

ASAP is funded by the European Commission DG

Seventh Framework Programmed, Contract no.:

is funded by the European Commission DG-INFSO

Seventh Framework Programmed, Contract no.: 619706

IReS Platform v.1

Deliverable no.: 3.2

27/04/2016

D 3.2 – IReS Platform v.1 2 / 64

Deliverable Title IReS Platform v.1

Filename D3.2_revised.pdf

Author(s) K. Doka, N. Papailiou, C. Mantas, V.

Giannakouris, D.Tsoumakos

Date 27-04-2016

Start of the project: 01/03/2014

Duration: 3 years

Project coordinator organization: FORTH

Deliverable title: IReS Platform v.1

Deliverable no.: 3.2

Due date of deliverable: 31/08/2015

Actual submission date: 31/08/2015

Revision and resubmission date: 27/04/2016

Dissemination Level

X PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable status version control

Version Date Author

0.1 15/07/2015 K. Doka

0.2 30/07/2015 K. Doka, N. Papailiou, C.

Mantas

1.0 10/08/2015 K. Doka, V. Giannakouris

2.0 24/08/2015 K. Doka, D. Tsoumakos

3.0 27/08/2015 K. Doka

4.0 20/04/2016 K. Doka, N. Papailiou, D.

Tsoumakos

D 3.2 – IReS Platform v.1 3 / 64

Abstract

This deliverable is a report on the first version of the Intelligent, Multi-engine Resource

Scheduling (IReS) platform. This version incorporates the prototypes of all the core modules

of the IReS architecture, including the Modeling, Decision Making and Execution modules.

The report first gives a quick overview of the final IReS platform architecture and then delves

into the implementation details of each involved module. Internal and external interfaces

are specifically defined and finally the profiling, modeling and decision making modules are

evaluated in terms of performance, efficacy and accuracy of the produced models.

