious. The Cilk
compiler allows programmers to annotate parallel for loops using the cilk for keyword
as shown in Figure 2.

The compiler outlines the body of a cilk for loop in a distinct function and generates
code to call the loop body in parallel, using the cilk spawn statement.

Every iteration of the loop should modify distinct memory locations. There are
moreover restrictions on the structure of the loop iteration. In essence, the number
of iterations of the loop must be known at execution time just before starting the loop.
This implies that the loop should not have break statements and that the loop iteration
variable (i) is modified only by the loop increment statement ++i, the third part in the
for loop syntax.
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template<class map type>
class map reducer {

struct Monoid : cilk :: monoid base<map type> {
static void reduce(map type ∗ left, map type ∗ right) {

for(typename map type::const iterator
I=right−>cbegin(), E=right−>cend(); I != E; ++I)

(∗ left ) [ I−>first] += I−>second;
right−>clear();

}
static void identity (map type ∗ p) const {

new (p) map type();
}

};
cilk :: reducer<Monoid> imp ;

public :
map reducer() : imp () { }
typename map type::value type & operator[](

const typename map type::key type & key) {
return imp .view() [key];

}
typename map type::const iterator cbegin() {

return imp .view() .cbegin();
}
typename map type::const iterator cend() {

return imp .view() .cend();
}
void swap(map type & other) {

return imp .view() .swap(other);
}
map type & get value() {

return imp .view() ;
}

};

Figure 3: Cilk reducer for hash-map.

2.1.3 Generalized Reductions

Cilk provides definitions for generalized reductions that are associative but not nec-
essarily commutative. As the reduction operation need not be commutative, many
operations such as list prepend/append and hash-map insert can now be expressed
as reduction operations. In these cases it is guaranteed that the reduction variable
contains the same value as computed by the serial elision of the Cilk program.

Cilk defines reductions with three components: a data type, an associative oper-
ation and an identity value for that operation. These components are defined in a
monoid class that serves as the basis for a reducer class definition.

The definition of a Cilk reducer for a hash-map data type is shown in (Figure 3)
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map reducer<std::map<std::string,size t>> map;
cilk for (std :: vector<std:: string>:: const iterator

I=vec.cbegin(); I != vec.cend(); ++I) {
map[∗I]++;

}

Figure 4: map reducer code.

It is assumed that the template parameter map type defines a hash-map type that
is compatible to the C++ standard’s std::map. The definition consists of a Monoid
class, which defines the base type (through the monoid base template parameter),
the identity value (through an initialization function) and the reduction function. It is
assumed that hash-maps are reduced by taking the join of all keys and that the values
for common keys are further reduced using an operator +=. This behavior is specified
in the reduce function.

The runtime system dynamically creates copies of the reduction variable, and re-
duces those copies as needed. These copies are called views. A view is created for a
worker thread when it first accesses the reduction variable. The view is initialized with
the identity element. The worker retains the view when spawning a task. When an idle
worker steals a continuation from another worker’s deque, it does not receive a view
for that reduction variable. The view is created only on the first access to the reduction
variable. When a worker completes a spawned task leaving its spawn deque empty,
or when a worker executes a cilk sync statement, the view is reduced with that of a
sibling task.

The example above defines a map reducer class. The member value imp is de-
clared as an instance of the reducer class, specialized by the Monoid definition. The
object imp manages the creation, lookup and destruction of views. The map reducer
class further provides access to the underlying view through the operator [] in order
to add items to the hash-map.

The map reducer class may be used in parallel code as shown in (Figure 4).
The cilk for construct creates parallelism. Each concurrently executing loop iter-

ation references the same instance of the map reducer class, but the cilk::reducer
object imp serves up different views in concurrently executing iterations. All views are
reduced prior to completion of the cilk for loop.

Note that the reduction operation should ideally execute in constant-time, otherwise
the execution time of the program will depend on the number of reduction operations
performed. The number of reduction operations is, in any case, proportional to the
number of steal operations.

2.1.4 Array Notation

Cilk Plus supports an array notation that facilitates auto-vectorization, i.e., the use
of SIMD vector instructions to accelerate processing. The array notation allows for
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3 fields in an array section expression: a[i:l:s], where i is the start index of the array
section, l is the length and s is the stride. Each element of the array notation is optional,
but at least one colon must be present. Default values are 0 for i, the length of the array
for l, provided it is known at compile-time, and 1 for s. E.g., a[:] indicates the full array
if its size is statically known, while a[:10:2] indicates the elements at indices 0, 2, 4, 6,
8. Expressions may be built up using array notations, e.g., the statement

c[:] = a[:]+2*b[:];

is equivalent to
for(int i=0; i < n; ++i) c[i] = a[i] + 2*b[i];

assuming each array was declared with length n.
One can also map functions over all elements of an array section. E.g., a[:] =

pow(b[:]) applies the function pow to each element of array b and stores the result in
the corresponding element of array a. Reductions are specified using built-in functions
that may be applied to arbitrary array sections. E.g., sec reduce add(a[::2]) returns
the sum of the array elements at even positions of a.

The key advantage of the array notation is that it enables the compiler to auto-
vectorize the code. Vectorization can be important towards performance as map-
reduce programs often exhibit a data streaming pattern.

2.2 Swan’s Dataflow dependences

Dataflow dependencies enable Swan to schedule dependent tasks as soon as prior
tasks complete [97, 98]. We have demonstrated that Swan out-performs state-of-the-
art systems for scheduling dependent tasks in high-performance computing [95]. De-
pendencies are tracked at the object level. An object must be declared as a versioned
object in order to enable dependency tracking. Versioned objects support automatic
tracking of dependencies as well as creating new versions of the object in order to
increase task-level parallelism (a.k.a. renaming).

Dependency tracking is enabled on tasks that take particular types as arguments:
the indep, outdep and inoutdep types. These types are little more than a wrapper
around a versioned object that extends its type with the memory access mode of the
task: input, ouput or input/output (in/out). The language allows only to pass versioned
objects to such arguments.

When spawning a task, the scheduler analyzes the signature of the spawned pro-
cedure for arguments with a memory access mode. If none of the arguments describe
a memory access mode, then the spawn statement is an unconditional spawn and
it has the same semantics as a Cilk spawn. Otherwise, the spawn statement is a
conditional spawn. The memory accesses of the task are tracked and, depending on
runtime conditions, the task either executes immediately or it is queued up in a set of
pending tasks.

The sync statement in our language has the same semantics as the Cilk sync
statement: it postpones the execution of a procedure until all child tasks have finished
execution.
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typedef float (∗block t ) [16]; // 16x16 tile
typedef swan::versioned<float[16][16]> vers block t;
typedef swan::indep<float[16][16]> in block t;
typedef swan::inoutdep<float[16][16]> inout block t;

void mul add(in block t A, in block t B, inout block t C) {
block t a = ( block t )A; // Recover pointers
block t b = ( block t )B; // to the raw data
block t c = ( block t )C; // from the versioned objects
// ... serial implementation on a 16x16 tile ...

}

void matmul(vers block t ∗ A, vers block t ∗ B,
vers block t ∗ C, unsigned n) {

for( unsigned i=0; i < n; ++i ) {
for( unsigned j=0; j < n; ++j ) {

for( unsigned k=0; k < n; ++k ) {
cilk spawn mul add( (in block t)A[i∗n+j ],

( in block t )B[j∗n+k],
( inout block t )C[i∗n+k] ) ;

}
}

}
cilk sync;

}

Figure 5: Matrix multiplication by blocks.

We consider only situations where dependencies are tracked between the children
of a single parent procedure. Each dynamic procedure instance may have a task
graph that restricts the execution order of its children. This restriction ensures that all
parallel executions compute the same value as the sequential elision of the program.
Note that the sequential elision of the program always respects the dependencies in
the program: by deducing dependencies from input/output properties, there can never
be backward dependencies in the sequential elision. Furthermore, by having multiple
independent task graphs in a program, we can mitigate the performance impact of
building the task graph in serial fashion.

Our model allows arbitrarily mixing fork/join style and task graph execution. The
only problematic issue to allow this is that we must take care when nesting task graphs,
in particular when passing versioned objects across multiple dependent spawns. To
make this work correctly, we must use distinct metadata for every dependent spawn to
track its dependencies separately.

Figure 5 shows an example of square matrix multiplication expressed in Swan using
runtime tracking and enforcement of task dependencies. Here, the matrix multiplication
is performed by blocks, i.e., matrices are partitioned in sub-blocks and parallelism
between operations on sub-blocks is made explicit using data-flow annotations.
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int chunk = (len + num numa domains − 1) / num numa domains;
#pragma cilk numa(strict)

cilk for ( int d=0; d < num numa domains; ++d)
cilk for ( int i=d∗chunk; i < std::min((d+1)∗chunk,len); ++i)

a[ i ] = ...;

Figure 6: Cilk numa annotation.

2.3 NUMA-Aware Loop Scheduling

Cilk is a highly efficient work-stealing scheduler for parallel programs that achieves
its performance through randomized, greedy scheduling. Such scheduling, however,
is agnostic of the memory hierarchy and favors cache-oblivious programs [27, 106].
NUMA-awareness, however, relates to scheduling of memory accesses whereas cache-
obliviousness relates to locality of access. These are distinct problem dimensions. For
this reason, Swan extends the Cilk language and runtime system to support program-
mers to express NUMA-aware scheduling and work stealing. We have deliberately
searched for a minimalistic modification to Cilk in order to retain its space- and time-
efficiency [11].

We focus this extension exclusively on parallel loops. Parallel loops are, as we will
demonstrate later, the most important idiom in data analytics. Swan adds an annota-
tion to cilk for loops which informs the runtime how to schedule tasks on CPU cores
in a NUMA-aware manner.

The numa annotation facilitates performance tuning for systems with a Non-Uniform
Memory Architecture (NUMA), e.g., multi-socket machines. This annotation indicates
that the iterations of the loop should be scheduled on distinct NUMA domains (sock-
ets). It is the programmer’s responsibility to ensure that there are no more loop itera-
tions than NUMA domains.

Figure 6 shows how the annotation is used. The outer loop (with loop iteration
variable d) is annotated as a NUMA loop. Each iteration of this loop will be executed on
a distinct NUMA domain. The iterations of the inner loop (using loop iteration variable
i) are spread over the CPU cores of one the NUMA domain of the corresponding d
value.

The assumption that the number of loop iterations does not exceed the number
of NUMA domains is a pragmatic one. Longer iteration ranges are supported by dis-
tributing the loop range over a set of nested loops. The outer loop is NUMA-aware.
The inner loop is a normal cilk for loop that inherits the NUMA scheduling restric-
tion from its calling context. Note that the NUMA-awareness property percolates to
all code called recursively from the loop, until another loop with the NUMA pragma is
encountered.
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Figure 7: NUMA-aware work-stealing. “Thread @n” represents any thread executing
on socket “n”.

2.3.1 Implementation

Cilk implements parallel loops using a helper function that recursively splits the itera-
tion range of the loop in half. Once the iteration range is shorter than a heuristically
determined threshold the helper function executes the loop sequentially over this part
of iteration range.

Figure 7 (a) shows the call tree of the helper function for a loop with 4 iterations.
Each node represents an invocation of the helper function. Edges indicate a parent-
child relationship between function calls. Nodes in distinct subtrees are independent
and may execute concurrently. Cilk uses a work-first scheduler [11] which translates
into a depth-first traversal of the tree (Figure 7 (b)). Work stealing is used to distribute
work. Every idle thread attempts to steal work from a randomly selected victim thread.
Threads steal the continuation of the oldest function on their victim’s call stack, i.e., the
one nearest to the root of the call tree. E.g., if thread A starts execution of the range
0-3 in depth-first order it will first execute the sub-range 0-1. Meanwhile, thread B may
steal the continuation of the oldest function and execute the sub-range 2-3.

We provide a NUMA-aware helper function that changes the execution order of
loop iterations. The thread that executes an instance of the helper function checks its
current NUMA domain and first executes the sub-range that matches its NUMA do-
main. E.g., if a thread on NUMA domain 2 initiates execution of the loop, it executes
the range 2-3 before the range 0-1 (Figure 7 (c)). This strategy is applied recursively:
a thread on NUMA domain 3 will first execute loop iteration 3. This way, work is dis-
tributed to the correct NUMA domains with a minimal number of work stealing events
(Figure 7 (d)).

Work stealing is modified to respect the NUMA constraints. Every dynamic function
call is marked by the helper function with the range of NUMA nodes where the func-
tion may execute. This range reflects the iteration sub-range of the loop. The range
is copied over to recursively called functions. A worker that selects a victim thread
inspects the NUMA range of the victim’s oldest function and aborts the work stealing
attempt if the NUMA range does not contain its own NUMA node. By default, NUMA
ranges are not set and work stealing proceeds as normal.
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2.4 Fine-Grain Scheduling Hint

Swan furthermore accelerates execution of fine-grain parallel loops. Fine-grain parallel
loops are loops that perform little work overall and have a parallel execution time that
is typically less than 10 ms. For such loops it is often a difficult choice whether a pro-
grammer should mark them as parallel loops or not, as scheduling loop iterations over
multiple CPU cores incurs an overhead, known as the scheduler burden. The sched-
uler burden can offset, or even annihilate, the performance gains from parallelization.
As such, marking a fine-grain loop as parallel may reduce performance rather than
improve it.

The fine-grain scheduling hint aims to address this problem: fine-grain loops are
treated specially by a scheduler which has a lower burden, but is in turn less flexible
in its schedule. A particular short-coming of the fine-grain scheduler is its inability to
load balance parallel loops. However, we find that parallel loops in data analytics are
often well-balanced. As such, the short-coming of the fine-grain scheduler is rarely a
problem.

2.4.1 Language Extension

We introduce a new pragma “#pragma cilk finegrain” that can be added immedi-
ately before cilk for loops:

cilk :: reducer<cilk::op add<int> > r;
#pragma cilk finegrain

cilk for ( int i = 0; i < n; i++)
∗r += a[ i ];

This tells the compiler that the annotated loop is a fine-grain parallel loop and should
be scheduled using an optimized scheduler rather than using the dynamic scheduler.
This optimized scheduler can handle these fine-grain loops as it has a lower burden by
design. In this work, the burden is reduced by pre-calculating the distribution of loop
iterations over threads and not allowing work stealing. Other scheduling techniques
may be used as well without diminishing the contributions of this work. Moreover, we
assume that no nested parallelism exists in the fine-grain loop. This is reasonable
as otherwise the loop would likely not be fine-grain. We demonstrate that the fine-
grain scheduler retains the functionality of Cilk hyperobjects, which is an important
contributor to the ease-of-use of Cilk.

2.4.2 Cilk Application Binary Interface

The Cilk compiler replaces Cilk keywords with Application Binary Interface (ABI) calls [40].
Figure 8 shows a Cilk program that accumulates the values in an array using a reducer
r. The operation *r is a short-hand to lookup the current thread’s view for r and serves
the relevant view for the the calling thread.

Figure 9 shows equivalent C++ code for Figure 8 rather than assembly code to
ease the exposition. The accumulate data structure is a capture for the free variables
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int accumulate( int ∗a, int n ) {
cilk :: reducer<cilk::op add<int> > r;
cilk for ( int i = 0; i < n; i++)
∗r += a[ i ];

return r .get value() ;
}

Figure 8: A Cilk loop with a reducer.

struct accumulate data {
int ∗a;
cilk :: reducer<cilk::op add<int> > ∗r;
};
void accumulate helper( void ∗data, int start , int end ) {

accumulate data ∗ d = (accumulate data ∗)data;
int ∗ view = cilkrts hyper lookup ( d−>r );
for( int i = start ; i < end; i++)
∗view += (d−>a)[i];

}
int accumulate( int ∗a, int n ) {

cilk :: reducer<cilk::op add<int> > r;
struct accumulate data data = { a, &r };
cilkrts cilk for 32 (

accumulate helper, (void ∗)&data, n, 0 ) ;
return r .get value() ;

}

Figure 9: Code tranformed by Cilk compiler.

in the loop body. The accumulate helper function sequentially executes a sub-range
of the loop as given by its arguments. An ABI call to cilkrts hyper lookup is used
to retrieve the current view for the reducer. Note that this call is made from within the
cilk::reducer class and is not inserted by the compiler. The compiler however hoists
this call out of the loop for performance reasons [40]. Finally, the loop is replaced
by the cilkrts cilk for 32 ABI call that enables parallel execution of the loop. It
recursively decomposes the loop iteration range and executes the helper function on
short iteration ranges.

2.4.3 ABI Extension

Fine-grain parallel loops are handled in a similar way, albeit with two changes (Fig-
ure 10): (i) a new ABI function cilkrts cilk for static 32 is called; (ii) some
preparatory work is performed to optimize the lookup of reducers, and the cilkrts hyper lookup

calls is replaced by a version tuned to the parallel pattern. The motivation behind these
changes is described in the next Section.
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struct accumulate data {
int ∗a;
cilkrts hyperobject base ∗∗hyper array;

};
void accumulate helper( void ∗data, int start , int end ) {

accumulate data ∗ d = (accumulate data ∗)data;
int ∗ view = cilkrts hyper array lookup (d−>hyper array, 0);
for( int i = start ; i < end; i++)
∗view += (d−>a)[i];

}
int accumulate( int ∗a, int n ) {

cilk :: reducer<cilk::op add<int> > r;
cilkrts hyperobject base ∗ obj [1] = { &r }; // r at index 0

struct accumulate data data = { a, obj };
cilkrts cilk for static 32 (

accumulate helper, (void ∗)&data, n, 0, obj, 1);
return r .get value() ;

}

Figure 10: Equivalent code of the accumulation loop with fine-grain pragma.

2.4.4 Scheduling Fine-Grain Parallel Loops

We consider scheduling of parallel loops without cross-iteration dependences, except
for the presence of reduction operations. Such loops are statically scheduled by fol-
lowing 4 steps. These steps are initiated by the thread that encounters the parallel
loop, which we call the master thread [68]:

1. Scheduling: The master thread divides the loop iteration range in equal chunks,
one for each of the threads that will contribute to the execution of the loop.

2. Work distribution: The master thread sends work descriptions to the workers.
These include the task (typically identified by a function pointer) and the portion
of the loop iteration range assigned to the worker.

3. Parallel execution: Worker threads initialize local copies of reduction variables
and start executing their work as soon as they have obtained it. The master
typically also executes part of the work.

4. Synchronizing on completion: The master thread typically needs to wait for
the workers to complete. Partial results for reduction variables are reduced into
the actual reduction variable.

This template assumes that the loop iteration range is known when the loop is encoun-
tered and that there are is no unexpected control flow leaving the loop.

Steps 2 and 3 involve synchronization and are typically implemented using barri-
ers. Barriers involve two phases of synchronization: the join phase and the the release
phase (Figure 11(a)). The join phase records the arrival of threads. The release phase
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Figure 11: Schematic structure of threads and synchronization in parallel loops and
barriers

signals threads that they can enter the next phase of computation. Step 2 is known
as a fork barrier. Step 4 is a join barrier (Figure 11(b)). As such, an implementation
of a parallel loop scheduler has at least two barriers per parallel loop. Additional syn-
chronization may be required. E.g., OpenMP supports dynamic teams, a grouping of
worker threads that will be involved in executing the current parallel region [68]. Iden-
tifying what threads are available and which ones will be involved enforces additional
synchronization.

Half-Barrier Pattern
The barrier synchronization pattern involves redundant synchronization when syn-

chronizing parallel loops. We build on the assumption that the worker threads are
associated to a specific master thread. The master encounters a parallel code region
and shares the work with the workers. Under this assumption, which is true in many
runtimes, the following observation can be made:
Observation #1: The worker threads are available at the start of a parallel region.
The workers are available to take on work because they are associated to the master.
If the master is not executing inside a parallel region, then the workers must be idle.
As such, it is not necessary for the master to ensure that the workers have arrived at
the fork barrier. Workers need to wait, however, to receive their assigned work.
Observation #2: The worker threads are independent of one another. As we
focus on loops where tasks are independent and synchronization-free units of work,
there is no dependence between workers executing distinct tasks. Combining Obser-
vations 1 and 2, we conclude that it is unnecessary to execute the join part of the fork
barrier.
Observation #3: When worker threads leave the parallel region, they are inde-
pendent of the activities of the master thread during the parallel region. There is
no data or control dependency that needs to be enforced between the master’s com-
putation during the parallel region and the workers past the parallel region. As such,
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Figure 12: NUMA-aware tree barrier. Each leaf node is associated to a thread, num-
bered 0–15 in this example. Internal nodes of the tree represent point-to-point syn-
chronization actions between the threads listed in the node’s children.

the release phase of the join barrier is a redundant synchronization step.
Figure 11(c) illustrates the observations schematically. Compared to Figure 11(b),

redundant synchronization is removed as the master thread signals workers that new
work has arrived, without waiting for acknowledgement of the workers. Similarly, once
workers have confirmed the completion of their work, there is strictly no need for the
master to acknowledge receipt of the message to the workers. This way, the work
distribution and synchronization overhead is reduced to one instead of two barriers.

The half-barrier pattern is also applicable to nested parallelism provided that the
worker threads in the inner region are uniquely assigned to a worker in the outer region
that acts as their master.

NUMA-Optimized Half-Barrier
The performance of barriers is dependent on the read and write patterns to shared
memory locations used by the barrier. Scalable algorithms ensure that each shared
variable is read by at most one thread and written by at most one thread [58]. The most
efficient barrier styles are the dissemination barrier [13, 36] and the tree barrier [36,
58, 63].

In the dissemination barrier, each of P threads sends a signal to another thread
during dlog2 P e rounds of communication [13], totalling O(P logP ) messages. The
same synchronization pattern is used during join and release phases.

Tree barriers are the most efficient on architectures with broadcast capability in
the cache coherence protocol, e.g., those using snooping protocols [63, 21]. As our
experimental platform uses a snooping bus, we focus on tree barriers.

Tree barriers organize mini-tournaments between pairs of threads. The nodes of
the tree implement centralized barriers for 2 threads. Threads perform the join phase
of the centralized barriers in each node on the path from their leaf node to the root
during the join phase. They traverse the tree from the root down to their leaf during
the release phase [36, 58]. The tree barrier has a critical message path of dlog2 P e,
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which is similar to the dissemination barrier. However, during each round at most
two messages are sent per thread. This makes it more bandwidth-efficient, which is
important for bus-based architectures.

Tree barriers can be tuned to the underlying architecture by tuning the branching
factor of the tree, by using different branching factors (known as fan-in and fan-out) in
the join and release phases, and by using different branching factors at different levels
of the tree [63].

We have optimized the half-barrier for best performance on our experimental ma-
chine, which is a 4-socket multi-core. We experimented with combinations of the cen-
tralized and tree barriers and matched their composition to the machine organization.
The best performing configurations are:

• NUMA-aware centralized barrier: a distinct centralized barrier is used per socket.
One thread on each socket is designated to synchronize with the other sockets
using a centralized barrier.

• NUMA-aware tree barrier: a tree barrier is used with distinct branching factors
at each level (Figure 12(a)). At the top-most level, the branching factor equals the
number of sockets. Each sub-tree below this level is bound to a specific socket
and has a branching factor of 2. We found no benefit from using a different
branching factor in the join and reduce phases.

The NUMA-aware tree barrier is illustrated in Figure 12(a). Note that by using pair-
wise synchronization in the tree barrier it is possible to implement the barrier without
costly atomic operations [63].

Integration With Dynamic Scheduler
We extend the Cilk work stealing algorithm such that applications can utilise both static
and dynamic scheduling. Normally, an idle Cilk worker thread executes the random
work stealing algorithm, whereby a worker randomly selects a victim worker and at-
tempts to steal a stack frame from its double-ended work queue. The work steal at-
tempt is successful when the victim’s queue is not empty. Execution of the stolen stack
frame is resumed and, when the worker returns to being idle, the process is repeated.

We extend the work stealing algorithm by alternating a cycle of the random work
stealing algorithm with listening on the worker’s flag variable in the tree barrier. Even-
tually, one of these actions will succeed and the worker continues either the static or
dynamic scheduling protocol. This incurs a minor overhead on either scheduler type
as additional instructions are executed only when the worker is idle.

The static scheduler may, if necessary, revert to sequential execution of parallel
loops, or to execute them on the default scheduler. This is necessary, e.g., when the
fine-grain scheduler is called concurrently from multiple threads. In such cases, one
needs to trade-off executing the loop sequentially, or postponing the execution until the
fine-grain threads are available. We opted to revert to sequential execution.
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cations. It is indexed using the reducer’s numeric ID within the loop and the thread
ID.

2.4.5 Reductions

The half-barrier pattern can be leveraged to structure reductions, allowing to parallelize
associative operations such as addition, multiplication and list concatenation [26].

Reducers in The Static Scheduler
Cilk lazily creates and reduces views as a new view is required only upon work-
stealing, which is far less than the number of spawn statements executed. As such,
laziness results in economy. In the case of static scheduling, the same design results
in runtime overhead, which is important for fine-grain loops. As such, we implement
reducers more efficiently but without changing the programming interface.

We make the simplifying assumption that it is known ahead of time what reducers
are used in the loop. Hereto, the compiler needs to perform a static analysis that
uniquely idenfies all reducers referenced in the loop. This is generally possibly, as
discussed below, in part because we focus on fine-grain loops.

The fine-grain parallel loop ABI method pre-allocates a view for every reducer used
in the loop and for every thread. The views are aligned to cache-line boundaries to
avoid cache line sharing between processors, which may lead to ping-pongs in the
coherence protocol. Each thread initializes its own views prior to executing the loop
body. Views are reduced and destroyed as part of pairwise thread synchronization in
the join phase of the tree barrier.

The runtime allocates one array of views for each reducer used in a parallel loop
(Figure 13). All arrays of views are stored in a hyperarray to facilitate lookup of views.
Cient code looks up a view through a new ABI call, cilkrts hyper array lookup,
that takes as argument a hyperarray (an array of pointers to reducers) and the index
in of the requested reducer in the hyperarray. The index is assigned by the compiler.
Figure 10 shows the construction of the hyperarray (Line 14) and the lookup of views
(Line 7).

By pro-actively creating instances of the reduction variable for each thread, we
perform exactly dlog2 P e reduction operations for P threads. In contrast, Cilk performs
as many reductions as successful work steal events [52], which may be significantly
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higher than P .
This technique applies to Cilk’s non-commutative reducers provided as every thread

is assigned a contiguous range of loop iterations.

Restrictions to Fine-Grain Loops
It is required that the compiler can list all hyperobjects accessed within a fine-grain
loop. This requires that:

• The compiler can inspect all code executed in the loop body. A sufficient solution
is that all functions called from the loop body can be disambiguated at compile-
time (they are not called through function pointers) and that they are part of the
current compilation unit.

• Reducers may not be created or destroyed during execution of the loop.

• All addresses of hyperobjects are loop-constant. This condition implies that the
hyper-lookup calls can be hoisted out of the loop [40].

• All (pointers to) hyperobjects referenced in the loop concern distinct hyperob-
jects. In practice, most loops have only one reducer.

These constraints are tested at compile-time.

2.5 Combining NUMA and Fine-Grain Annotations

The annotations for NUMA-aware scheduling and fine-grain loops can be used in the
same program. It makes however no sense to place both annotations on the same
loop as a loop suitable for NUMA-aware scheduling will typically contain a nested loop
to distribute work over the attached CPU socket. As such, the NUMA-aware loop is
typically not fine-grain itself. The nested loop, however, may be annotated as a fine-
grain loop, as in the following example:

cilk :: reducer<cilk::op add<int> > r;
int chunk = (n + num numa domains − 1) / num numa domains;

#pragma cilk numa(strict)
cilk for ( int d=0; d < num numa domains; ++d) {

#pragma cilk finegrain
cilk for ( int i=d∗chunk; i < std::min((d+1)∗chunk,len); ++i)
∗r += a[ i ];

}

In this case, the fine-grain scheduler selects one master thread on each sockets
and enables this master to schedule work within its socket. In this case, the same
scheduling tree is used as in Figure 12(a). The per-socket master threads, however,
utilise only the per-socket sub-trees one level down from the root of the tree.
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2.6 Implementation

We have implemented Swan in commercial-grade software systems. The Swan run-
time system extends the Intel Cilk runtime system and is publically available on GitHub1.
The Swan language extensions are implemented in the clang compiler2 and require
minor extensions to LLVM3. When setting up the compiler and runtime, the repository
containing test cases and documentation will be helpful4.

3 Case Study: Map/Reduce Applications

In this Section, we explore the applicability of the Cilk programming model for data
analytics. This exploration was presented at the Third Workshop on Advances in Soft-
ware and Hardware for Big Data to Knowledge Discovery, co-located with IEEE Big
Data [4]. In the following Sections, we show how the extensions in Swan improve
performance for data analytics workloads.

Our analysis assumes large, high-end compute servers. We study applications
executing on a single server. Conclusions may be extrapolated to clusters of comput-
ers and data centers as similar computations are repeated across all nodes in such
systems.

The design of a data analytics programming environment must meet two con-
straints that are often contradictory. First, performance must support the timely pro-
cessing of large data sets. Second, programmability must be high since data analysts,
who are likely not HPC experts, program the systems. The map-reduce system and
its API [20] achieve both objectives for distributed memory systems (clusters): the API
hides key performance aspects, such as data access and movement, load balancing
and fault-tolerance. while supporting efficient processing.

Map-reduce on shared memory machines is different. Data movement is vertical
between levels of the memory hierarchy instead of horizontal between compute nodes.
Load balancing can be achieved at a much finer granularity of work items and shared
memory map-reduce runtime systems do not usually provide fault tolerance [76, 105,
92, 59, 57].

Our work explores how to structure the map-reduce API and runtime on shared
memory systems to maximize performance and ease-of-programming. We derive our
solution from an analysis of the main short-comings of existing map-reduce systems.

Framework overheads exist with all systems. Map-reduce systems, however, ag-
gravate them by the need to fit applications to the map-reduce API. The class of pro-
grams that can be represented in the map-reduce model is limited theoretically [24]
and also from a practical point of view, e.g., in graph analysis [55, 50]. Programmers
thus need to overcome hurdles in order to fit their program to the map-reduce model.

1https://github.com/project-asap/swan_runtime
2https://github.com/project-asap/swan_clang
3https://github.com/project-asap/swan_llvm
4https://github.com/project-asap/swan_tests
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Appropriate intermediate data structures are necessary to maximize perfor-
mance [92]. However, map-reduce systems require the use of lists of key-value pairs
that lose the structure of the data, which must be sorted and grouped by key, increas-
ing the time to retrieve individual data elements. In contrast, our map-reduce system
admits arbitrary data structures. Programmers can use the most appropriate data
structure, including hash maps or arrays.

We build our map-reduce runtime on top of the Cilk programming language [28, 39]
and call it CilkMR. Cilk offers a simple means to express parallel loops (using the
cilk for syntax) and reductions (using generalized reducer hyperobjects [26]). These
two concepts have the same conceptual programming complexity as other map-reduce
systems [76, 105, 92, 59, 57]. CilkMR, however, retains the structure of the sequen-
tial code, which is in stark contrast to previously proposed map-reduce frameworks.
Our design choices are not specific to Cilk but could be repeated using other efficient
parallel programming languages with similar functionality.

We have also analyzed the the performance and programmability of OpenMP [2]
for map-reduce workloads [5]. OpenMP user-defined reductions allow programmers
to express complex and application-specific reduction operations. The mechanism,
however, assumes a parallel tree reduction pattern, as reduction operators are defined
on two arguments. In this study we found that a better way to execute reductions on
containers in parallel is to assign keys to threads and to make each thread reduce all
values for its keys. This way there are no data dependences between threads during
the reduction phase. This is however at odds with the way OpenMP and Cilk express
reduction operations.

3.1 Related Work

Several research projects have investigated efficient map-reduce runtime systems for
shared memory systems. The first paper on the Phoenix system [76] compared it
against a POSIX threads implementation of the benchmarks. Phoenix matched the
performance of the POSIX threads codes that fit the map-reduce model but performed
less well on the few that did not. We demonstrate that CilkMR outperforms the latest
Phoenix++ runtime system on all but two benchmarks. Because CilkMR can compose
map-reduce and other parallel code, it outperforms Phoenix++ by up to 4x on programs
that do not match the map-reduce programming model well.

Yoo et al [105] improved the scalability of Phoenix for a 256-thread SPARC T2
machine. They found that the internal data structures that store intermediate data
are critical for performance. They re-designed the data structures to reduce pointer
indirection, fragmentation of data structures and to improve memory allocation.

Talbot et al [92] specialized the internal data structures to the applications. This
specialization, for instance, replaces generic key-value maps with arrays when appro-
priate. Further, Phoenix++ replaces Phoenix’s C function pointer-based implementa-
tion with C++ templates and code inlining to reduce function call overhead.

TiledMR [16] further enhances the memory locality of the map-reduce runtime sys-
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tem. TiledMR splits the input data set and runs small map-reduce jobs in succession
while recycling the intermediate data structures efficiently. Many others use this prin-
ciple, such as in the resilient distributed data sets (RDDs) of SPARK [107].

Lu et al [57] optimize map-reduce for the Xeon Phi. As in TiledMR, they pipeline
map and reduce to reduce the memory footprint. They also try to vectorize the map
task, which only worked for numerical applications such as Black-Scholes and Monte
Carlo. Alternatively, they vectorize computation of hash table indices. The program-
mer must specify which form of vectorization, if any, should be applied, which further
burdens the programmer with performance optimization. In our case, vectorization
can be enabled by using the array notation of Cilkplus, which is a concise and auto-
vectorizable notation for operations that are repeated over all array elements.

Mao et al [59] exploit huge page support in the kernel. Huge page sizes re-
quire fewer entries in the CPU’s translation look-aside buffer (TLB), which reduce TLB
misses for large data sets. Mao et al also advocate the use of NUMA-aware memory
allocators, which Yoo et al [105] also investigated.

In an alternate approach to map-reduce, Jiang et al [42] focus on the reduction
stage. Their work interleaves operations from the map and reduce phase instead of
rigidly separating the map and reduce phases. They extended their approach to page
the reduction data to disk for (too) large data sets [41].

Several authors analyze the characteristics of map-reduce workloads. Talbot et
al [92] report the task multiplicity (how many keys may be emitted per task), the num-
ber of values per key, and the amount of computation in the map task as key char-
acteristics. De Kruijf et al [19] follow a numeric approach and measure the amount
of computation performed in the partition step, map, reduce or sort. They develop a
micro-benchmark that may be dominated by one of these steps. However, their model
is incomplete as the appearance of common keys between map tasks may significantly
impact performance [92].

While the map-reduce model is conceptually simple, a subtly aspect is the com-
mutativity of reductions. This aspect of the programming model is often undocu-
mented, for instance in the Phoenix systems [76, 105, 92]. However, executing non-
commutative reduction operations on a runtime system that assumes commutativity
can lead to program bugs [18] even in extensively tested programs [101]. We use Cilk
reducers [26] to perform reductions. Unlike many map-reduce models [92, 16, 1], Cilk
reducers do not require commutativity. Thus, they are a safe programming construct
that will not lead to subtle programming bugs.

3.2 Programming Map-Reduce Workloads

The map-reduce programming model typically assumes that key-value pairs represent
data. For instance, the links between internet sites may be represented with a source
URL as the key and a list of target URLs as the value. This representation exposes high
degrees of parallelism through independent operations on different key-value pairs.

Computations on key-value pairs consist of a map function and a reduce function.
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Figure 14: Schematic overview of Phoenix++ runtime system

The map function transforms a single input item (typically a key-value pair) into a list
(which may be empty) of key-value pairs. The reduce function combines all values
for the same key. Many computations fit this model [20, 54] or can be converted to fit
it [55, 50].

3.2.1 The Phoenix++ Map-Reduce API and Runtime

The Phoenix++ shared-memory map-reduce system has several steps: splitting input
data; map-and-combine; reduce; and sort-and-merge (Figure 14). The split step splits
the input data into independent chunks upon which map tasks can operate. The input
data may be a list of key-value pairs read from disk, but can also be other data such as
a set of documents. The map-and-combine step breaks each chunk of data apart and
transforms it to a list of key-value pairs. The map function may apply a combine func-
tion, which performs an initial reduction step. Performing an initial reduction improves
performance by reducing the intermediate data set size [92].

Phoenix++ optimizes the storage of intermediate key-value pairs [92]. While a
naive implementation would simply use lists, Phoenix++ allows programmers to select
intermediate data structures, called containers, that are tuned to application proper-
ties. Supported containers include hash-maps indexed by key (e.g., for the word count
application) and arrays (e.g., when the key is in a densely used integer range). The
values in the containers are instances of the combiner data structure and hold the
(aggregated) associated values, which could be a list or a sum of values.

Every thread produces one instance of the container during the map phase. To
facilitate parallel reductions, all instances can be split by key ranges. Each thread
reduces the key-value pairs that lie within a key range across all containers. The
split is straightforward when the container is a fixed-size array but is more involved
for dynamic data structures like a hash map. Finally, the resulting key-value lists are
optionally sorted by key and merged into a single key-value list.

Phoenix++ extends the basic map-reduce API. The programmer must select (pos-
sibly write) container and combiner data structures that are tuned to the application.
This API extension increases the performance of the runtime [92].
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int64 t prod(int64 t mi, int64 t ri , int64 t mj, int64 t rj ) {
return ( ri−mi) ∗ ( rj−mj);

}
void cov(int const∗ matrix, int64 t const∗ means,

int64 t∗ cov, int N, int length) {
cilk for ( int i = 0; i < N; i++) {

int64 t row mean = means[i];
int64 t const∗ v1 = matrix + i ∗ N;
cilk for ( int j = i ; j < N; j++) {

int64 t col mean = means[j];
int64 t const∗ v2 = matrix + j ∗ N;
int64 t sum=0;
for( int64 t k=0; k< length; k++)

sum+= (v1[k] − row mean) ∗ (v2[k] − col mean);
cov[ i∗N+j] = sum / (length−1);

}
}

}

Figure 15: The calculation of co-variance (PCA algorithm) expressed in Cilk.