Keywords

Workflow planning, modeling, profiling, compute engine, data store

D 3.2 – IReS Platform v.1 4 / 64

Table of Contents

List of Figures ... 6

List of Tables .. 7

List of Abbreviations ... 7

1 Introduction ... 8

1.1 IReS Overview .. 8

1.2 Purpose of the Document ... 9

1.3 Document Structure ... 9

2 IReS Architecture and external API .. 10

2.1 General Architecture .. 10

2.2 Workflows .. 11

2.2.1 Profiling Workflow ... 11

2.2.2 Planning and Execution Workflow .. 12

2.3 External API ... 13

3 Implementation ... 16

3.1 Job Parsing Module ... 16

3.1.1 Tree-metadata framework.. 16

3.1.2 Dataset metadata description.. 18

3.1.3 Operator metadata description .. 19

3.1.4 Tree-metadata matching ... 21

3.1.5 Abstract operator description ... 21

3.1.6 Abstract workflow description ... 22

3.2 Profiling and modeling modules .. 23

3.2.1 Black box profiling approach ... 23

3.2.2 Profiling challenges .. 24

3.2.3 Profiling approach .. 25

3.2.4 Adaptive sampling .. 26

3.2.5 Approximation models ... 27

3.3 Decision making module ... 27

3.4 Enforcer module ... 32

3.4.1 YARN workflow execution engine ... 33

3.4.2 Execution description ... 35

4 Infrastructure and deployment ... 37

D 3.2 – IReS Platform v.1 5 / 64

4.1 Engines ... 37

4.1.1 Hadoop and MapReduce .. 37

4.1.2 Spark and MLib .. 39

4.1.3 WEKA ... 39

4.2 Clusters .. 39

4.2.1 IMR Cluster .. 39

4.2.2 ICCS Cluster ... 40

4.3 Operator library ... 40

4.3.1 Analytics operators .. 40

4.3.2 Auxiliary operators .. 44

4.4 Workflows .. 45

4.4.1 Web analytics - Clustering .. 45

4.4.2 Telco analytics - Peak Detection ... 45

4.4.3 SQL workflow ... 45

5 Results and evaluation .. 46

5.1 Profiling ... 46

5.1.1 Results overview ... 47

5.1.2 TF/IDF ... 47

5.1.3 K-Means .. 50

5.1.4 LDA ... 51

5.1.5 Word2Vec .. 52

5.2 Modeling .. 54

5.2.1 Introduction .. 54

5.2.2 Data Modeling .. 54

5.2.3 Machine Learning Models ... 55

5.2.4 Data Visualization ... 56

5.3 Decision Making ... 59

6 Conclusion ... 61

References .. 62

Appendix A ... 64

Appendix B ... 64

D 3.2 – IReS Platform v.1 6 / 64

List of Figures

Figure 1 The architecture of the IReS platform .. 11

Figure 2 Profiling Workflow... 12

Figure 3 Planning and execution workflow ... 13

Figure 4: Dataset metadata ... 19

Figure 5: Materialized operator metadata .. 20

Figure 6: Abstract operator metadata .. 22

Figure 7: Abstract workflow description .. 23

Figure 8 Main profiling algorithm .. 26

Figure 9 Dynamic programming workflow optimizer ... 28

Figure 10: Abstract TF/IDF, k-Means workflow .. 30

Figure 11: Alternative plans for the TF/IDF, k-Means workflow .. 30

Figure 12: Abstract TPCH SQL query workflow ... 31

Figure 13: Alternative plans for the TPCH SQL query workflow ... 31

Figure 14: Selected TF/IDF, k-Means execution plan .. 32

Figure 15 Selected TPC-H SQL query workflow execution plan .. 32

Figure 16 The effect of stemming of document vector dimensions ... 42

Figure 17 Monitoring Metrics .. 46

Figure 18 TF/IDF Engine Comparison ... 48

Figure 19 Documents vs Term count .. 49

Figure 20 TF/IDF input vs output sizes ... 50

Figure 21 K-Means Engine Comparison .. 51

Figure 22 Scaling the performance of the two LDA implementations in Spark for for
varying number documents. .. 52

Figure 23 Performance of Word2Vec with respect to the number of input documents. . 53

Figure 24 Mahout-to-Spark Mover .. 54

Figure 25 Model and sample values of the Word2Vec operator implemented in Scala
over Spark ... 56

Figure 26 Metadata description of the k-means operator in MLlib .. 57

Figure 27 Visualization of the 3-dimensional ML-Perceptron model of the k-means
operator in MLlib .. 58

Figure 28 Visualization of the 4-dimensional IsoRegression and MLPerceptron models of
a sort operator implementation in Hive. ... 59

Figure 29: Decision Making execution time for variable number of workflow nodes 60

D 3.2 – IReS Platform v.1 7 / 64

Figure 30: Decision Making execution time for various numbers of materialized operator
matches .. 60

List of Tables

Table 1 The external API of the IReS platform. ... 13

List of Abbreviations

ML Machine Learning

M-R Map-Reduce

RDMS Relational Database Management System

SPJ Select-Project-Join

TF/IDF Term Frequency/Inverted Document Frequency

VM Virtual Machine

D 3.2 – IReS Platform v.1 8 / 64

1 Introduction

1.1 IReS Overview

The demand for near-real-time, data-driven analytics has given rise to diverse execution
engines and data stores that target specific data and computation types. Many of these
systems are now offered as a service by IaaS providers, enabling a very wide
deployment range. There also exist approaches in the literature that manage to optimize
their performance (e.g., [12] [30]) by automatically tuning a number of configuration
parameters. Yet, these schemes assume strictly single-engine environments (mainly the
Hadoop ecosystem), thus considering specific data formats and query/analytics task
types.

However, modern workflows have become increasingly long and complex and may
include multiple operators, ranging from simple Select-Project-Join (SPJ) to complex
Machine Learning (ML) or custom operators that operate on diverse data types (e.g.,
relational, key-value, graph, etc.) generated from different resources. What is more,
analysts need to be able to execute them under varying constraints and policies (e.g.,
optimize performance or cost, require different fault-tolerance degrees, etc.). There
currently exists no single platform that can optimize for this complexity [41] .

Sensing this trend, cloud software companies now offer software distributions in pre-
cooked VM images or as a service. These distributions incorporate different processing

frameworks, data stores and libraries to alleviate the burden of multiple installations
and configurations (e.g., [4] [13] [15] [35]). Yet, such multi-engine environments lack
a meta-scheduler that could automatically match tasks to the right engine(s) according
to multiple criteria, deploy and run them without manual intervention.

To address multi-engine analytics workflow optimization we designed and developed
the Intelligent Multi-Engine Resource Scheduler (IReS), an integrated, open source
platform for managing, executing and monitoring complex analytics workflows. IReS is a
core component of the ASAP system architecture and its main task is to "mix-and-
match" diverse execution engines and data stores in order to optimize a workflow with
respect to multiple, user-defined criteria [41] .

To that end, IReS incorporates a modeling framework that constantly evaluates the cost
and performance of data and computational resources under various configuration
setups in order to decide on the most advantageous store, indexing and execution
pattern.