3.2.2 Performance Limitations

The design of map-reduce systems like Phoenix++ creates many performance lim-
itations. We identify two limitations, which our example application, Principal Com-
ponents Analysis (PCA), illustrates. The PCA algorithm (Figure 15) calculates a co-
variance matrix where position (i, j) lists a correlation metric between items i and j.
The Cilk version (Figure 15) exhibits the expected characteristics of the code: two
nested loops iterate over the pairs (i, j), calculate a correlation metric and store the
value in the output matrix cov. In contrast, the map-reduce version (Figure 16) sepa-
rates out the map and split parts of the computation. The co-variance matrix is rep-
resented as key-value pairs by associating the correlation metric (value) to the pair of
indices (i, j) (the key).

The map-reduce version is long and tedious. It obfuscates both functionality and
performance since the Phoenix++ code (Figure 16) focuses on the mechanics of the
computation: how the data is split and processed in parts and how results are reduced.

Selection of Data Structures A list of key-value pairs supports little structuring
of the data, which is often rich in structure. Appropriate data structures can improve
performance significantly. Phoenix++ provides the option to select a pre-defined data
structure, a container, to hold the output of the map tasks. An appropriate combiner
(reduction operation) must be supplied to combine values with a common key. These
issues require a deep understanding of the internals of the map-reduce runtime.

Tuning intermediate data structures breaks the map-reduce abstraction. While key-
value pairs often do not support high-performance computation, the programmer must
now think about appropriate data structures and how to map key-value pairs to them.
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Framework Overheads While many problems match the computational and data
organization patterns of map-reduce, others do not. Iterative algorithms with multiple
rounds of map and reduce phases, in particular show inefficiencies due to the repeated
input, output, shuffling and sorting of key-value pairs. This process has significant
computational redundancies, especially if the data has a richer structure than that
captured by its representation as key-value pairs.
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#define MAX DIM 2000
typedef struct {

int row num;
int col num;

} pca cov data t;
typedef common array container<int64 t, int64 t, one combiner, MAX DIM∗MAX DIM>

cov container;

class CovMR : public MapReduceSort<CovMR,
pca cov data t, // map input type
int64 t , // key type
int64 t , // value type
cov container // intermediate key−value container

> {
int64 t const∗ matrix, ∗ means;
int N, length;
mutable int row;
mutable int col ;

public :
CovMR(int64 t const∗ matrix, int64 t const∗ means,

int N, int length) : matrix( matrix) , means( means),
N(N), length(length) , row(0), col(0) {}

void map(data type const& data, cov container& out) const {
int const∗ v1 = matrix + data.row num∗N;
int const∗ v2 = matrix + data.col num∗N;
int64 t m1 = means[data.row num];
int64 t m2 = means[data.col num];
int64 t sum = 0;
for( int i = 0; i < length; i++)

sum += (v1[i] − m1) ∗ (v2[i ] − m2);
sum /= (length−1);
emit intermediate(out, data.row num∗N + data.col num, sum);

}
int split (pca cov data t& out) {

if (row >= N) {
return 0; // End of data reached

} else {
out.row num = row;
out.col num = col;
col++;
if (col >= N)

col = ++row; // only calculate triangle as Cov is symmetric
return 1; // Valid chunk produced

}
}

};

Figure 16: Co-variance calculation (PCA) expressed as a map-reduce algorithm in
Phoenix++.
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K-means clustering is common iterative map-reduce algorithm that demonstrates
this issue. This machine learning algorithm summarizes large data sets by assigning
points in a multi-dimensional space to one of K clusters. The clusters are tuned to
the data by iterating two steps until convergence: (i) assign each point to the closest
cluster center; and (ii) update the cluster center based on the assigned points.

In the map-reduce model, each iteration of the two steps is a map-reduce algo-
rithm with its own input and output key-value pairs. Every iteration thus requires data
serialization and de-serialization, in particular the updated cluster centers. In contrast,
an efficient implementation incurs no cost to communicate cluster centers from one
iteration to the next as the data structures are reused across iterations.

Summary The map-reduce model does not support two key performance proper-
ties. Instead the programmer must use work-arounds or third-party solutions that are
hard to compose efficiently. Phoenix++ addresses some of these issues by extending
the map-reduce API such that programmers must deeply understand the internals of
the runtime. In the following section, we define CilkMR, a map-reduce runtime that
presents the reduction operation differently and, thus, is easier to use.

3.3 Map-Reduce using Cilk

We use appropriate programming interfaces to support scalable implementations of
map-reduce workloads. Our map-reduce runtime builds on the Cilk language [28]
because of its support for generalized reductions [26] and Intel’s Cilkplus array notation
that facilitates auto-vectorization [39].

3.3.1 Map-Reduce Code Templates

Cilk is a task-oriented parallel programming model that supports expression of (map)
task parallelism (cilk for and cilk spawn) and reduction operations (cilk::reducer).

Balanced Template Figure 17 shows one variant of the CilkMR map-reduce API,
which uses the cilk for keyword to express that iterations of the loop may execute
in parallel (line 7). The map task mapfn can be applied in parallel to all items in the
data set described by the ibegin and iend iterators. The template is “balanced” as
the directed acyclic graph that describes the parallel activities assigns a comparable
number of loop iterations to each processor. Work stealing is minimal during execution
of this template if each loop iteration has a comparable amount of work.

Unbalanced Template Figure 18 shows an unbalanced template for map-reduce.
The user defines a functor splitfn that splits the input into work items. The cilk spawn

statement indicates that the mapfn functor may be applied in parallel to the work items.
The map reduce method blocks at the cilk sync statement until all spawned tasks
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template<class Monoid, class InputIterator, class MapFunctor>
void attribute (( flatten ) )
map reduce( InputIterator ibegin, InputIterator iend,

MapFunctor mapfn,
typename Monoid::value type & output ) {

cilk :: reducer<Monoid> imp ;
cilk for ( InputIterator I=ibegin, E=iend; I != E; ++I )

mapfn( ∗I, imp .view() ) ;
std :: swap( output, imp .view() ) ;

}

Figure 17: CilkMR map-reduce API call with balanced spawn tree.

template<class Monoid, class SplitFunctor, class MapFunctor>
void attribute (( flatten ) )
map reduce( SplitFunctor splitfn , MapFunctor mapfn,

typename Monoid::value type & output ) {
cilk :: reducer<Monoid> imp ;
typename SplitFunctor::value type value;
while( splitfn ( value ) ) {

cilk spawn [&]( typename SplitFunctor::value type v ) {
mapfn( v, imp .view() ) ;

}( value ) ;
}
cilk sync;
std :: swap( output, imp .view() ) ;

}

Figure 18: CilkMR map-reduce API call with unbalanced spawn tree.

complete. This code template is “unbalanced” as the underlying directed acyclic graph
that describes the parallel activities is highly skewed. Work stealing will be frequent
during its execution.

The structure of the code dictates the choice between the balanced and unbal-
anced templates. The balanced template can be used when the map-reduce template
is over a known range. In other cases, such as text parsing problems, the programmer
may need to define a split function to divide the input into independent chunks.

Notes While the Phoenix++ runtime strictly separates map, reduce, sort and
merge phases, the CilkMR map reduce templates overlap these activities in time. Thus,
load imbalance can potentially impact the Phoenix++ runtime much more.

CilkMR returns a container, e.g., a hash map, instead of a list of key-value pairs.
An additional step must serialize the hash map when a list of key-value pairs is de-
sired. This separation clearly portrays the cost of this conversion, which may is often
unnecessary, to the programmer. Only one of our benchmarks strictly requires it.
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template<class map type>
struct map monoid : cilk::monoid base<map type> {

static void reduce(map type ∗ left, map type ∗ right) {
for(typename map type::const iterator

I=right−>cbegin(), E=right−>cend(); I != E; ++I)
(∗ left ) [ I−>first] += I−>second;

right−>clear();
}
static void identity (map type ∗ p) const {

new (p) map type();
}

};

Figure 19: Example of a hash-map monoid for counting occurrences of words.

3.3.2 Generalized Reductions

The application-specific Monoid class defines the reduction through three components [26]:
a data type; an associative operation; and an identity value. Cilk reductions do not
need to be commutative. Thus, Cilk reducers can support reductions like concatena-
tion of lists.

Figure 19 shows the definition of a monoid for a hash-map data type. The template
parameter map type defines the underlying non-concurrent hash-map type. Hash-
maps are assumed to be reduced by taking the join of all keys and that the values
for common keys are further reduced using an operator += (Line 6). The identity
value is an empty hash-map as indicated in the initialization function (Line 9).

The runtime system dynamically creates copies of the reduction variable, and re-
duces those copies as needed. The creation and reduction of these copies, or views,
aligns with work-stealing activities in the scheduler. Views are created only after a
work stealing event. They are reduced when the stolen task completes. Work stealing
activities are rare in highly parallel programs because the design of the Cilk sched-
uler executes most spawn statements as if they are sequential function calls. In these
cases, the same view is used across tasks. Views are reduced under conditions of
mutual exclusion. Thus, synchronization rarely impacts application-specific reducer
code.

3.3.3 Performance Characterization

The balanced and the unbalanced templates have different parallel scalability. Cilk
scheduling overhead is bound by the span of the spawn tree [65]. The balanced tem-
plate uses the cilk for loop, which recursively divides the iteration range in half until
a fine granularity is reached. Spawning each half of the range results in a balanced
spawn tree. No more than O(log n) work steals are required for n data items. In con-
trast, the span of the spawn tree of the unbalanced template is O(n).

Reduction operations are proportional to steals [26]. Views are reduced off the
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struct Monoid : cilk :: monoid base<uint64 t[768]> {
typedef uint64 t value type[768];
static void reduce( value type ∗ left , value type ∗ right ) {

for( size t i=0; i< 768; i++)
(∗ left ) [ i ] += (∗ right ) [ i ];

}
};
struct histogram map {

void operator() ( const char ∗ pix , uint64 t & histogram[768] ) {
histogram[(size t )pix [0]]++;
histogram[256+(size t)pix [1]]++;
histogram[512+(size t)pix [2]]++;

}
};
uint64 t result [768];
cilkmr :: map reduce<Monoid>( byte array, byte array length/3,

histogram map(),
result ) ;

Figure 20: The fixed-length histogram algorithm expressed in CilkMR.

critical path and are amortized with steals [26]. Thus, they have no overhead if they
take constant time [52].

3.3.4 Example: Histogram

Figure 20 shows an algorithm that constructs a fixed-size histogram to demonstrate
the use of CilkMR. The code has three parts: the definition of the Monoid (Line 1); the
definition of the map task (Line 8); and the call of the map-reduce routine (Line 15).
The monoid reduces two histograms, adding up all elements pair-wise. The map func-
tion adds 3 successive byte values to appropriate elements of the histogram. The
call statement uses a variation of the map-reduce template with a begin iterator and
a count. This template is a convenience short-hand to define the range using a begin
and end iterator (Figure 17).

3.3.5 Addressing the Performance Limitations

We discuss how CilkMR addresses performance issues of prior map-reduce systems.

Selection of Data Structures While existing map-reduce systems expose an
API to reduce two key-value pairs, the CilkMR runtime exposes reductions on data
containers. Thus, the programmer controls the type of container that the program
uses. In contrast, Phoenix++ pre-defines several containers and associated reduction
operators. Adding a new container in Phoenix++ requires an extension to the runtime.
The generic CilkMR approach exposes the selection of data structures in its API.
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Table 1: Phoenix++ codes: map task multiplicity, combiner data type, sorting, merge
and reduction operation.

map combiner sort reduction
histogram *:768 array Y array add
lreg *:5 array N array add
wc *:* hash Y hash map join
kmeans *:K array N array add
matmul *:0 n/a N n/a
pca 1:1 array Y array add
strmatch *:0 n/a N n/a

Framework Overheads Prior map-reduce systems serialize the data and return
a list of key-value pairs. Successive map-reduce operators must convert data back
and forth between the serialized representation and the efficient representation. The
CilkMR map-reduce templates return the data set stored in the selected container type.
Successive operators are performed without unnecessary data transformations.

3.4 Benchmarks

We implement all 7 Phoenix++ benchmarks in CilkMR. Table 1 describes their Phoenix++
properties. The first column shows the key multiplicity as m:e, where m indicates how
many map tasks can generate a unique key and e indicates how many keys a map
task can emit. Previous reports [92] on these properties are inconsistent with the dis-
tributed code. For matmul and strmatch, the map tasks emit no key-value pairs so
the multiplicity is *:0. Instead, they use shared memory operations to produce output
results, which is inconsistent with the spirit of the map-reduce model. The second
column shows the intermediate key-value data structure. In most cases, a generic
key-value list is optimized to an array indexed by an integer key. For word count, inter-
mediate key-value pairs are stored in a hash map indexed by a character string key.
The CilkMR implementations are similar except:

• For wc, we use the same hash table as Phoenix++ but we reduce hash table
instances following Cilk’s schedule of reduction operations, which is markedly
different from the separation of map and reduce phases under Phoenix++;

• For histogram, we avoid sorting a list of key-value pairs by storing it as an array
while Phoenix++ generates a list of key (index)-value pairs that it then sorts;

• For matmul, we use a tried-and-tested matrix multiply implementation with good
parallel scalability and locality;

• For pca, we partition the co-variance matrix among threads and use a scalar Cilk
reducer to aggregate the total co-variance;
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Table 2: CilkMR codes: balanced parallelism (bal), using map-reduce API (mr), nested
parallelism (nest), vectorization (vec) and sorting (sort).

reduction bal mr nest vec sort
histogram fixed-size array add B Y N (Y) N
lreg 5-scalar struct add B Y N Y N
wc hash table union U Y N N Y
kmeans cluster center add B Y N (Y) N
matmul n/a B N N N N
pca scalar integer add B Y Y Y N
strmatch none U N N N N

• For kmeans, we use a Cilk reducer object to merge partial results in the compu-
tation of cluster averages, which is more efficient than a key-value pair represen-
tation;

• For strmatch, we make no significant changes to the Phoenix++ distribution,
which is simply a parallel for-loop over the input data.

The CilkMR codes (Table 2) use similar reduction data structures as the Phoenix++
versions. In some cases, we further specialize to the benchmarks, e.g., a struct of
scalars vs. an array for lreg. Some benchmarks use the balanced (B) vs. the unbal-
anced (U) template, nested parallelism, vectorization or sorting. The label (Y) indicates
that vectorization is possible, but did not improve performance as expected.

Cilk codes that do not require a reduction are not implemented using the map-
reduce API but are implemented using parallel for loops. In the case of matmul we
used the MIT Cilk-5 implementation, which is known to perform well. The Phoenix++
strmatch implementation does not perform a reduction as it produces no output. Thus,
we parallelized the loop without using the map-reduce API. These choices are possible
as our runtime composes with other parallel code written in the same language. Thus,
the programmer may choose not to use the map-reduce API when appropriate without
increasing programming complexity.

3.5 Evaluation

We evaluate the programming systems on a quad-socket 2.6GHz Intel Xeon E7-4860
v2, totaling 48 threads. The operating system is CentOS 6.5 with the Intel C compiler
version 14.0.1. We compare against Phoenix++ version 1.0 using three input dataset
sizes for the Phoenix++ benchmarks (Table 3). Three input sizes for the Phoenix++
benchmarks correspond to those used by Talbot et al [92]. We create another input
through further scaling. For kmeans we search for 100 clusters in a 100-dimensional
space. The ’wc’ dataset contains few large files with sizes varying from 10MB to
800MB. Reported results are averaged over 15 executions.
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Table 3: Input dataset sizes
medium large huge

histogram 400MB 1.4GB 11.2GB
lreg 100MB 500MB 4GB
wc 50MB 100MB 800MB
kmeans 50,000 75,000 100,000
matmul 512x512 768x768 1024x1024
pca: items 1000 1500 1500
vector length 1000 1500 4500
strmatch 100MB 500MB 4GB
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Figure 21: Results (a): Applications dominated by map time (compute-bound).

We experimented with various multi-threaded memory allocators including Hoard [7],
SSMalloc [56] and TCMalloc [70]. The resulting performance is similar to that with the
default system allocator. They achieve slightly higher performance for some bench-
marks but sometimes introduce performance anomalies. For example, lreg did not

36



ASAP FP7 Project
ASAP D2.3

Program analysis and transformation

0	
  

4	
  

8	
  

12	
  

16	
  

20	
  

24	
  

28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

lreg	
  -­‐	
  medium	
  dataset	
  

Cilk	
  

Phoenix++	
  

0	
  

4	
  

8	
  

12	
  

16	
  

20	
  

24	
  

28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

lreg	
  -­‐	
  large	
  dataset	
  

Cilk	
  

Phoenix++	
  

0	
  

4	
  

8	
  

12	
  

16	
  

20	
  

24	
  

28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

lreg	
  -­‐	
  huge	
  dataset	
  

Cilk	
  

Phoenix++	
  

0	
  
4	
  
8	
  

12	
  
16	
  
20	
  
24	
  
28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

histogram	
  -­‐	
  medium	
  dataset	
  

Cilk	
  
Phoenix++	
  

0	
  
4	
  
8	
  
12	
  
16	
  
20	
  
24	
  
28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

histogram	
  -­‐	
  large	
  dataset	
  

Cilk	
  
Phoenix++	
  

0	
  
4	
  
8	
  
12	
  
16	
  
20	
  
24	
  
28	
  

0	
   12	
   24	
   36	
   48	
  

Sp
ee
du

p	
  

No.	
  of	
  Threads	
  

histogram	
  -­‐	
  huge	
  dataset	
  

Cilk	
  
Phoenix++	
  

Figure 22: Results (b): Memory-bound applications.

scale well with TCMalloc. The memory allocator does not affect our conclusions as it
cannot make up for algorithmic inefficiencies. Thus, we report results for the default
allocator.

3.5.1 Performance Evaluation: Speedup

Figures 21–23 present the speedup using CilkMR, Cilk and Phoenix++ over the se-
quential version of the benchmarks. Figure 21 shows the benchmarks dominated by
computation in the map phase: matmul, pca and kmeans. Phoenix++ repeatedly
serializes and de-serializes the centers to key-value lists for kmeans, which reduces
scalability. matmul and pca do not strictly require a reduction operation as each map
task deposits its results in distinct locations of an array. Phoenix++ uses this observa-
tion for matmul (Table 1). As previously discussed, we use plain Cilk for matmul and
pca.

For matmul we use two matrix multiply implementations distributed with MIT Cilk [28].
The matmul version uses recursive decomposition where on each level of recursion
the problem is split along its largest dimension. The rectmul version splits the target
matrix along both dimensions on each level of recursion and has a much higher degree
of parallelism. Also, its leaf task, a 16x16 block multiply, is highly optimized. Figure 21
normalizes performance to the sequential version of matmul. We also present the
performance of dgemm from the Intel MKL library. These results show that specifically
optimized codes clearly outperform a generic map-reduce framework like Phoenix++,
which shows that blindly applying the map-reduce concept to every problem is not sen-
sible. Further, the map-reduce runtime is used inappropriately for matmul as the map
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Figure 23: Results (c): Applications with unbalanced spawn trees.

task accesses shared memory and does not emit key-value pairs.
The memory-bound benchmarks histogram and lreg show good scalability with

both map-reduce systems (Figure 22). Both benchmarks perform few operations per
input byte – 4 integer operations for histogram and 7 for lreg. The CilkMR version ac-
celerates faster with increasing thread counts but eventually saturates. Saturation oc-
curs at lower thread counts with smaller inputs, which suggests that the Cilk scheduler
carries a higher burden than the Phoenix++ scheduler. Interestingly, the specialized
map-reduce system performs better on smaller inputs.

The benchmarks wc and strmatch use the unbalanced CilkMR template (Fig-
ure 23). The performance of these benchmarks is nearly identical to that of the
Phoenix++ version up to around 8–24 threads, depending on the problem size, after
which the inefficiency of the unbalanced template limits scalability.

3.5.2 Addressing Performance Limitations

Internal Data Structures Our initial CilkMR implementation of wc performed
poorly because we used the default C++ STL unordered map. This hash map data
structure performs badly for map-reduce applications because it balances performance
against space. In map-reduce applications, however, insert operations dominate exe-
cution time, so the performance trade-off does not arise.

We optimized the STL unordered map by defining a resizing policy that restricts the
hash table size to a power of 2 and a hash function that selects the lowest bits of the
integer key. Despite improvements, the Phoenix++ hash table still outperforms it since
the STL code dynamically allocates memory for each element of the hash table.
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Table 4: Peak heap memory usage (MB) in excess of data set size when using the
large data set.

Memory usage (MB) for thread count.
1 16 32 48

histogram CilkMR 0.06 0.95 1.67 2.50
Phoenix++ 0.04 0.43 0.86 1.23

lreg CilkMR 0.06 0.69 1.39 2.08
Phoenix++ <0.01 0.06 0.11 0.17

wc CilkMR 11.70 28.10 34.30 34.00
Phoenix++ 15.10 60.60 98.30 117.00

pca Cilk 25.82 26.44 27.13 27.82
Phoenix++ 159.90 161.50 160.00 160.10

kmeans CilkMR 39.81 41.66 42.98 44.55
Phoenix++ 68.62 502.00 963.2 1423.4

strmatch CilkMR 0.06 0.69 1.38 2.07
Phoenix++ 0.56 0.58 0.61 0.73

matmul Cilk 4.06 4.69 5.39 5.35
Phoenix++ 4.06 4.16 4.27 4.39

We conclude that map-reduce applications are sensitive to the performance of the
data structures due to the generally low amount of computation per data structure
access. Thus, appropriate data structure selection is essential. This observation holds
across programming models.

Memory Consumption Low memory consumption is important as map-reduce
workloads tend to be applied to large data sets and main memory is limited. Table 4
shows the peak heap memory when using the large input. We use the valgrind tool
“massif” [66] to collect this data. We subtract the memory required to store the input
data set for clarity. For many benchmarks, the runtime requires little additional space
over the data set. Nonetheless, the internal data structure size grows moderately as
the thread count increases by about 18 KB per thread for CilkMR and about 1 KB
per thread for Phoenix++. This difference arises because CilkMR requires a varying
number of stacks depending on how work stealing progresses [51].

Three benchmarks consume significant additional memory: wc, pca and kmeans.
They store large volumes of data in the intermediate data structures that support
the reduction. This space increases rapidly with thread count for Phoenix++, while
the memory utilization remains fairly constant for CilkMR. Phoenix++ collects all key-
value pairs during the map phase prior to initiating the reduction phase, resulting in
large intermediate data sets. In contrast, CilkMR repeatedly merges small data sets
throughout the computation, which keeps the footprint small. The excessive memory
consumption of kmeans arises from a deliberate memory leak in Phoenix++ that was
created for performance reasons.
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3.6 Conclusion

We have presented a scalable and composable map-reduce runtime system. Our run-
time system, called CilkMR, builds on the Cilk parallel programming language in order
to reap opportunities for performance optimization that are out of scope of state-of-
the-art specialized map-reduce systems. Ease of programming with CilkMR is similar
to other map-reduce systems. CilkMR supports composition of multiple, potentially
nested, map-reduce kernels. In contrast, state-of-the-art map-reduce frameworks re-
quire redesign of the parallel structure from first principles when composing codes.

We evaluated several map-reduce benchmarks implemented in the Cilk parallel
programming language and in Phoenix++, a state-of-the-art shared-memory map-
reduce runtime. Our evaluation shows that on a 48-core workstation, the Cilk codes
perform 1.5x–4x better, although performance is reduced by up to 30% for two appli-
cations where the Cilk versions use an less efficient parallel code structure.

Our performance evaluation demonstrates that CilkMR offers a better parallel im-
plementation of the map-reduce pattern than Phoenix++. It differs from the Phoenix++
approach by not representing data as key-value pairs when appropriate. Viewing our
map-reduce templates as a library extension to a generic parallel programming lan-
guage, they also avoid inappropriate map-reduce-inspired algorithm design.

Some algorithms have been extensively studied and high-performance implemen-
tations have been constructed for them. From a viewpoint of programmability, it is
advisable to re-use these implementations, e.g., through standardized libraries. As
shown in our evaluation of matrix multiply, K-means and PCA, forcing these applica-
tions to match the map-reduce API hinders performance. CilkMR supports composing
map-reduce code with existing code.

This work first applies to large-scale shared memory servers, which can scale to
terabyte-sized main memory. An important avenue for future work is to investigate
how the representation of map-reduce programs affects the design of distributed map-
reduce systems, in particular whether these benefit equally from representing the re-
duction operation over containers as opposed to individual key-value pairs.

4 Case Study: NUMA-Aware Graph Analytics

In this Section we investigate the utilisation of Swan’s extension for NUMA-aware
scheduling. We do this through a specific use-case, graph analytics, which has been
shown to be sensitive to NUMA-aware scheduling [108]. Many important problems
in social network analysis, artificial intelligence, business analytics and computational
sciences can be solved using graph-structured analysis. There is increasing evidence
that large-scale shared-memory machines with terabyte-scale main memory are well-
suited to solve these graph analytics problems as they are characterized by frequent
and fine-grain synchronization [3, 86, 108, 67, 49, 80].

Recently, graph partitioning has been proposed to isolate memory accesses to
specific parts of the graph data. Graph partitioning allows to stage graph data in main
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memory from backing disk [49] and allows to direct memory accesses to the locally-
attached memory node in Non-Uniform Memory Access (NUMA) machines [108].
Moreover, graph partitioning is essential in distributed memory systems to spread the
computation evenly across all nodes [30].

Several studies have proposed efficient heuristic partitioning techniques for social
network graphs [30, 49], as near-optimal partitioning is excessively time-consuming. A
common approach is to partition the edge set with the aim to place an equal number
of edges in each partition. This results in balanced computation per partition as many
graph analyses perform work proportional to the number of edges [30].

While graph partitioning is a crucial building block for graph analytics, little is known
about the various ways in which it affects performance. We analyze heuristic graph
partitioning in detail and identifies side effects that limit achievable performance. In
particular, we show that graph partitioning incurs an innate performance overhead,
which stems from increased control flow and from the decreased connection density
of the partitions.

Moreover, we find that partitioning the edge set results in an imbalance in the num-
ber of vertices appearing in each partition. Alternatively, partitioning the vertex set
results in an imbalance in the number of edges. The net result is that significant load
imbalance exists between partitions, either for loops iterating over vertices, or for loops
iterating over edges.

We make the following contributions:

• We analyze the characteristics of graph partitions and identify how these limit
performance.

• We present GraphGrind, a NUMA-aware graph analytics framework that reduces
the performance impact of graph partitioning. Key highlights of GraphGrind are
an improved graph representation, tuning the partitioning to the characteristics of
the algorithm and improving the NUMA memory mapping of key data structures.

• We apply Swan’s extension for expression of NUMA affinity for parallel loops
to graph analytics. Our extension simplifies the design of GraphGrind and is
generally applicable to enfore NUMA-aware scheduling in parallel programs.

• We experimentally evaluate the performance of GraphGrind on 6 real-world graphs
and 3 synthetic graphs. We show that GraphGrind improves performance by up
to 82% over Polymer and up to 326% over Ligra.

4.1 Motivation

Graph analytics provide abstract, vertex oriented and/or edge oriented programming
models that iteratively calculate a value associated to a vertex. The two key data
structures are graphs and frontiers. A graph G = (V,E) has a set of vertices V and
a set of directed edges E ⊂ V × V represented as pairs of end-points. A frontier is a
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ALGORITHM 1: Partitioning by destination
input : Graph G = (V,E); number of partitions P
output : Graph partitions Gi = (V,Ei) for i = 0, . . . , P − 1

1 avg = |E|/P ; // target edges per partition

2 i = 0;
3 for v : V do
4 if |Ei| >= avg and i < P − 1 then
5 ++i; // i has exceeded target edges

6 Ei = Ei ∪ in-edges(v); // i is home partition of v

subset of the vertices which are active. Graph algorithms visit the destination vertices
of the active edges ({v ∈ V : (u, v) ∈ E ∧ u ∈ F}) and apply an algorithm-specific
function to update the value computed for v taking into account the current value for u.
This operation is repeated until all values have converged.

A low-overhead partitioning algorithm is listed in Algorithm 1 [49, 108]. It partitions
the edge set and produces partitions with similar properties as the algorithm of [30].
The graph is partitioned as Gi = (V,Ei) where Ei is a partitioning of E: ∪iEi = E
and all Ei are non-overlapping. The algorithm assigns each vertex to a home partition
such that (i) each partition is home to a range of subsequent vertex IDs and (ii) an
edge (u, v) ∈ E is assigned to the home partition of v. It follows that Ei ⊂ V ×Vi: each
partition only has edges pointing to its own home vertices, but the sources may be any
vertex.

An often-used criterion for balancing CPU load is to place the same number of
edges in each partition, as many graph analytic algorithms perform an amount of work
that is proportional to the number of edges.

Figure 24 graphically illustrates a graph traversal over a graph with highly skewed
degree distribution. The graph is shown at the top, together with its representation in
the Compressed Sparse Rows (CSR) format [81]. The CSR format stores two arrays:
an edge array with IDs of the destionation vertices and an index array storing for each
vertex the index into the edge array where the destinations of its edges are recorded.
The graph is partitioned in two parts by Algorithm 1. Partition 0 contains 7 edges and
is home to vertices 0, 1, 2 and 3. Partition 1 also contains 7 edges and is home to
vertices 4 and 5. Each graph traversal now needs to visit each vertex twice to find the
out-going edges of the vertex in each partition.

We refer to this partitioning technique as partitioning by destination as edges are
assigned to the home partition of the destination vertex. Alternatively, partitioning by
source assigns an edge (u, v) to the home partition of u. Both algorithms achieve
nearly the same number of edges in each partition [108].

4.1.1 Extra Work Induced by Partitioning

When partitioning the edge set, the list of edges of a vertex is split with parts of the list
appearing in different partitions. As such, the edges for some vertices are stored in
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Figure 24: Traversal of a graph partitioned by destination.

distinct partitions. Graph traversal must thus visit the vertex once for each replication.
The additional cost of this is a small amount of control flow, lookups in the graph
representation and checking whether the vertex is active. While these actions require
only a few dozen assembly instructions, it is important to keep in mind that graph
analytics perform little computation, typically less than a dozen assembly instructions
per edge. Moreover, the overhead involves several main memory accesses as these
algorithms are memory intensive.

Figure 25 shows the average replication factor of vertices for various degrees of
partitioning. The graphs are described in Section 4.3.6. We show data for 6 of the 9
graphs as the remaining 3 behave similarly. Graphs with few edges per vertex (US-
ARoad and Friendster) have the lowest replication factors while highly skewed graphs
(Twitter and Orkut) have the highest. Assuming 4 partitions, replication factors are of-
ten in the range 2–3, which implies that the control flow overhead of graph traversal is
repeated 2 to 3 times. This results in an instruction count increase of up to 18%.

Figure 25 moreover shows that the graph partitioning algorithm studied in this paper
achieves a comparable replication factor as the more elaborate algorithm in [30]. We
may thus assume that the conclusions of this paper are independent of the partitioning
algorithm used.
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Figure 25: Compressed vertices replication factor varying partition number

4.1.2 Sparsity of Graph Partitions

If vertices are not replicated across all partitions, then by necessity vertices will not
have incoming or out-going edges in several of the partitions. Figure 26 (left) shows
the average number of vertices with zero degree for varying degrees of partitioning by
destination. Similar results hold for partitioning by source. The fraction of vertices with
zero out-going edges shoots up quickly as more partitions are introduced, exceeding
in many cases 50% for 4 partitions. Moreover, real-world social networks have strongly
imbalanced partitions (Figure 26 (right)). In contrast, the partitions of synthetic graphs,
intended to model real-world graphs, have equal numbers of unconnected vertices in
each partition. Interestingly, the Friendster graph has fairly equal partitions.

The sparsity of graph partitions leads to an opportunity: if we can avoid iterating
over the absent vertices in a partition, then the instruction count increase for these
vertices can be restricted only to the partitions where the vertex occurs. To this end,
GraphGrind uses a variation of the CSR representation where zero-degree vertices
are not recorded.

4.1.3 Balancing Edges vs. Vertices

It is hard to partition a social network graph in a balanced way due to its skewed degree
distribution. Figure 27 shows the relative number of vertices per partition for various
graphs and numbers of partitions. Social network graphs like Twitter and Friendster
have highly different numbers of vertices per partition when balancing the number of
edges.

The imbalance of the number of vertices per partition has an important impact
on performance. First, many graph algorithms make passes over vertices apart from
passes over the edges. As such, the work performed per graph partition is not only
proportional to the number of edges, but also depends on the number of vertices.

Secondly, not all algorithms perform a fixed amount of work per edge. Instead, al-
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Figure 26: Percentage of vertices with zero out-degree averaged across all partitions
(left) and variation across each of 8 partitions (right).
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Figure 27: Relative sizes of partitions for varying degree of partitioning.

gorithms such as BFS, betweenness-centrality, Bellman-Ford and K-Core visit at most
one active edge per active vertex. For them, balancing the edges between partitions
does not result in a balanced CPU load.

Thirdly, an imbalance in the number of vertices per partition results in a skewed
utilization of memory and creates hotspots for certain partitions. This unnecessarily
drives to scale-out distributed systems to higher degrees of parallelism to drive the
worst-case partition size down, even if the computation does not warrant scaling out.
In shared memory systems the memory imbalance may be combated by storing data in
a sub-optimal NUMA node, which results in the lesser evil of remote NUMA accesses.

Increasing the number of partitions may seem to avoid skewed partitions. This
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is however not true. As Figure 27 shows, the presence of highly-connected vertices
remains an issue with higher degrees of partitioning as some partitions have twice as
many vertices as others. We conclude that the graph partitioning needs to balance
CPU load and should be adapted to characteristics of the algorithm.

4.2 GraphGrind: Design and Implementation

We designed GraphGrind, a graph analytics framework for NUMA shared memory
machines that builds on the characteristics of graph partitions to optimise the memory
layout of graphs and to reduce load imbalance.

GraphGrind contains all the required features of graph analytics systems, including
hierarchical parallel decomposition of the computation, NUMA-aware data placement
and code scheduling [108], balanced vertex-cut partitioning [30] and adapting data
structures [37] and search direction [6] to the size of the frontier. We discuss its key
features below.

4.2.1 Application Programming Interface

GraphGrind is compatible with the Ligra programming model. It provides two data
types: graphs and frontiers. A frontier is a subset of the vertices in a graph. The
key functions apply operations to edges or vertices and calculate new frontiers in the
process. They are defined as follows:

• size(): For a frontier F , size(F ) returns |F |.

• The edge-map() operator is the main work-horse. It applies an algorithm-specific
function to every active vertex in the graph. Its arguments are a graphG = (V,E),
a frontier F , a function Fn and a condition C. An edge (u, v) ∈ E is active
if u ∈ F and C(v) = true. The argument Fwd determines whether a forward
or a backward traversal is likely to be faster. Edge-map returns a new frontier
consisting of all visited vertices v for which F (u, v) returned a true value.

• vertex-map() applies a function Fn to every vertex in the frontier F . It returns
a new frontier consisting of all visited vertices u for which F (u) returned a true
value.

We extend the programming interface with a cache for backward edge-map traver-
sals. While edge-map may execute in parallel, it traverses the incoming edges of a
vertex sequentially when the number of vertices is not very large (less than 1000).
Compilers should, in principle, be able to hold the intermediate updates for the desti-
nation vertex’s value in registers. However, the complexity of control flow and pointer
aliasing prohibits this in practice. GraphGrind allows the programmer to specify how to
cache intermediate updates for the function Fn. This explicit notation allows compilers
to allocate them to registers.
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4.2.2 Edge Traversal

The efficient implementation of graph algorithms is sophisticated and requires deep
knowledge of the characteristics of the algorithms. First, the frontier is a set of vertices
and may be implemented either as a bitmap or as an array storing vertex IDs. The
most efficient implementation depends on the density of the frontier [37]. In a dense
frontier more edges are active, while a sparse frontier has few active edges. The
threshold is typically set at 5% active edges.

Secondly, edges may be traversed in forward or backward manner. In each case,
the goal is to traverse the destination vertices of active edges. A forward traversal first
traverses source vertices u ∈ V and checks if they are active (u ∈ F ). If they are, then
their out-going edges are traversed. A backward traversal iterates over destination
vertices v ∈ V as well as their incoming edges (u, v) ∈ E. Only then can it check that
the source vertex u is active.

Some algorithms execute faster with forward traversal, while others with backward
traversal. The distinction is to a large extent motivated experimentally [86]. Beamer et
al.motivate the distinction by the number of visited edges [6].

The graph representation is designed for efficient forward and backward itera-
tion. Hereto, a dual representation is used for directed graphs (incoming and out-
going edges are equal for undirected graphs). These use the compressed sparse
rows (CSR) and compressed sparse columns (CSC) formats for sparse matrices [81].
These formats use two arrays to encode a graph. In CSR, an edge array stores the
vertex IDs of edge destinations while an index array stores for every vertex the start
index of its edges in the edge array. CSC records the edges in inverse direction: the
edge array stores the sources of the edges.

4.2.3 Frontier Representation

We adapt the representation of frontiers between bitmaps and arrays of vertex IDs on-
the-fly, depending on their density [37]. Frontiers are created either by constructors,
or by the edge-map and vertex-map functions. From the users point of view, frontiers
are immutable. One of the constructors creates a frontier containing all vertices. We
explicitly record this property in the frontier to in order to omit checks of the frontier and
speed up graph traversal. Remember that graph analytics typically perform little work
per edge. As such, any reduction in instruction count has a measurable impact.