A tree-based metadata language that describes operators in abstract and instantiated
forms enables the search and matching of operators that perform a similar task in the
planning phase. Afterwards, a decision making module chooses among the different
equivalent execution plans (i.e., on different engines, resulting in equivalent output) the
one that best fits the given policy based on cost and performance models. The chosen
plan is scheduled and enforced, taking into account the available resources.

D 3.2 – IReS Platform v.1 9 / 64

IReS [7] is a fully open-source platform1 (under the Apache License version 2.0) that
targets both low-level (e.g., join, sort, etc.) as well as high-level (e.g., machine learning,
graph processing) operators, treating them as black boxes. The extensibility of the
platform is one of the main goals of IReS. Thanks to the generic methods it relies upon,
IReS can easily include additional operators and engines.

1.2 Purpose of the Document

This document serves as a report on the first version of the IReS platform and
accompanies its prototype implementation. Its purpose is to delve into the
implementation details of the core architectural modules, specify the internal and
external APIs for inter- and intra-platform communication and present an experimental
evaluation of the platform's accuracy of operator/engine modeling, efficacy of profiling
and performance of decision-making.

1.3 Document Structure

D3.2 is structured as follows:

• Chapter 2 gives a brief overview of the finalized architecture of the IReS platform,
including all refinements over the initial architecture as described in D3.1.
Moreover, it specifies the external API, through which IReS communicates with
external modules of the ASAP system.

• Chapter 3 gives details on the current status of the implementation of all modules
involved in the first version of the IReS platform. Moreover, it defines the internal
APIs, through which the intra-platform communication is performed.

• Chapter 4 describes the infrastructure where the IReS platform has been
deployed, the specific runtimes and data stores it currently supports and the
implemented and ready-to-use operators that populate the IReS operator library
so far. These operators are used to formulate some basic workflows driven by the
use-case scenarios of D8.2 and D9.2. These workflows are also presented here.

• Chapter 5 experimentally evaluates the core modules of IReS, namely the
profiling, the modeling and the decision making modules. Experiments focus on
performance and scalability aspects as well as accuracy of the models.

• Chapter 6 concludes the deliverable and outlines our next steps.

1 Source available in https://github.com/project-asap/IReS-Platform

D 3.2 – IReS Platform v.1 10 / 64

2 IReS Architecture and external API

This chapter revisits the IReS architecture, as defined in D3.1, and finalizes it after
refining some parts. Moreover, the way external components of the ASAP system
communicate with IReS is specified through a well-defined API.

2.1 General Architecture

Figure 1 depicts the final architecture of the IReS platform as well as its interaction with
external components, being developed in WP 4, 5 and 6. IReS comprises of three layers,
the interface, the optimizer and the executor layer.

The interface layer is responsible for communicating with the application UI in order to
receive the input that is necessary for its operations. It consists of the job parser

module, which identifies execution artifacts such as operators, data, their dependencies
and accompanying metadata. Moreover, it validates the user-defined policy. All this
information must be robustly identified, structured in a dependency graph and stored.

The optimizer layer is responsible for optimizing the execution of an analytics workflow
with respect to the policy provided by the user. The core component of the optimizer is
the Decision Making module, which determines the best execution plan in real-time.
This entails deciding on where each subtask is to be run, under what amount of
resources provisioned, the plan for moving data to/from their current locations and
between runtimes (if more than one is chosen) and defining the output destinations.
Such a decision must rely on the characteristics of the analytics task in hand and the
models of all possible engines. These models are produced by the Modeling module and
stored in a database called Model DB. The initial model of an engine results from
profiling and benchmarking operations in an offline manner, through the Profiling
module. This module directly interacts with the pool of physical resources and the
monitoring layer in-between. While the workflow is being executed, the initial models
are refined in an online manner by the Model refinement module, using monitoring
information of the actual run. Such monitoring information is kept in the IReS DB and is
utilized by the decision making module as well, to enable real-time, dynamic
adjustments of the execution plan based on the most up-to-date knowledge.

The executor layer is the layer that enforces the selected plan over the physical
infrastructure. It includes methods and tools that translate high level “start runtime
under x amount of resources”, “move data from site Y to Z” type of commands to a
workflow of primitives as understood by the specific runtimes and storage engines.
Moreover, it is responsible for ensuring fault tolerance and robustness through real-
time monitoring.

More details about the role and functionality of each module can be found in D3.1. The
following chapter elaborates on the internals of each module as well as on
implementation decisions and initial evaluation.