This optimization affects both the forward and backward traversal for dense frontiers
(a frontier containing all vertices is by definition not sparsely populated). The backward
traversal benefits much more from this optimization as it performs more lookups in the
frontier, namely once per edge vs. once per vertex in the case of the forward traversal.
We similarly optimize the vertex-map operation and any auxiliary loop iterating over
the frontier.
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4.2.4 Graph Representation

The compressed sparse rows (CSR) format and the compressed sparse columns
(CSC) format [81] are often-used to store graph data as they efficiently support both
sequential traversal over all edges and random access to the edges of a specific ver-
tex. These representations, however, waste time on vertices with zero degree, which
are very common in partitioned graphs (see Section 4.1.2).

GraphGrind uses a modified CSR and CSC representation in order to combat ef-
ficiency issues with zero-degree vertices. We compress the index array by storing
only information for vertices with non-zero degree. In order to know which vertices are
present, we also store the vertex ID in each element of the index array. Overall, this
reduces the size of the index array due to the high number of zero-degree vertices.
The main benefit, however, is that a sequential edge traversal becomes more efficient
as iteration over the index array automatically skips all zero degree vertices.

GraphGrind stores each individual graph partition in the CSR and CSC representa-
tions. This representation is, however, not efficient for traversals with sparse frontiers
as these require random access. Moreover, sparse traversals are slowed down signif-
icantly by graph partitioning as they are by nature dominated by control flow, which is
only made worse by the replication of vertices. As such, we retain a non-partitioned
copy of the original CSR representation of the graph specifically for sparse traversal.

4.2.5 Partition Balancing Criterion

We have argued that balancing the number of edges across partitions does not neces-
sarily result in the best balancing of CPU time. Instead, some algorithms observe bet-
ter CPU load balancing when the number of vertices in each partition is about equal.
GraphGrind adds a parameter to the algorithm specification that shows its preference
for a balanced edge partitioning vs. a balanced vertex partitioning. This parameter is
checked during graph ingress in order to select the balancing criterion for graph parti-
tioning. Our balanced vertex partitioning is similar to Algorithm 1, except that we strive
for |V |/P destination vertices in each partition.

Balancing vertices is appropriate for 3 of the 8 algorithms that we use in the ex-
perimental evaluation. The algorithms are commonly used in prior work. As such,
this property is sufficiently important to ask programmers to record it. The property is
easily derived from the algorithm specification.

4.2.6 NUMA Optimization

The state-of-the-art in NUMA-aware programming requires two coordinated actions:
(i) data placement and (ii) thread placement. Common data placement strategies
are to allocate data in a specific NUMA node or to distribute the data across nodes.
Thread placement is optimized such that the thread has a low latency/high bandwidth
connection to the NUMA domain holding its most frequently accessed data. This two-
pronged strategy allows for many optimizations, such as co-locating threads with data
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Table 5: NUMA allocation and binding strategy
Data structure NUMA allocation
full graph interleaved
graph partition allocate on one node
vertex arrays match home partition
Operation NUMA binding
edge-map (sparse) none
edge-map (dense) bind to holding node
vertex-oriented loops
(e.g., vertex-map)

equally distribute loop iterations over
NUMA nodes

and spreading data and threads across NUMA domains to enhance memory band-
width.

Graph partitions can enforce NUMA-local access as each partition can be stored
and processed within the confines of one NUMA node. Prior work has advocated to
replicate frontiers and algorithm-specific data arrays on each NUMA node [108]. Ac-
cordingly, memory accesses are NUMA-local, except when interchanging data across
nodes.

GraphGrind follows a different route, which is summarized in Table 5. The full graph
is stored in an interleaved fashion over the NUMA nodes. As the full graph is used with
sparsely populated frontiers only, the memory accesses are few and hard to schedule
optimally. Interleaved allocation provides a good compromise.

Graph partitions are spread over NUMA nodes in such a way that each partition is
stored on one NUMA node and all NUMA nodes hold the same number of partitions.
A graph traversal over a partition is scheduled on the NUMA node that holds that
partition. This ensure that the majority of memory accesses are issued against the
local NUMA node.

We distribute vertex arrays over NUMA nodes, storing the element for each vertex
on the same NUMA node as its home partition. As such, the edge-map operation that
is writing data to a vertex element performs NUMA-local accesses. This placement
incurs some false sharing, as NUMA placement works on the granularity of virtual
memory pages. As such, a small fraction of the vertices will be placed on a remote
NUMA node. E.g., assuming 1 M vertices, at most 1 in 10,000 will be stored in a
different node.

The distribution of vertex arrays may be highly skewed due to the imbalance of
vertices in each partition. Loops iterating over the vertex arrays, such as vertex-map
and loops that analyze frontiers, are however scheduled such that the loop iterations
are equally spread across NUMA nodes. While this induces some remote NUMA
accesses, it is far more important to load-balance these loops than it is to optimize
NUMA-awareness.

An alternative strategy is to replicate the vertex arrays on each NUMA node [108].
We found this to be sub-optimal due to the additional memory traffic that is required to
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Table 6: Graph algorithms and their characteristics. Frontiers: S=sparse, D=dense.
Apps Description Edge traversal Frontiers Cache Balance
BC betweenness-centrality [86] backward SDS Yes Vertices
CC connected components using label

propagation [86]
backward DS Yes Edges

PR simple Page-Rank algorithm using
power method (10 iterations) [71]

backward D Yes Edges

BFS breadth-first search [86] backward SDS No Vertices
PRD optimized Page-Rank forwarding

delta-updates between vertices [86]
forward DS No Edges

SPMV sparse matrix-vector multiplication (1
iteration)

forward D No Edges

BF Bellman-Ford algorithm for single-
source shortest path [86]

forward SDS No Vertices

BP Bayesian belief propagation [108] (10
iterations)

forward D No Edges

replicate and to merge vertex arrays. In contrast, our NUMA placement and scheduling
rules guarantee that an edge-map operation on a graph partition only writes to vertex
array elements stored on the local NUMA node. Read operations may be remote, but
these have lower impact on performance. As such, we obtain good NUMA locality
without incurring the overhead of replicating data.

The algorithm is robust against anomalous conditions such as absence of active
threads on a NUMA domain and a mismatch between the number of NUMA domains
specified by the program and those in hardware. In both cases, pending iterations are
executed by threads who have completed their work. Performance may be sub-optimal
in both instances, but correctness is guaranteed. Thread pinning can be applied in
order to guarantee performance.

The NUMA-aware extension supports non-commuting reductions [26] and pedi-
grees [53]. Both constructs depend on the execution order of function calls, which the
helper function disrupts. Although it takes minimal effort to support these constructs,
it is beyond the scope of this paper to explain the mechanics.

4.3 Experimental Evaluation

We evaluate GraphGrind experimentally on a 4-socket 2.6GHz Intel Xeon E7-4860 v2
machine, totaling 96 threads. It has 256 GB of DRAM. We compile all codes using
our modified version of the Clang compiler which implements the NUMA extension to
Cilk. We evaluate 8 graph analysis algorithms, described in Table 6, using 9 widely
used graph data sets, described in Table 7. All reported results are averaged over 5
executions.
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Table 7: Characterization of real-world and synthetic graphs used in experiments.
Graph Vertices Edges Type
Twitter [48] 41.7M 1.467B directed
Friendster [103] 125M 1.81B directed
Orkut [64] 3.07M 234M undirected
LiveJournal [103] 4.85M 69.0M directed
Yahoo mem [100] 1.64M 30.4M undirected
USAroad [108] 23.9M 58M undirected
Powerlaw (α = 2.0) 100M 1.5B directed
RMAT24 16.8M 168M directed
RMAT27 134M 1.342B directed

4.3.1 Performance Comparison

We compare the performance of GraphGrind against leading graph analytics systems
for shared-memory, namely Ligra [86], Polymer [108] and Galois [67] (Table 8). Graph-
Grind and Polymer both use 4 partitions to match the NUMA characteristics of our
hardware. All systems use 96 threads. We show the backward PageRank algorithm
for Polymer as the forward version, presented in [108], contains errors. The absolute
execution times are different than reported in other papers as we use different hard-
ware, a different compiler and have different randomly generated graphs. Moreover,
some algorithms are sensitive to the start vertex, which in our experiments is vertex
100 for all graphs. The trends, however, match previously reported results.

Overall, GraphGrind outperforms the other systems for all algorithms and all graphs,
except for CC and BF on the USAroad graph. In these cases, Galois is faster. This
results from using different algorithms [67, 108]. Nonetheless, GraphGrind makes
progress over Polymer and Ligra for these cases. In a few cases, GraphGrind per-
forms on par with other systems. These are labeled in bold-face as well.

The performance improvements are significant: up to 326% faster than Ligra (SPMV
with Orkut graph) and up to 82.2% faster than Polymer (BP with USAroad graph). The
smallest speedups appear for BFS, as there is already little computation going on.
The superior performance of GraphGrind results from a combination of optimizations.
Next, we will tease out the main contributing factors.

4.3.2 Graph Representation

GraphGrind’s graph data structure prunes vertices with zero degree from the repre-
sentation. We will show later that this saves significant spaces compared to the CSC
and CSR representations used by Polymer. Moreover, by not storing these vertices,
edge-map traversals no longer need to visit them. Figure 28 shows the speedup re-
sulting from the graph representation for 5 algorithms, which ranges between 2% and
16%. Twitter and LiveJournal benefit most due to the high sparsity of graph partitions.
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Table 8: Runtime in seconds of GraphGrind, Polymer, Ligra and Galois. The fastest
results are indicated in bold-face. Execution times that differ by less than 1% are both
labeled. Missing results occur as not all systems implement each algorithm.

Apps Graph GG Polymer Ligra Galois
Twitter 1.810 2.580 2.878 16.660

Friendster 5.924 8.030 7.330 6.210
Orkut 0.122 0.180 0.138 0.311

LiveJournal 0.111 0.177 0.125 0.206
CC Yahoo mem 0.042 0.049 0.063 0.046

USAroad 35.348 36.730 38.910 20.110
Powerlaw 1.168 2.110 1.680 3.113
RMAT24 0.455 0.522 0.601 1.440
RMAT27 2.305 3.220 2.444 10.120
Twitter 1.771 4.130 4.160

Friendster 3.394 5.490 6.110
Orkut 0.149 0.160 0.178

LiveJournal 0.197 0.334 0.388
BC Yahoo mem 0.091 0.110 0.150

USAroad 4.402 5.174 6.010
Powerlaw 2.118 2.300 2.860
RMAT24 0.482 0.503 1.110
RMAT27 2.073 2.360 15.110
Twitter 15.979 20.400 23.660 20.120

Friendster 38.249 41.8 43.300 61.200
Orkut 1.596 1.660 2.240 2.120

LiveJournal 0.652 0.688 0.708 0.700
PR Yahoo mem 0.234 0.262 0.278 0.255

USAroad 0.933 1.220 1.582 1.180
Powerlaw 10.394 12.716 13.600 11.614
RMAT24 2.730 2.970 3.660 3.110
RMAT27 17.517 23.21 28.600 30.220
Twitter 0.254 0.298 0.319 0.449

Friendster 0.896 0.899 1.210 1.330
Orkut 0.039 0.043 0.044 0.051

LiveJournal 0.050 0.068 0.078 0.103
BFS Yahoo mem 0.025 0.026 0.033 0.363

USAroad 1.750 1.855 2.009 5.180
Powerlaw 0.595 0.601 0.599 0.993
RMAT24 0.104 0.119 0.118 0.104
RMAT27 0.412 0.421 0.429 0.631

4.3.3 Adapating Graph Partitioning

We remove CPU load imbalance through selecting an appropriate criterion to balance
the graph partitions. We identified through code inspection that 3 of the evaluated
algorithms (BFS, BC and BF) prefer an equal number of vertices in each partition.
The others prefer a uniform number of edges. Figure 29 shows the speedup ob-
tained by balancing vertices over balancing edges for these 3 algorithms and PR. We
show results for a subset of the graphs, the remaining graphs behave similar to the
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Table 8: Continued.
Apps Graph GG Polymer Ligra Galois

Twitter 20.560 24.120 29.890
Friendster 36.097 36.600 62.100

Orkut 1.244 1.310 3.472
LiveJournal 1.013 1.110 1.138

PRD Yahoo mem 0.831 1.094 1.640
USAroad 2.124 2.260 2.905
Powerlaw 10.659 14.100 16.900
RMAT24 1.845 2.230 2.911
RMAT27 8.645 12.120 14.500
Twitter 2.251 2.860 4.610

Friendster 3.624 5.220 9.010
Orkut 0.148 0.208 0.630

LiveJournal 0.060 0.096 0.151
SPMV Yahoo mem 0.033 0.045 0.063

USAroad 0.077 0.128 0.166
Powerlaw 0.655 0.661 0.707
RMAT24 0.197 0.221 0.288
RMAT27 1.963 2.210 2.830
Twitter 1.489 1.618 2.213 12.810

Friendster 6.498 7.193 7.690 9.220
Orkut 0.213 0.310 0.354 2.100

LiveJournal 0.258 0.293 0.284 0.530
BF Yahoo mem 0.146 0.200 0.173 0.288

USAroad 21.992 24.110 26.310 16.330
Powerlaw 10.326 11.112 12.600 15.110
RMAT24 1.366 1.390 1.410 1.880
RMAT27 1.665 1.933 2.180 5.310
Twitter 38.896 38.900 56.980

Friendster 58.704 66.210 129.000
Orkut 2.223 3.110 5.538

LiveJournal 1.026 1.420 1.940
BP Yahoo mem 0.448 0.455 1.124

USAroad 1.024 1.660 1.462
Powerlaw 15.264 15.530 19.500
RMAT24 4.788 7.030 9.310
RMAT27 32.994 43.320 58.230

ones shown. The partitioning has negligible impact for Friendster and PowerGraph,
which have a balanced number of vertices per partition in either case (see Figure 26).
Graphs with unbalanced partitions see important improvements with vertex-balanced
partitions, with up to 37% speedup for LiveJournal.

Vertex-balanced partitioning is appropriate only for algorithms with fixed amount
of work per vertex. Other algorithms, like PR, have a strong preference for edge-
balanced partitioning. We conclude that it is crucial to balance partitions appropriately
to the algorithm.
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Figure 28: Speedup of compressed graph compared to visit zero-degree vertices.
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Figure 29: Speedup of balancing vertices compared to balancing edges in graph par-
titions.

4.3.4 NUMA Optimization

Various choices can be made for the placement of vertex arrays, i.e., arrays storing
frontiers or per-vertex application-specific data. GraphGrind places the vertex arrays
such that each vertex is co-located with its home partition. Vertex-oriented loops, such
as those in vertex-map, are typically short and have well-balanced work per iteration.
As such, GraphGrind distributes the iterations equally across threads, even though this
results in remote NUMA accesses.

We compare two variations on the NUMA policy (Figure 30): (i) placing vertex data
and scheduling iterations on their home partition; (ii) equally spreading vertex data and
iterations across all NUMA nodes. Option (i) aims to avoid remote NUMA access dur-
ing vertex-oriented loops. This is however uniformly worse than GraphGrind’s policy.
It shows that CPU load balance is simply more important than NUMA locality for the
vertex-oriented loops.

Option (ii) load-balances vertex-oriented loops and tries to minimize remote NUMA
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Figure 30: Impact of NUMA decisions for vertex arrays. GraphGrind may be described
as data follow partitions, code balances iterations.

accesses by spreading vertex arrays to match the distribution of iterations. This results
in worse performance in nearly all cases as the placement decision is sub-optimal for
the edge-map operator. This operator performs the majority of main memory accesses
and will incur excess remote memory accesses when vertices are not co-located with
their home partition.

An interesting effect occurs when SPMV processes the Twitter graph, as in this
case an increase in remote memory accesses during edge-map results in improved
performance. We contrast this against Friendster, where the same effect results in
performance degradation. We measured the local and remote memory accesses in-
curred and observe that both GraphGrind and option (ii) incur the same total number of
memory accesses and that option (ii) incurs an increased number of remote accesses
for both graphs.

The performance difference between the graphs, however, results as Twitter has
highly skewed partitions: The number of elements of vertex arrays accessed on one
NUMA node is much higher than on other NUMA nodes. Where GraphGrind directs
those accesses to the local NUMA node, option (ii) spreads them across nodes. This
way, option (ii) can share the unused memory bandwidth on one NUMA node with
the computation on another node. On Friendster, GraphGrind is faster than option
(ii) because Friendster has relatively uniform partitions and performs more memory
accesses per unit of time. As such, all NUMA nodes are equally stressed and there is
no benefit in making remote accesses.

These results show that a careful trade-off is required to optimize NUMA place-
ment, as option (i) incurs fewer remote memory accesses than GraphGrind, yet has
worse performance. In rare cases can remote accesses result in performance im-
provement due to imbalance in memory traffic.
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Figure 31: Speedup due to all-vertex frontier optimization.
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Figure 32: Speedup due to holding intermediate values in registers.

4.3.5 Peephole Optimizations

GraphGrind labels frontiers that are initialized to contain all vertices such that an op-
timized version edge-map can avoid memory accesses and control flow related to
frontier access. Figure 31 shows the speedup resulting from this optimization for all
algorithms that initialize frontiers this way. Only algorithms that initialize frontiers this
way can benefit. The algorithms using backward traversal (CC and PR) benefit most,
up to 8%, as the backward traversal queries the frontier once for every edge, while
the forward traversal queries it only once per vertex. The speedup is modest, but
consistently positive. It moreover requires no user intervention.

GraphGrind allows programmers to define a cache, which allows the compiler to
store intermediate values in registers (the cache) and avoid memory accesses. This
optimization is relevant only during dense, backward traversal. Figure 32 shows that
for the relevant algorithms, the cache results in a speedup between 2 and 15%.
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Figure 33: Increase of graph storage for Polymer (P) and GraphGrind (GG) compared
to Ligra.

4.3.6 Memory Usage

The premise of graph processing on scale-up shared-memory machines is that suf-
ficient main memory can be provided to store the graph data. Thus, memory usage
should remain under control. Figure 33 shows the additional memory used on graph
data for Polymer and GraphGrind compared to Ligra. Polymer stores each graph par-
tition in CSR and CSC format (as in Ligra) using index arrays of length |V |. Because
of this, the memory consumption of Polymer grows as P |V | for P partitions. As Graph-
Grind stores only vertices with non-zero degree in the index arrays, its memory usage
grows more slowly and follows the vertex replication factor (Figure 25). However, as
GraphGrind stores an additional copy of the graph for sparse traversal, it starts at a
50% increase compared to Ligra for directed graphs, and 100% increase for undirected
graphs. Overall, GraphGrind’s memory consumption is more scalable than Polymer’s.

4.4 Further Related Work

It has been documented that generic tools such as METIS [44] to partition graphs by
vertex or edge cut do not produce good partitions for social network graphs. Moreover,
they take much more time to compute than many graph algorithms. Sheep [60] is
a distributed graph partitioner that produces high quality edge partitions an order of
magnitude faster than METIS. Alternatively, linear-time heuristics have been proposed.
The vertex cut is a greedy edge partitioning algorithm that minimizes the number of
cut vertices [30].

GraphChi [49] is designed to stream graph data in from disk. It uses partitioning to
obtain small vertex sets that fit in the main memory. It uses partitioning by destination
and aims for an equal number of edges per partition. The number of vertices must be
made to fit in memory by tuning the number of partitions.

X-Stream [80] uses what we call partitioning by source, but does not required edges
to be pre-sorted. It aims for a uniform number of vertices per partition as it wants to
keep only vertex data in fast memory (e.g., CPU cache), whereas edges are streamed
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in from slower memory (e.g., main memory).
GraphX [102] is a Spark [89] library for graph analytics. It partitions edge lists us-

ing Spark’s resilient distributed datasets (RDD) and supports user-defined partitioning
schemes.

Our observations are relevant for each of the systems discussed above. E.g., the
reduced connectivity of partitions implies that memory locality is poor in a system like
X-stream. A large variation in vertices per partition implies that partitions with few
vertices will leave a large portion of main memory unutilized in GraphChi.

Frasca et al. [25] design NUMA-aware work queues for betweenness centrality.
The work queues first execute locally generated work prior to stealing work from other
queues. Work queues are visited in order of increasing NUMA distance. They demon-
strate a 51.2% performance improvement compared to an OpenMP implementation.

Agarwal et al. [3] study the execution of breadth-first-search on NUMA systems.
They too organize the computation around work queues, spread over multiple sock-
ets. Moreover, they use efficient spinning locks and lock-free channels to synchronize
threads. They also introduce peephole optimizations such as avoiding atomic opera-
tions by first checking if they will fail.

Graph compression can significantly reduce memory requirements and with it mem-
ory bandwidth. Shun et al [87] compress the destination IDs of vertices stored in the
edge array of the CSR and CSC representations. They reduce memory usage up to
56%. These techniques are orthogonal to the compressed representation of the CSC
and CSR index arrays proposed in this work, as they pertain to edges only.

4.5 Conclusion

Graph partitioning is an important technique to efficiently orchestrate the execution
of graph analytics in the context of NUMA-aware data placement and code schedul-
ing. We apply Swan’s NUMA-aware scheduling extension to improve the performance
of Ligra, a graph analytics framework based on Cilk with a clean API that hides the
framework details from users. Prior work on NUMA-aware graph analytics has pro-
posed Polymer, where parallelism is hard-coded using POSIX threads and explicit
barrier synchronization. Using this approach, Polymer is unable to keep the user code
separated from the framework, which results in highly complex and error-prone code.
In this context, GraphGrind leverages the NUMA-aware loop scheduling extension of
Swan to retain the cleanliness and separation of concerns achieved with Ligra’s API.

In order to achieve performance improvement, however, we needed to study and
address several issues that arise from graph partitioning, including load imbalance,
increased work per vertex, and a significantly reduced connection density. Combined,
these problems imply that graph partitioning is inherently unscalable to large partition
counts.

We propose several techniques to counter-act the identified performance issues
and implement these in GraphGrind, a novel NUMA-aware graph analytics framework
that is compatible with the Ligra API.
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Figure 34: Speedup of fine-grain parallel loops as a function of loop duration in
betweenness-centrality (BC) computation on the Twitter graph.

GraphGrind achieves significant speedup compared to prior work, out-performing
Polymer, the most recent contender, by as much as 82%. We moreover show that
fully minimizing remote memory accesses is not optimal in irregular computations.
Instead, one needs to strike a careful trade-off between remote accesses and CPU
load balancing.

5 Case Study: Fine-Grain Scheduling in Data Analyt-
ics

While Moore’s Law remains active, every new processor generation has an increasing
number of CPU cores. Highly-parallel processors such as Intel’s Xeon Phi Knights
Landing [88] provide a high number of less powerful but energy-efficient cores. More-
over, scale-up shared memory machines such as the SGI UV line serve tightly syn-
chronized workloads. Scheduling and distributing work load on large scale shared-
memory machines becomes increasingly important in order to make efficient use of
the hardware.

Scheduling and work distribution induce a run-time overhead, called burden [35].
The burden includes the time taken to make scheduling decisions, send the work to
other processors and synchronize on the completion status. The scheduler burden
has not been widely documented or studied. It has been reported that creating tasks
in Cilk has “about an order of magnitude” overhead compared to a normal function
call [10]. However, this does not yet involve distributing the task to other processors.

In order to understand the scale of the problem, Figure 34 shows the duration of
fine-grain parallel loops that occur in the betweenness-centrality benchmark taken from
Ligra [86]. These loops perform operations such as reductions, filtering, and packing of
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array elements. The loops already execute on 48 threads (see Section 5.1 for details
on the platform) using the Cilk runtime [28]. The dynamic range of loop duration is
very high, ranging from sub-microsecond to 10s of milliseconds. This relates to the
loop iteration count as well as the amount of work performed per iteration. The vertical
axis (Figure 34) shows the speedup obtained by reducing the scheduler burden using
Swan’s fine-grain scheduling annotation, which can result in as much as a 16-fold
speedup for some loops. We will demonstrate that other schedulers, such as OpenMP,
are also significantly impacted by their burden.

An immediate consequence of the burden is that some parallel code is too fine-
grain to make parallel execution worthwhile. What “too fine-grain” means precisely de-
pends strongly on the hardware, the scheduling algorithm and its implementation. The
existence of the burden has important implications on the scalability of the scheduler
as the burden may grow with increasing degrees of parallelism. Morever, the burden
affects performance portability as the acceptable lower-bound on the granularity of
parallel loops differs between hardware.

In a bid to reduce the burden, a significant body of research has investigated how
to reduce the computational complexity of scheduling algorithms. Near-optimal execu-
tion times can be obtained with greedy scheduling techniques. These always execute
available work and execute it in the order it arrives [11]. Alternatively, static sched-
ulers apply an easy-to-calculate work distribution but leave no room for adapting the
schedule. While this limits run-time overhead, the burden remains significant.

Other research has investigated ways to reduce the synchronization delay through
specialized hardware support [47, 23]. Hard-coding a scheduler in hardware, however,
removes the option of tuning schedulers to application areas or application-specific
properties. Numerous scheduling algorithms have been proposed in the literature,
none of which performs unanimously best across a wide range of applications. It is
thus important to be able to select scheduling algorithms and retain a programmable
implementation. Alternatively, hardware support for message queues is more gen-
eral [75, 83]. The key benefit of message queues is that they use dedicated on-chip
networks to circumvent the cache coherence protocol [83]. The intra-socket ping-pong
delay between two threads using the cache coherence protocol on a modern proces-
sor is, however, around 60 ns (measured on a 2.6 GHz Intel Xeon E7-4860 v2). As
such, the potential benefit of hardware support for message passing is much smaller
than the burden of state-of-the-art software schedulers.

Contributions: This work proposes new techniques for scheduling and work dis-
tribution of fine-grain parallel loops and presents compiler support to enhance their
efficiency. Reducing the minimum granularity of loops that can be efficiently sched-
uled on a large-scale shared memory machine addresses many problems in parallel
computing. It minimizes the need to tune parallel loops to hardware characteristics. It
also minimizes the need to question if parallelizing a particular code region pays off,
a question that every parallel programmer faces. Moreover, fine-grain work distribu-
tion mechanisms improve the scalability of schedulers and execute parallel programs
efficiently on large-scale machines.
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Figure 35: Speedup of uforall micro-benchmark for the OpenMP (left) Cilk (right) run-
times

5.1 Experimental Evaluation

We evaluate our scheduler on a 4-socket 2.6 GHz Intel Xeon E7-4860 v2 machine
with 12 physical cores (plus hyperthreading) and 30 MB L3 cache per socket. We
pin threads to cores so that only one thread per core is used. The operating system
is CentOS 7.0. We have implemented the fine-grain scheduling technique in both
OpenMP and Swan in order to demonstrate that it is generally applicable. We use the
Intel C/C++ compiler v. 14.0.0 for OpenMP applications and Clang version 3.4.1 for
Swan applications.

We use two microbenchmarks (uforall, a parallel loop micro-benchmark, and STREAM [61]),
and six benchmarks: 3 map/reduce benchmarks histogram, lreg and pca from the
Phoenix++ suite [92], SPEC CPU2006 mcf, PARSEC streamcluster [8] and the Graph-
Grind graph analytics framework (see Section 4). For the map-reduce benchmarks we
use the small, medium and large inputs [92]. For mcf we use the SPEC test, train and
reference inputs. For streamcluster we use the simsmall, simmedium and simlarge
inputs.

We report results averaged over 15 executions of the benchmarks. We calculate
speedups against the sequential version of the benchmark where no parallel con-
structs appear. This method correctly penalizes parallel runtimes for any overhead
they may induce. Moreover, we exclude the runtime startup time in all speedup re-
sults.

5.1.1 Scheduling Burden

The uforall micro-benchmark is designed to measure loop scheduling overhead. By
varying the amount of work in the parallel loop, we can emulate loops of different
granularities. Figure 35 shows the speedup obtained for varying granularity (sequential
execution time) of the loop for the OpenMP- and Cilk-based runtimes. Note that the
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Table 9: Characterizing the burden of the schedulers
d ( µs)

Fine-grain–NUMA tree 5.67
Fine-grain–NUMA centralized 7.55
Fine-grain–NUMA tree with full-barrier 12.00
OpenMP static 8.12
OpenMP dynamic 31.94
Cilk 68.80

horizontal axis is displayed on log-scale. The curves do not extend to 48-way speedup
due to measuring overhead in the micro-benchmark.

The micro-benchmark results visualize the burden of the scheduler. The OpenMP
static scheduler has smaller burden than OpenMP dynamic scheduler, which in turn
has smaller burden than the Cilk scheduler. Note that these are in part properties of
the implementation and may very between implementations of OpenMP.

The micro-benchmark allows us to estimate the overhead of scheduling. We as-
sume that Amdahl’s Law applies:

S =
T

d+ T/48

where T is the sequential execution time, d is the work distribution time and S is the
resulting speedup. We perform a least-squares fit between the experimental data and
the model to estimate d. The burden is several micro-seconds (Table 9). The dynamic
schedulers have a significantly higher burden than the static ones. These estimates
confirm that using a half barrier in the fine-grain scheduler reduces the scheduling
delay by about half compared to a full barrier.

Note that a burden of 69µs for Cilk implies that a loop can achieve decent speedup
only when its parallel execution time approaches 1 ms. For instance, speedup is 12
when T = 16 d = 1.1 ms This is in agreement with Figure 34 where the fine-grain
scheduler can deliver an extra 4x speedup.

5.1.2 STREAM

We use the STREAM benchmark [61] to demonstrate that memory-bound loops are
sensitive to efficient scheduling. In a NUMA system it is important to schedule loops
such that memory accesses are directed to the locally attached memory. The re-
mote memory, attached to other CPU sockets, typically has significantly lower memory
bandwidth. As such, schedulers like Cilk and OpenMP dynamic achieve poor mem-
ory bandwidth, on our system no more than half of peak memory bandwidth. Static
schedulers, in contrast, consistently issue loop iterations to the same threads. In com-
bination with a first touch policy, this results in NUMA-local accesses.
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Figure 36: Performance of STREAM triad for varying array sizes and repeating work
items

We demonstrate the importance of scheduling efficiency using OpenMP static schedul-
ing and the Cilk-based fine-grain scheduler. As these use different compilers (icc vs.
clang), with different optimization quality, we use the same, highly tuned assembly
code in the kernels.

Figure 36 shows the throughput obtained with the triad kernel (curves labelled “1x”).
The array size is varied along the horizontal axis. The amount of work performed in the
triad loop is proportional to the array size. The largest array sizes used do not fit in the
on-chip caches and show that the sustainable memory bandwidth is about 120 GB/s.
Smaller array sizes fit in the on-chip caches and result in markedly higher bandwidth
with the fine-grain scheduler. For the smallest array shown, the kernel completes in
28 µs, which leaves little time for synchronisation. The fine-grain scheduler achieves
on average 60% higher bandwidth than OpenMP, which does not succeed in exploiting
the on-chip bandwidth at all.

We demonstrate that the OpenMP runtime achieves less bandwidth for small array
sizes due to scheduling overhead. Hereto, every thread repeats its task 50 times
(curves labelled “50x”). As such, the overhead of synchronisation is reduced 50-fold.
This markedly improves the bandwidth achieved with both runtimes and allows them
to achieve nearly the same bandwidth for array sizes over 1 million. For smaller arrays,
and finer-grain tasks, the OpenMP runtime again performs worse. This demonstrates
that the performance difference is due to task granularity.

5.1.3 Speedup of Fine-Grain Scheduler

We evaluate the speedup achieved by the fine-grain scheduler when integrated in
the OpenMP and Cilk runtimes, and compare its performance against the baseline
runtimes. We focus on the NUMA-tree version from now, as it gives best performance.
Figure 37 shows the speedup obtained by fine-grain scheduling across a number of
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Figure 37: Speedups obtained by the fine-grain scheduler compared to the baseline
OpenMP static and Cilk runtimes for various input data sets. We compare 48-thread
execution times for all benchmarks, except for mcf where we compare 12-thread exe-
cution times.
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Figure 38: Speedup of benchmarks executing on the OpenMP-based runtimes.

input data set sizes. Note that the OpenMP and Cilk results are compiled with different
compilers. As such, the two sets of results are normalized against slightly different
sequential baselines and we analyze them separately.

We have analyzed the sensitivity of the dynamic schedulers to the grain size of
scheduled work items. We found no important impact of this parameter on perfor-
mance in a wide range of values.

The fine-grain scheduler out-performs the Cilk and OpenMP runtimes on all appli-
cations. Improvements are generally higher for smaller input data sets. This is not
unexpected, as the scheduler burden is more exposed on small data sets. Speedups
over the Cilk and OpenMP schedulers range up to 3.9x when executing the program
end-to-end.

Figure 38 and Figure 39 show details on the scalability of a few benchmarks. The
other benchmarks are in line with these results. In many cases, the speedup of the
baseline schedulers reduces as the degree of parallelism is increased. In contrast, the
fine-grain scheduler is able to squeeze incremental performance gains out of additional
threads. In the case of mcf, it is impossible for the baseline schedulers to obtain
speedup over sequential execution. This is a very hard benchmark. The fine-grain
scheduler consequently cannot achieve parallel speedup when using a second socket.

We have moreover measured execution time of the Phoenix++ runtime [92], which
was specifically constructed to achieve high performance on map-reduce workloads
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Figure 39: Speedup of benchmarks executing on the Cilk-based runtimes. same for
OpenMP graphics

Table 10: Performance of graph analytics workloads and statistics on duration of fine-
grain loops.

fine-grain loops time per fine-grain loop Cilk Hybrid speedup speedup
nb. < 0.1ms min avg max total fine-gr. total fine-gr. total fine-gr.

BFS 73 48 1.84 µs 1.27 ms 21 ms 0.387 0.093 0.376 0.076 2.75% 21.6%
BC 148 33 0.77 µs 2.06 ms 27.2 ms 1.59 0.304 1.53 0.250 4.35% 21.9%
CC 118 93 0.44 µs 1.32 ms 21.6 ms 2.13 0.155 2.10 0.129 1.48% 29.6%
PR 82 17 45.9 µs 11.1 ms 19.9 ms 13.7 0.907 13.4 0.711 2.73% 27.5%
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Figure 40: Cumulative distribution of execution time in fine-grain loops and total ex-
ecution time for GraphGrind workloads using the Cilk/Swan scheduler as a baseline,
and using the hybrid scheduler.

like lreg, histogram and pca. Although not shown, the performance of Phoenix is
largely in line with the OpenMP versions of these codes. We attribute the reason
to the use of coarse-grain locking on work queues and shared data structures in the
runtime. We conclude that the problem posed by fine-grain parallelism indiscriminately
affects general-purpose and special-purpose parallel runtimes.
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5.1.4 Hybrid Scheduling

We apply the hybrid static/dynamic scheduler to GraphGrind, a graph analytics sys-
tem. GraphGrind contains phases of coarse-grain parallelism seperated by fine-grain
parallel operators such as prefix-scan and reduce over arrays of highly varying length,
ranging from 10s to millions of elements. We use it to analyse the ability of the sched-
uler to switch efficiently between coarse-grain and fine-grain parallelism.

Table 10 summarizes the execution times of 4 graph analytics kernels processing
the Twitter graph [48]. We execute each workload 200 times and separate out the
time spent in the fine-grain parallel loops and compare against an execution using
the baseline Cilk runtime. The fraction of total execution time covered by fine-grain
loops varies between 6.6% and 24%, depending on the graph analytics kernel. The
experiments demonstrate that low-overhead scheduling speeds up fine-grain loops
by 21.6% to 29.6%, and speeds up the whole application by 1.5%–4.4%. The only
intervention required is to label the fine-grain parallel loops.

Fine-grain loops in GraphGrind are very short (Table 10, columns 2–6): the shortest
loops take less than a microsecond (2600 CPU cycles on our system) and almost half
of the fine-grain loops take less than 0.1 millisecond. A few loops take 20–30ms, which
skews the average loop duration statistic.

Figure 40 shows the cumulative distribution function of the time spent in fine-grain
loops and total application time across 200 executions. The fine-grain loops are clearly
accelerated as all, or nearly all, of the measurements on the hybrid scheduler are
smaller than those on the baseline scheduler. Moreover, the variance of execution
time on the static scheduler is less as the slope of the curves is larger.

We use the Welch two-sample t-test to test the equality of the averages of total
execution times. This test is appropriate as the distributions are approximately normal.
We assume a 5% confidence level. The difference in execution time between the
hybrid and baseline schedulers is statistically significant for BFS (µ = 0.376s and σ =
0.195s for the hybrid scheduler vs. µ = 0.387 and σ = 0.198s for Cilk) with t = 5.268
and 397.97 degrees of freedom gives p = 2.3e − 7. The other cases yield even lower
p-values. These statistics show that the improvement of the hybrid scheduler exceeds
the variation on the execution time.

We have applied the one-sided F -test to check that variance is reduced. Here, we
find that the hybrid scheduler likely does not reduce variance for BFS (F = 1.021 with
199 degrees of freedom and p = 0.44). However, for the other kernels we find that
the hybrid scheduler does reduce the variance of the total execution time, e.g., for BC,
F = 2.423 with 199 degrees of freedom and p = 4.2e− 10.

The distributions moreover demonstrate that the static scheduler does not suffer
from stragglers. In fact, the Cilk scheduler is more susceptible to long delays. We
believe this results from random work stealing in the Cilk scheduler, as the granularity
of stolen work depends on the selected victim, and with it the number of work stealing
events and ensuing runtime management.
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5.2 Conclusion

We have demonstrated the importance of efficient and scalable scheduling and work
distribution for fine-grain parallel programs. We have designed a loop scheduler for
fine-grain parallelism with efficient, atomics-free work distribution using a half-barrier
loop pattern. We integrated the fine-grain scheduler in the Intel OpenMP and Cilkplus
runtimes and designed compiler support to enhance the performance on reductions.
Experimental evaluation demonstrates up to a 3.2x performance improvement over the
OpenMP and Cilk schedulers. The fine-grain scheduler, moreover, achieved speedup
on loops where the baseline schedulers slow down compared to the sequential base-
line.