D 3.2 – IReS Platform v.1 11 / 64

Figure 1 The architecture of the IReS platform

2.2 Workflows

The main functionality of the IReS platform is covered by two workflows, the Profiling
and the Planning and Execution workflows.

2.2.1 Profiling Workflow

This workflow, depicted in Figure 2, describes the process that takes place whenever a
new materialized operator, accompanied by its metadata description, is added to the
operator library of the IReS platform. This operator insertion triggers an offline profiling
process to obtain knowledge about its behavior under different configurations.

During profiling, a number of different operator configurations are adaptively selected
by the profiler. The operator is then executed under these different setups and a number
of metrics (currently 45) are monitored in order to train and create accurate
performance models. These metrics include: (a) execution time, (b) all the monitoring
metrics reported by the ganglia2 monitoring tool (e.g., CPU, RAM, iops, network traffic
etc.), (c) operator specific metrics (e.g., number of results, output size, etc.). Moreover,

2 http://ganglia.info/

D 3.2 – IReS Platform v.1 12 / 64

the developer can provide her own monitoring probes through a well-defined API. These
models populate a knowledge base, Model DB, that can be used to facilitate the decision
making process.

Profiling is an iterative process, with configurations being selected dynamically, based
on the accuracy of the model with respect to the so far collected measures. More details
about the implementation of the profiling module follow in section 3.2.

Figure 2 Profiling Workflow

2.2.2 Planning and Execution Workflow

This workflow (see Figure 3) takes place when a new workflow along with the desired
optimization policy is provided for execution by the user. This policy can consist of one
or a function of multiple operator performance metrics like cost, execution time, etc.

The Decision Making module matches the operators present in the user-provided
workflow with the actual implementations of them residing in the platform's operator
library and explores the possible alternatives in order to find the plan that best matches
the user-defined policy. Details about this process and its complexity are provided in
section 3.3.

When this plan is located, it is first validated against the current resources and their load
and then executed by the Enforcer module. If necessary, IReS falls back to the execution
of another plan (e.g., when the Enforcer detects that the actual plan execution deviates
largely from its expected behavior).

D 3.2 – IReS Platform v.1 13 / 64

Lastly, IReS manages the elasticity of the underlying infrastructure by monitoring the
utilization of the engine resources. Based on this monitoring information it can take
decisions for allocating and de-allocating computing resources in order to improve the
general execution of workflows and operators.

Figure 3 Planning and execution workflow

2.3 External API

The functionality of the IReS platform is exposed to the rest of the ASAP components
through a RESTful API, described in detail in Table 1. The intra-IReS API, through which
the various modules of the IReS architecture communicate and interact, is presented in
the following chapter.

Table 1 The external API of the IReS platform.

Nr. RESTful API: IReS platform Description

 Type Resource URL Consumes Produces

D 3.2 – IReS Platform v.1 14 / 64

1 GET /datasets - List of

datasets

Returns a list of the existing

datasets

2 GET /datasets/{id} id Dataset xml Return the description of a

specific dataset

3 PUT /datasets/edit/{id} id, xml

description

- If the specific dataset exists in the

library, its metadata are replaced

with the new ones. Else it gets

added along with its metadata

description.

4 GET /datasets/delete/{id} id - Deletes the specified dataset

5 GET /operators - List of

operators

Returns a list of the existing

materialized operators

6 GET / operators /{id} id Operator

xml

Return the description of a

specific operator

7 PUT / operators /edit/{id} id, xml

description

- If the specific operator exists in

the library, its metadata are

replaced with the new ones. Else

it gets added along with its

metadata description.

8 GET / operators /delete/{id} id - Deletes the specified operator.

9 GET / operators /{id}/profile id - Starts the profiling of the

specified operator.

10 GET / operators

/{id}/estimateMetric

id, output

metric, list

of input

metric

values

Estimation

of output

metric

Returns an estimation of the

specified output metric for the

provided values of the input

space metrics.

11 GET /abstractOperators - List of

operators

Returns a list of the existing

abstract operators

12 GET / abstractOperators

/{id}

id Operator

xml

Returns the description of a

specific abstract operator

13 PUT / abstractOperators

/edit/{id}

id, xml

description

- If the specific abstract operator

exists in the library, its metadata

are replaced with the new ones.

Else it gets added along with its

metadata description.

14 GET / abstractOperators

/delete/{id}

id - Deletes the specified abstract

operator

15 GET /abstractOperators/{id}

/checkMatches

id List of

operators

Returns a list of the existing

materialized operators that

match the specified abstract

operator.