We have moreover proposed metrics to assess the supported granularity of sched-
ulers. Our fine-grain scheduler supports 2.1x finer-grain parallelism than the OpenMP
static scheduler and 21.4x fine-grain parallelism than Cilk.

This work has practical implications to parallel computing. Programmers need to
constantly decide whether it is worthwhile to parallelize individual code fragments. This
choice depends on a combination of factors, among which the data set size, runtime
system implementation and hardware specifics. Making a wrong decision may lead to
performance degradation when code is in production. The present work significantly
reduces the impact of such decisions and improves the performance portability of par-
allel programs.

6 Case Study: Text Analytics

This section demonstrates the application of Swan to text analytics. This work was
presented at IEEE Big Data [96]. Text analytics are an important class of data analyt-
ics, differentiated from analytics in general by extracting information from textual data.
While exact data is hard to obtain, it is claimed that 80% of all big data is unstructured,
hence textual in nature [31].

Analyzing data at high speed is immensely important given that data volumes are
consistently growing. The dominant approach to scaling up analytics capabilities con-
sists of using increasing numbers of servers. Single-thread performance, i.e., the time
it takes an individual server to process its part of the work, is generally neglected [62].
This approach is not scalable in the long term due to operational costs of the high num-
ber of components involved and the diminishing returns that result from scaling out. In
contrast, improving the single-thread performance of analytics can reduce operational
costs even in the face of growing data volumes.

The data analytics literature generally pays little attention to single-thread perfor-
mance. There is a good motivation for this: single-thread code is typically written by
data analysts and it is not desirable to require high-performance computing expertise
from data analysts. In contrast, performance-critical code is encapsulated in libraries
and frameworks, although the performance of these is under scrutiny [62, 69, 73, 34,
84]. However, to the best of our knowledge, there exist no frameworks, nor good prac-
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tice, for manipulating textual data at high speed for general algorithms. The goal of
this work is to fill this gap in the literature and provide guidelines for achieving high-
performance text analytics. Moreover, we present HPTA, a library that implements
these guidelines in a reusable way.

Here we presents three guidelines towards high-performance text analytics:
Memory management: text analytics will deal with a large number of text fragments.
These fragments are often short, e.g., words in a natural language. Traditional mem-
ory management, involving independent allocation of each fragment, is not scalable
due to the performance overhead of fine-grain dynamic memory management and
the resulting fragmentation. Nonetheless, popular systems such as Hadoop [1] and
Spark [89] follow this approach. We investigate techniques to circumvent this problem
and experimentally characterize their effectiveness.
Parallelism and associative data structures: associative data structures track the
computed values for each text fragment. It is well known that the choice of associa-
tive data structure, e.g., hash table versus map, affects performance. Data analytics
frameworks have settled on lists of key-value pairs as the main associative data struc-
ture [1, 107]. Few would argue that this is optimal in single-threaded applications, yet
it seems to work well for parallel execution, in particular for data partitioning and re-
duction. In contrast, frameworks that use more complex data structures are restricted
to single-threaded execution [74, 33]. We argue that parallel execution is possible us-
ing any associative container and we present methods for partitioning and reduction.
Experimental validation shows that the use of appropriate data structures outperforms
the list-based representation.
Moving data is faster: We demonstrate that different phases in text analytics appli-
cations utilize the data structures in different ways. As such, phases require different
data structures, which leads to the counter-intuitive result that moving the data to dif-
ferent data structures during the computation reduces execution time, even though
data volumes are large. Note however that we re-organize data within a node.

6.1 Related Work

Research into high-performance text analytics often involves approximate algorithms
and acceleration using Graphics Processing Units (GPUs).

The Term Frequency-Inverse Corpus Frequency (TF-ICF) algorithm [78] approxi-
mates the IDF scores using document relevance metrics that are pre-calculated over
a reference corpus. The assumption is that the document frequencies are constant for
a large enough corpus. TF-ICF scores can be calculated in a single pass, as opposed
for two passes for TF-IDF. While this work demonstrates our techniques on the TF-IDF
algorithm, they are equally applicable to TF-ICF.

Erra et al [22] present a GPU implementation of an approximate streaming version
of TF-IDF. The TF-IDF metric is approximated by counting occurrences of a pre-set
number of terms only in order to meet the memory limitations of GPUs. Our approach
in contrast produces exact counts.
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Zhang et al [109, 110] study document clustering on clusters of computers equipped
with GPUs. They pre-compute TF-ICF scores [78]. on the CPU and accelerate a flock
clustering algorithm on the GPU. They demonstrate a 10x speedup when using 16
high-end NVIDIA GPUs compared to executing on a single desktop.

Szaszy et al accelerate document stream clustering where they assume that a
stream of documents needs to be continuously clustered [91]. They use sparse matrix-
vector multiply (SpMV) techniques to compute the similarity between the TF-IDF of a
document and the reference clusters. The SpMV calculation is performed on the GPU.
They do not study the issue of text parsing and assume that a document is converted
to TF-IDF form prior to entering their system.

Each of the above works investigate acceleration of the numerical aspect of docu-
ment clustering algorithms. Numerical computations are however well understood. In
contrast, this work focuses on the text processing aspect of text analytics.

An important component of this work is concerned with parallel operation on asso-
ciative data structures. Several works have investigated scalable parallel data struc-
tures. The Standard Template Adaptive Parallel Library (STAPL) [77, 93] distributes
data structures across a cluster by partitioning the key space. Accesses to data struc-
tures are transparently forwarded to the appropriate machine. The Parallel Standard
Template Library (PSTL) [43] is a similar, older project. The parallel-STL approach has
limited scalability in comparison to this work as it aims to parallelize individual oper-
ations on associative data structures. This work, in contrast, is concerned only with
parallel iteration.

PDQCollections [99] processes associative data structures in a map-reduce-like
model. The authors consider functions on the data such that the data may be split
(e.g., by key range), operated on independently and then merged as in a reduction
operation. PDQCollections is more akin to the approach taken in this work due to the
reduction of associative data sets. An important distinction is that our approach is not
specific nor limited to map-reduce programs.

6.2 Text Analytics: TF-IDF Case Study

To simplify the exposition, we will study term frequency-inverse document frequency
(TF-IDF) [82] as a guiding example of text analytics. While the TF-IDF operation is
simple enough to understand in detail, it exposes important reoccurring properties of
text analytics operations.

TF-IDF assigns a weight to each term-document combination. The weights reflect
the importance of the term within the document and across the set of documents.
Fig. 41 shows a pseudo-code for TF-IDF. This code uses a number of associative
containers that store information on each encountered term. These operations are
described in Table 11. Firstly, the code uses an associative container per input file
to store the term frequency within that document. I.e., the container associates ev-
ery term (key) to its frequency of occurrence (value). Secondly, a single associative
container is used to calculate the document frequency across the collection. This con-
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procedure TFIDF(documents[0..n−1]) {
// term frequency per document
associative container( string −> int) term freq[n ];
// document freq. and ID
associative container( string −> (int,int) ) doc freq;
parallel for ( i : 0..n−1) {

// Calculate term frequency in i−th document
parallel for (term : documents[i])

modify(term freq[ i ], term,+,1)
// Update document frequencies for term in i−th document
// Increment counter for each term ignoring term frequency
// Value of ID is irrelevant at this time
merge(doc freq,term freq[i ],

f=(k ,( dfl , idl ) , tfr )−>(k,(dfl+1, idl ) ) ,
g=(k, tfr )−>(k,(1,0)))

}
// Assign unique IDs to each term. The terms can be optionally
// sorted alphabetically . Sorting here affects the order of
// terms in the TF−IDF matrix and output.
// Store IDs in second element of value pair in doc freq.
sort−by−key(doc freq)
ID = 0;
parallel for (term : doc freq) {

modify(doc freq,term,f=(( tf ,old ID) ,ID)−>(tf,ID))
ID += 1

}
// Construct TF−IDF (sparse) matrix
parallel for ( i : 0..n−1) {

for (( term, tf ) : term freq[ i ]) {
// Calculate TF−IDF score for term in i−th document
(df , id) := lookup(doc freq,term)
tfidf [ i , id ] := tf ∗ log (( df+1)/(n+1))

}
}
return tfidf

}

Figure 41: Code structure for term frequency–inverse document frequency calculation
for a collection of documents. The operations on associative containers are defined in
Table 11.

tainer stores two integer values for each term encountered in each of the documents:
the number of documents where the term occurs (document frequency) and a unique
sequence number that is determined only when all files have been read. The latter
number is important for sorting the output data alphabetically.

The algorithm has three distinct phases. In the first phase (term count phase), all
documents are read and the per-document term frequency is determined. Moreover,
all terms from all documents are added to the document frequency container and the
document frequency is updated. The containers are mostly updated during the term
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Table 11: Common operations on associative containers.
Operation Description
insert(c, k, v) insert value v for key k in collection c
modify(c, k, f, v) modify collection c to store value v0 for key k as v0 = f(v0, v) or

insert v if key k absent
lookup(c, k) lookup what value is stored for key k in collection c
iterate-seq(c, k, v) retrieve the next stored key-value pair
iterate-par(c, k, v) as iterate-seq(k, v) but can be used as iterator in a parallel for-

loop
merge(cl, cr, f, g) merge collection cr into cl by storing the value f(vl, vr) if (k, vl) ∈

cl and (k, vr) ∈ cr for a key k, or by inserting (k, g(vr)) for (k, vr) ∈
cr.

sort-by-key(c) sort all entries of collection c by key
sort-by-value(c) sort all entries of collection c by value

count phase. The access pattern consists thus of random accesses.
The second phase of the algorithm assigns a unique ID to each term. This is helpful

to build the TF-IDF matrix, i.e., to index it by numeric ID rather than by string. Assigning
IDs is however also critical in order to produce an alphabetically sorted output.

The third phase computes the TF-IDF scores and stores them in a matrix. Although
the pseudo-code depicts a dense matrix, a sparse matrix is used as non-stop-words
typically occur in only a fraction of the documents. The matrix is built up by rows, where
rows can be easily constructed in parallel. Each row corresponds to a document and
is constructed by iterating over all elements of the corresponding per-document term
frequency container. Each term in this container is looked up in the term frequency
container to obtain the corresponding document frequency.

6.3 Optimization of Text Analytics

We have identified optimization opportunities that are applicable to text analytics oper-
ations in general, and to TF/IDF specifically. We will experimentally demonstrate their
impact in Section 6.5.

6.3.1 Memory Management

Text analytics operate on a large collection of text fragments. A common goal is to
map these text fragments into a numeric multi-dimensional space [82], but until that
mapping is achieved, text analytics operations process individual text fragments. The
text fragments can be created and represented in multiple ways:

Text fragments are individually allocated as they are read in or discovered.
Memory allocators typically round allocated memory sizes up to frequently occurring
sizes. This will incur significant internal fragmentation as text fragments have highly
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Table 12: Time complexity of operations on associative containers assuming the con-
tainer holds n elements.

Operation Time Complexity
List Sorted List Hash Table Map

insert(k, v) O(n) O(n) O(1) O(log n)
modify(k, f, v) O(n) O(log n)a O(1) O(log n)
lookup(k) O(n) O(log n) O(1) O(log n)
iterate-seq(k, v) O(1) O(1) O(1) O(1)
iterate-par(k, v) O(1) O(1) n/a n/a
merge(cl, cr, f, g) O(nlnr) O(nl + nr) O(nr) O(nl + nr)

b

sort-by-key(c) O(n log n) O(1) n/a O(1)
sort-by-value(c) O(n log n) O(n log n) n/a n/a

aO(n) for new keys due to moving elements in the array.
bAssumes usage of the C++’11 insertion hint indicating that the element is inserted in the immediate

neighborhood of an iterator. The iterator is assumed to be the position where the previous element was
inserted.

varying lengths. Alternatively, systems using garbage collection will incur significant
garbage collection overheads when all text fragments are separately allocated. The
garbage collector must analyze these objects upon each collection pass, adding to the
overhead of garbage collection [90]. However, it can be expected that large groups of
text fragments have equal life-times in text analytics applications.

The input files are retained integrally. A fast solution results when reading in in-
put files integrally into working memory [76], e.g., using mmap on UNIX-based systems.
This avoids separate memory allocations for each fragment in the input. However,
it will result in large memory overhead and bad memory locality. In particular, when
terms repeat many times in the same document, each repetition of the word will be
held in memory while a bag-of-words model requires that only one copy of each word
is stored. This is the case, e.g., in the TF-IDF example. More importantly, retaining full
input files requires that sufficient main memory is available.

Region-based memory allocators aim to maximize performance by eradicat-
ing internal fragmentation and by efficiently de-allocating a large number of items in
bulk [29, 38, 90]. Region-based memory allocation is effective when individually allo-
cated items go out of scope at the same time, implying that their memory can be re-
claimed at the same time. Region-based memory management is more sophisticated
than retaining all input files in memory, but results in similar performance benefits.

Region-based memory management is generally provided using application-specific
code [38, 29]. Language support has been proposed [32, 85] but is not widely avail-
able. As such, we have selected a library implementation.
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Table 13: Conversion cost of associative containers holding n elements.
Source Target Container

List Sorted List Hash Table Map
List – O(n log n) O(n) O(n log n)
Sorted List O(1) – O(n) O(n)a

Hash Table O(n) O(n log n) – O(n log n)
Map O(n) O(n) O(n) –

aAssumes usage again of the C++’11 insertion hint. If absent, time complexity is O(n log n).

6.3.2 Reference Associative Containers

A myriad associative containers have been proposed in the literature, each making
distinct trade-offs in the time complexity of various operations, in average-case vs.
worst-case time complexity, in memory efficiency, in raw performance, etc. The goal
of this work is not to identify the best possible container for text analytics or for TF-IDF.
Rather, we aim (i) to demonstrate that text analytics are sensitive to the properties of
the containers, (ii) identify the opportunity for moving data from one container type to
another during an algorithm and (iii) to set out guidelines how to select container types.

We consider four different classes of associative containers: lists of key-value pairs,
lists of key-value pairs sorted by key, hash tables and hash maps. These are different
enough to warrant their study. Table 12 shows the average-case time complexity of the
common operations for these 4 data structures. Time complexity is a good predictor of
execution time given that analytics typically concerns large data sets. For sorted lists
of key-value pairs we assume that value lookup uses a binary search algorithm [46].
The time complexity of the hash table is based on the unordered map described in the
C++ standard [15], while the map is based on the C++ map, which always stores its
elements in sorted order.

Table 12 shows that a hash table provides best time complexity on a range of
operations. However, it is not possible to sort the contents of a hash table. In order
to do that, it is necessary to move the data to a different container, either a list of key-
value pairs or a map. However, once the data has been moved over, all operations
have higher time complexity. It is now more expensive to access the data. Hence, a
careful trade-off is necessary to decide on conversions.

For completeness, we show the time complexity of conversion in Table 13, and of
merge operations in Table 14.

6.3.3 Container Selection

As indicated above, containers must be selected with care, but when done right, there
is opportunity for switching containers. In this Section we outline our methodology to
select containers. Referring back to the TF-IDF algorithm (Figure 41), we observe that
each container is used in different ways throughout the algorithm. The per-document
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Table 14: Cost of merging associative containers of different types.
Right (m) Left Argument (n)

List Sorted List Hash Table Map
List O(mn) O(mn) O(m) O(m log n)
Sorted List O(mn) O(m+ n) O(m) O(m)
Hash Table O(mn) O(mn) O(m) O(m log n)
Map O(mn) O(m+ n) O(m) O(m)

term catalogs are used in line 15 only with the modify operation. At lines 9 and 29,
the catalogs are traversed sequentially, either in a merge operation or using iterate-
seq during the construction of the TF-IDF matrix. The modify operation is clearly
most efficient on a hash table (Table 12). Iteration over all elements has O(1) time
complexity for lists and the hash table. Detailed measurement has shown however
that iteration through an array-based list is more efficient than through a hash table.
As such, we consider that there is opportunity to change the container type for the
term catalogs prior to line 15.

Similarly, we analyze the usage of the document frequency container. This con-
tainer is updated using merge at line 15. The merge operation is most efficient when
the left-hand-side argument (doc freq) is a hash table (Table 14). In fact, the hash
table is the only data structure where the time complexity of merge is independent of
the size of doc freq. At line 21, however, the document frequency container must be
sorted by key, which is impossible with a hash table. A change in container is thus
necessary due to the functionality. At line 23, the document frequency container is
traversed, preferably in parallel. This is most efficient with a list-based data structure.
The subsequent modification is, however, O(1) in all cases as modify can be performed
through a pointer into the container. Finally, at line 31, a lookup of the document fre-
quency is performed, which is again more efficient with a hash table. We have thus
identified four code regions accessing the document frequency container. Each code
region has a distinct preference for the container type, which can be distinct from that
of the preceding code region.

Note that data structure conversions are a non-obvious choice when working with
potentially large data sets. In fact, the leading data analytics platforms have designed
their parallel execution exclusively around lists: Hadoop [1] operates exclusively on
key-value lists while Spark [89] is organized around resilient distributed data sets
(RDDs), which, like our key-value lists, are essentially arrays.

6.3.4 Parallelization

Parallelism occurs naturally in data analytics due to the possibility to traverse data sets
in parallel. While it is clear that an array-based list can be traversed in parallel, so too
can any iterable collection. In the worst case, parallel traversal may require additional
computation in order to get each parallel thread started. Concretely, for data structures
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Table 15: Characterization of input data sets.
Data set Description Size Files Unique

words
Various “Classic3” and “Classic4” data sets

(CISI, CRAN, MED and ACM) and
Reuters press releases (Reuters-21578)

62.8 MB 23 K 192 K

NSF Abstracts NSF research award abstracts 1990–
2003 [94]

311 MB 101 K 268 K

Gutenberg A selection of e-books from Project
Gutenberg, covering multiple languages

20.00 GB 52,361 259 M

Artificial Phoenix++ [92] word count data set. 4th
and 5th file repeat 3rd file 4 times, re-
spectively 8 times

1.33 GB 5 144 K

providing a C++ random access iterator, such as arrays, we divide the iteration range
among the threads. Each thread can jump directly to the appropriate position due
to the random access nature of the iterator. For data structures that provide a C++
input iterator, we can divide the iteration range similarly on the basis of the number
of elements to iterate over. However, finding the appropriate starting point requires
repeated increments of the iterator to traverse from the beginning of the collection to
the desired point. This can be done, e.g., using std::advance() in C++, which is a
linear-time operation for input iterators.

Apart from traversing data sets in parallel, we also need to construct associative
data structures in parallel. One approach is to use concurrent or parallel data struc-
tures where multiple threads can insert or modify elements [93, 43]. This approach
potentially has limited scalability due to the need to synchronize threads when ac-
cessing the shared data structure. The approach chosen in this work is to construct
private data structures within each thread and to merge these data structures in pairs
as threads complete. We demonstrate that this approach results in a high degree of
scalability.

If we apply the above obersvations to TF-IDF, we observe that all of the loops in
Fig. 41 can be executed in parallel. Some loops are trivial to parallelize, while others
require more work. For instance, the loop at Line 8 can be parallelized by dividing the
document in large chunks, split at a word boundary [76]. Distinct associative contain-
ers are computed for each chunk. These are reduced in pairs using a tree reduction
at the end of the loop. Moreover, the loop at Line 23 can be parallelized using a prefix
sum [9].

6.4 HPTA Library

The key component of HPTA is a word bank, a data structure that implements region-
based memory allocation of strings. The word bank consists of a list of large chunks
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of memory that are allocated using the system-supplied memory allocator. Words that
are added to the word bank are allocated at the end of the last chunk using bump-
pointer allocation [45]. When all memory in the last chunk has been used, or the next
string is too long to fit in the chunk, a new chunk is appended to the list. The chunk
size can be tuned by the programmer. In general, using larger chunk sizes results in
less system overhead.

HPTA furthermore couples each associative data structure with a word bank. As
such, the associative data structure and its word bank are created and destroyed to-
gether. The main advantage of this approach is that it is safe to store pointers to strings
in the associative data structure where the pointers point into the word bank.

HPTA furthermore implements auxiliary data structures such as sparse and dense
vectors and matrices and methods for reading and writing the WEKA file format [33].

6.5 Experimental Evaluation

We analyze the proposed optimizations for text analytics experimentally on a quad-
socket 2.6GHz Intel Xeon E7-4860 v2, totaling 48 threads. The operating system is
CentOS 6.5 with the Intel C compiler version 14.0.1. We have implemented HPTA
in C++ and parallelized key operations with Cilk [28], using Intel Cilkplus. Reported
results are averaged over 10 executions. We use 4 public data sets with varying sizes
in the evaluation (Table 15). The “artificial” data set has few documents. As such, its
execution time is dominated by word frequency computation.

We assume that documents are encoded in the UTF-8 format [104] with unique
representations for all strings. I.e., a choice is made between “á” and the diacritic “a’ ”
to represent the accented character a. Under this assumption lexicographic order-
ing of UTF-8 strings can be determined by comparing character by character without
decoding the content.

The evaluation below focuses on the TF-IDF algorithm for words. We have also
evaluated the effectiveness of the optimizations when calculating TF-IDF for 3-grams.
The results are qualitatively the same. As such we present results only for single-word
terms (1-grams).

6.5.1 Memory Management

The memory management policy has an important impact on the performance of text
analytics. Fig. 42 shows parallel speedup using the system memory allocator, region-
based memory management and retaining all input files in-memory. All associative
data structures are hash tables in this experiment. Note that parallel speedups range
from 4× to 24× and correlate strongly to the data set size.

The system allocator has the lowest performance across the board. The perfor-
mance of per-word memory allocation could be improved on by using NUMA-aware
memory allocators [59], However, NUMA-awareness is not the only issue. Analyzing
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Figure 42: Parallel speedup dependent on the memory management policy. Speedups
are normalized against region-based memory management.

the single-thread execution time demonstrates that per-word memory allocation also
incurs overhead due to extra work performed.

Phoenix [76, 92] retains all input files in-memory. This avoids memory allocation
as each word can point directly to the input file buffer. This technique is fastest for the
smaller input sets. However, it has poor parallel scalability due to increased working
set size (Fig. 42). We consider only the region-based allocator from this point on.

6.5.2 Exploration of Container Types

We first analyze performance assuming only one data structure is used throughout the
computation. Fig. 43 shows the single-threaded execution time normalized to using a
hash table. We omit the execution times for the sorting stage as this is marginal or not
applicable in the case of the hash table.

Using key-value lists throughout the computation performs up to 20x slower than
hash tables for the NSF Abstracts data set. This is interesting to note as the key-value
list abstraction is fundamental to the operation of Hadoop [1] and lies at the heart of
Spark’s RDDs [89].

The main performance bottleneck in our list-based implementation is the merge
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Figure 43: Execution time when storing the term frequency data in a hash table, a
key-value list or a map, normalized to the hash table case.
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Figure 44: Execution time when retaining the term frequency data in a hash table, or
when converting it to a key-value list or a map, normalized to the hash table case.
Document frequencies are stored in a hash table.

operation, which has time complexity O(m + n) to merge collections of n and m ele-
ments. Note that merge is called once per document and that the size of the target
container is continuously growing throughout execution. Assume for the sake of ar-
gument that d documents contain m unique words each, then the time complexity of
merge is O(d2m). A Hadoop-like sorting solution could perform better with a time
complexity of O(dm log dm), assuming a list of dm words is first constructed by con-
catenation and subsequently sorted.
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Figure 45: Execution times. Format: sort+iterate+lookup, where sort is the container
used to sort words, iterate is the container type iterated during term catalog and lookup
is the container type used for document frequency lookup. The remaining operations
are performed on hash tables.

6.5.3 Unsorted Output

We will first consider the case where the corpus need not be sorted alphabetically. In
this case, the sorting step can be omitted and document frequencies can be stored
in a hash table throughout the algorithm. We have however observed that execution
time can be reduced by converting the term frequency container to a sorted list. Term
frequencies are stored in a hash table during construction (Lines 8– 9, Fig. 41) and
converted to a list prior to Line 13. Fig. 44 shows performance when using a hash
table, a key-value list or a map for the merge and iterate-seq operations. Converting
the data to key-value list is worthwhile as it is much faster to iterate through a list vs. a
hash table. Overall execution time is reduced by up to 19% for the “Various” data set.
The “Artificial” data set is slowed down marginally (< 1%) as the conversion takes time
and does not lead to significant gains due to the low number of documents.

6.5.4 Sorted Output

Sorting the output alphabetically is best achieved by converting of document frequen-
cies to a sorted container which, in practical terms, implies a sorted key-value list
(results with a map are invariably worse). The TF-IDF phase performs lookups on the
document frequencies. These can be performed either using binary search on the list,
or on a hash table provided the data is converted back to a hash table. Fig. 45 shows
these options. The first bar corresponds to using only hash tables. The second bar
corresponds to converting term frequencies to a list, the best case for unsorted out-
put. The third bar shows execution time performing lookups using binary search on a
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Figure 46: Parallel speedup of TF-IDF normalized against using a hash table for
lookup-intensive code regions and a list for iteration-intensive code regions.

sorted key-value list. This is unacceptably slow. The fourth bar shows that converting
the document frequencies back to a hash table for fast lookup results in performance
competitive with that of the unsorted case, and often out-performs the solution with
only hash tables. Yet, the output is alphabetically sorted.

6.5.5 Parallel Scalability

Using lists rather than hash tables has additional advantages for parallel execution as
it is easier and more efficient to parallelize accesses to (array-based) lists. The best
version with unsorted output achieves higher speedup than the hash table-only version
(Fig. 46). This furthermore depends on the data set: data sets with few files observe
less benefit from converting the term frequencies to lists.

The best algorithm for sorted output can achieve better speedup than the hash
table-only version when the number of files is large. It performs poorly on the Guten-
berg data set as the number of unique words is very large, which implies more time is
spent sorting the corpus.
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Table 16: TF/IDF execution time (seconds) with HPTA, Phoenix++ and SciKit-Learn. T1
shows single-thread execution time; T48 is execution time for 48 threads; S48 = T1/T48.

HPTA Phoenix++ SciKitLearn
Data set T1 T48 S48 T1 T48 S48 T1

Various 1.8 0.5 3.7 1.9 1.2 1.7 13.4
NSF 7.5 1.7 4.4 7.7 2.7 2.9 44.5
Gutenberg 385.7 15.4 25.1 398.6 53.5 7.5 4448.0
Artificial 16.2 0.9 17.4 11.0 6.9 1.6 267.6

6.5.6 Comparison Against Single-Node Systems

We compare HPTA against Phoenix++ [92] and SciKit-Learn [74], two state-of-the-art
single-node systems.

Phoenix++ [92] is a shared memory runtime system for map-reduce workloads.
We have implemented TF-IDF in Phoenix++ with one map/reduce round. Each map
task processes one document and produces a list of (term, frequency, document-id)
tripples. The reduce tasks merge tripples into a list of (document-id, TF-IDF) pairs
per term. The map task uses a hash table internally as a performance optimization.
Note that there is no parallel processing of large files. This could be addressed by
splitting the work over multiple map/reduce pipelines, which precludes usage of hash
table within a map task and does not bring substantial added parallelism for the data
sets with a large number of files.

Phoenix++ achieves limited scalability in comparison to HPTA (Fig. 47, Table 16).
The “Artificial” workload is a special case as the map phase handles each document in
a sequential manner. As such, speedup is limited to 5. The performance of Phoenix++
is limited due to sub-optimal handling of the three optimization opportunities identified
in this work: (i) Phoenix++ uses memory mapping of input files and keeps the full files
in memory throughout the execution. We have shown this is sub-optimal to region-
based memory allocation. (ii) Phoenix++ limits the choices of data structures. While
we have made the optimal choice for a hash table within the map task, the code is oth-
erwise restricted to use specific intermediate containers and specific access patterns.
In contrast, HPTA supports freely structured programs whereby the programmer can
manipulate the resulting word–frequency map without restrictions. (iii) In order to as-
sociate word–frequency pairs with their document, Phoenix++ requires that each pair
is annotated individually. In contrast, HPTA allows to associate an entire hash table to
its document, which is significantly more space-efficient.

The final comparison is against SciKit-Learn, a popular single-threaded machine
learning library [14]. We compare against SciKit-Learn rather than Gensim [79] be-
cause of its use of the fast NumPy library. Our setup uses Python 2.7.5, SciKit-Learn
0.17.1 and NumPy 1.7.1. HPTA is one order of magnitude faster than SciKit-Learn (Ta-
ble 16). Analysis of the source code shows that SciKit-Learn is prone to the limitations
addressed by HPTA. It does not switch data structures throughout the computation.
Moreover, as Python is a managed language using garbage collection, memory man-
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Figure 47: Parallel speedup of TF-IDF comparing the optimized solution against a
map/reduce solution using Phoenix++. Speedup is normalized against HPTA.

agement is hard to control.

6.6 Conclusion

Text analytics are an important type of data analytics. We address the unexplored
issue of manipulating text fragments at high speed, which is orthogonal to achieving
speed-up by scaling-out analytics processing. The goal of this work is to formulate
guidelines for optimizing text analytics and to demonstrate that they can be imple-
mented in a reusable library. We have identified three performance optimizations:
(i) region-based memory management, (ii) selection of associative data structures and
(iii) transferring between associative data structures throughout the computation. We
note that these optimizations are not implemented in leading data analytics platforms
such as Hadoop and Spark. Our experimental evaluation however shows significant
performance improvements, up to 5× for region-based memory management, up to
20× for data structure optimization and up to 19% for changing data structures during
the computation.

The techniques presented significantly boost the performance of leading data an-
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alytics frameworks, which will reduce hardware requirements and improve time-to-
solution and energy-efficiency.

7 Memory Management in Spark

Spark [89] overcomes inefficiencies in Hadoop by creating Resilient Distributed Dataset
(RDD) [107] in-memory structures that can be queried and processed iteratively. RDDs
allow data held in external storage systems to be loaded into memory as a read-only
collection of objects partitioned across a set of machines in a cluster. Access to data
represented by RDDs are therefore much faster than access to data on disk in tra-
ditional MapReduce. Transformations are applied on existing RDDs with operations
map, filter, reduce and join. ASAP leverages Spark to overcome the limitation of itera-
tive processing in MapReduce.

However, Spark can suffer from I/O inefficiency due to the manner in which data is
read from disk. Spark reads data into an RDD from disk before it can subsequently
partition the RDD to optimise further transformations of data on worker nodes. In
Spark there is a limited choice of API’s for reading in large datasets and unfortunately
the options require that all data is read into memory at once before processing may
begin even though processing of each individual text fragment is not processed until a
later stage by worker nodes. It therefore results in IO blocking at the input stage which
can be pronounced when the volume of data is large as is often the case with datasets
of a textual nature.

Spark also suffers inefficiencies in its handling of memory for large text datasets.
Documents are typically long, and there are many words in each document. Words
on average are short and there exists much repititon of words across a corpus. Spark
uses a managed memory system based on the Java Virtual Machine (JVM). When
large datasets are read each individual text fragment must be separately allocated.
This means that each time the JVM initiates a garbage collection phase all individual
references to text fragments, of which there are many, must be separately examined
to determine if an object is still in scope.

The upfront nature of input and overworked garbage collection can cause memory
paging and workers to freeze. Spark workers sometimes detach from the master due
to exceeding time-out intervals waiting for ’still alive’ signals.

In this work, firstly, our aim was to implement library utilities for Spark to optimize the
task of inputting large textual datasets. Secondly, we provide a memory management
solution which caters to the particular demands of storing large amounts of small and
replicated textual fragments which tend to come into scope at the same time and also
go out of scope at the same time.
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class ASAPWordsIterable[String](val dname: java.lang.String, val fname: java.lang.String) extends
Iterable [ java.lang.String ] {

def iterator = ASAPWordsIterator(dname, fname)
}

class ASAPWordsIterable[String](val dname: java.lang.String, val fname: java.lang.String) extends
Iterable [ java.lang.String ] {

def iterator = ASAPWordsIterator(dname, fname)
}

}

Figure 48: Iterables defined for a File and a Document.

7.1 TF/IDF

We studied Term Frequency Inverse Document Frequency (TF/IDF) as a guiding ex-
ample of text analytics. It exposes important recurring properties of text analytics
operations around the area of memory management and input. For a description of
TF/IDF, see Section 6.2.

7.2 Opimized input/output for Spark

Spark provides wholeTextFiles API to enable the reading of a directory containing mul-
tiple small text files, and returns each of them as (filename, content) pairs [89]. We
studied the performance slowdown for the processing of large textual datasets using
the TF/IDF algorithm and observered that the call to wholeTextFiles took a dispropor-
tionate amount of time in relation to the overall running time of analytics queries.

To overcome the bottleneck of IO in Spark we implemented a scheme of lazy tok-
enization where workers tokenize terms as they progress through the documents in-
stead of requiring that all data is read into memory upront. This was achieved in Spark
by defining Scala FileIterables over files and a corresponding WordIterable over words
within files (Fig. 48). For each iterable we specialised an iterator and for each iterator
we specialised the next and hasNext member functions to effect the retrieval of the
next file or word in the input stream (Fig. 49). The default version using wholeTextFiles
passes a prepopulated nested list of documents and containing words to mllib’s Term
Frequency function. In our implementation we pass the new FileIterable object to Term
Frequency and on this iterable next is called to cause the next input fragment to be
read from file. This drip-feeding of data occurs in an interleaved fashing with the ac-
tual processing of fragments at the worker node site. This approach shares the work
of inputting the dataset between worker nodes, avoids IO blocking and improves data
locality.
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class ASAPWordsIterator(val dname: String, val fname: String) extends Iterator[String ] {

var dirname = dname
var filename = fname
var fullname :String = dirname+”/”+filename

val fileSrcMap = scala. collection .mutable.Map[String,Source]()
var lineIterator = managedFromFile(fullname) { s => s.getLines }
var wordIterator = lineIterator .next. split ( ”\\s+”). iterator

def next = {
if (! wordIterator .hasNext) {

while ((! wordIterator .hasNext) && ( lineIterator .hasNext))
wordIterator = lineIterator .next. split ( ”\\s+”). iterator

}
if (wordIterator .hasNext)

wordIterator .next
else

throw new Exception(Call to next on empty Word Iterator)
}

def hasNext = {
if (( wordIterator .hasNext) || ( lineIterator .hasNext))

true
else {

fileSrcMap(fullname).close()
false

} } }

Figure 49: Iterator’s specialisation of next and hasNext.

7.3 Optimized memory management for Spark

To achieve a better memory management for Spark we implemented a library for off-
heap allocation of words from a corpus for TF/IDF. We used ByteBuffers to mmap
the contents of large files from disk to main memory, and operate directly on word
buffers which are effectively demarcated subsections of the global buffer. The Term
Frequency associative data structure containing the words stores for each word a set
of pointers to mark the start and end of the word in the global byte buffer. In this way
no allocation is made on the heap. This avoids use of the JVM memory allocator and
most importantly avoids expensive garbage collection passes where each allocated
word has to be examined separately before determining if it can be removed. The
main disadvantage of this approach is that it requires a machine to have sufficient
main memory to make mapping large files from disk to memory possible. But we
argue that for the purposes of selecting the best backend engine this optimization
should be evaluated as an alternative materializations if the memory specifications of
the machine is adequate.

85



ASAP FP7 Project
ASAP D2.3

Program analysis and transformation

In the code we achieve the mapping from file to in memory ByteBuffer by acquiring
a read only channel from an input file strream:

FileInputStream.getChannel.read (globalByteBuffer)

7.4 Experiments

We ran benchmarks for TF/IDF on 4 datasets shown in Table 15. We evaluated the
iterative and off-heap libraries against the default wholeTextFile API of Spark on a
quad-socket 2.6GHz Intel Xeon E7-4860 v2, 256GB RAM, totaling 48 threads, in a
shared memory setup. Results in 50 show a 13 times speedup of the off-heap library
over wholeTextFiles on gutenberg20GB dataset. The speed-up achieved with off-heap
over iterators can be as much as 1.2 showing that at least for some datasets off-heap
is more efficient than the straight iterator library. For example, iterators achieves an
11 times speedup over wholeTextFiles on guten20GB dataset versus 13 times for off-
heap. For word count a speedup of 3.5 is seen for off-heap over wholeTextFile.

The results show that drip feeding input tokens to Spark for processng, on shared
memory, is worthwhile. Additionally allocating memory off-heap is also beneficial as in
the results show that we can achieve a further 1.2 speedup over the iterator optimiza-
tion alone.

Figure 50: Parallel speedup comparisons with iterator vs wholeTextFile input methods
and off-heap memory management.

We are currently conducting similar experiments to evaluate the merits of Iterative
input patterns and Off-heap memory optimization on distributed implementations of
Spark.
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8 Conclusion

We have described the Swan language and its features that were designed specifically
for the analytics workloads that we have analyzed. Swan extends the Cilk parallel pro-
gramming language with three features: data-flow dependencies, a fine-grain schedul-
ing hint and a NUMA-aware scheduling hint. We have implemented Swan in the clang
compiler, part of the LLVM toolsuite and have made it publically available. We have
demonstrated that Swan out-performs state-of-the-art data analytics systems in the
same space.

Several avenues for future research remain open. On the one hand, scaling out
Swan is possible using the data-flow annotations. These annotations allow tasks to
express the data that they require to operate on and allow the runtime system to vir-
tualize the memory, moving data to other nodes in the data center as it see fit without
programmer intervention.

Another avenue, which we have embarked upon but not completed, is to apply
the observations we have made in the context of Swan to other analytics frameworks.
In particular, we are investigating the optimizations identified for text analytics in the
context of Spark. Our preliminary results have been reported and are promising.
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