16 GET /abstractWorkflows - List of

workflows

Returns a list of the existing

abstract workflows

17 GET / abstractWorkflows

/{id}

id Workflow

xml

Returns the description of a

specific abstract workflow

18 PUT / abstractWorkflows

/edit/{id}

id, xml - If the specific abstract workflow

exists in the library, its metadata

D 3.2 – IReS Platform v.1 15 / 64

description

are replaced with the new ones.

Else it gets added along with its

metadata description.

19 GET / abstractWorkflows

/delete/{id}

id - Deletes the specified abstract

workflow

20 GET /materializedWorkflow

s

- List of

workflows

Returns a list of the existing

materialized workflows

21 GET /

materializedWorkflows

/{id}

id Workflow

xml

Return the description of a

specific materialized workflow

22 GET /

materializedWorkflows

/execute/{id}

id id Starts the execution of the

specified materialized workflow

and returns the id of the created

running workflow

23 GET /runningWorkflows - List of

workflows

Returns a list of the existing

running workflows

24 GET / runningWorkflows

/{id}

id Workflow

xml

Return the description of a

specific running workflow

25 GET / runningWorkflows

/kill/{id}

id - Stops the execution of the

specified running workflow

D 3.2 – IReS Platform v.1 16 / 64

3 Implementation

In this section, we describe in detail the current implementation of the IReS platform [7]
. We discuss the functionalities provided by the different modules of the platform as well
as the intuition behind the architectural and algorithmic decisions made. The code of the
IReS platform is open source and can be found in https://github.com/project-asap/IReS-
Platform.

3.1 Job Parsing Module

This module3 is responsible for handling the interaction between the users and the IReS
platform. A user should be able to define operators, datasets, workflows, etc. along with
their properties and restrictions using a common description framework. The Job
parsing module is thus responsible for both defining this description framework and
being able to parse and utilize the user provided input.

The main challenges of defining such a metadata description framework are:

• User extensibility: Users should be able to define and add their own metadata
for operators and datasets. User defined metadata can be used for fine-grained
operator description. Using a predefined set of metadata could hinder the
extensibility of the platform for supporting new engines and operators.

• Abstraction: The IReS platform targets the optimization of multi-engine
workflows, examining alternative execution paths of the same conceptual
workflow, using various underlying engine and operator implementations. To be
able to describe such scenarios, the user should be able to specify the data and
operators that compose her workflow in a way as abstract as she desires. The
IReS planner and workflow scheduler need to remove that abstraction, find all
the alternative ways of materializing the workflow and select the most beneficial,
according to the user-defined policy.

3.1.1 Tree-metadata framework

Our proposed metadata framework describes data and operators. Data and operators
can be either abstract or materialized. Abstract are the operators and datasets that are
described partially or at a high level by the user when composing her workflow whereas
materialized are the actual operator implementations and existing datasets, either
provided by the user or residing in a repository.

Both data and operators need to be accompanied by a set of metadata, i.e., properties
that describe them. Such properties include input data types and parameters of
operators, location of data objects or operator invocation scripts, data schemata,
implementation details, engines etc. The provided metadata can be used to:

(a) Match abstract operators to materialized ones

3 https://github.com/project-asap/IReS-Platform/tree/master/asap-platform/asap-server

D 3.2 – IReS Platform v.1 17 / 64

(b) Check the usability of a dataset as input for an operator. If the dataset does not
match the operator’s input, its metadata can be also used to check for appropriate
transform/move operators that can be applied.

(c) Provide optimization parameters like the profiling input/output space (the
parameters to take into account and the metrics to measure respectively) or user
provided profile functions. This information is based on our black box operator
profiling approach described in Section 3.2.

(d) Provide execution parameters like the path of a file in the filesystem or
arguments for the execution of the operator script.

To provide such a user extensible metadata framework we opt for a generic tree
metadata format. To avoid restricting the user and allow for extensibility, the first levels
of the metadata tree are predefined but users can add their ad-hoc subtrees to define
their custom data or operators. Moreover, some fields (mostly the ones related to the
operator and data requirements) are compulsory while the rest are optional and user
defined. Materialized data and operators need to have all their compulsory fields filled in
with information. Abstract data and operators do not adhere to this rule. In general we
define the following predefined parts of the meta-data tree:

3.1.1.1 Constraints

This sub-tree contains all the meta-data information that is used to match abstract and
materialized operators and datasets. The information contained in this sub-tree should
contain input/output specification for operators, algorithm, engine specification and
whatever else the user considers that should take part in the abstract/materialized
matching of operators. The predefined, compulsory fields of the operator metadata are
primarily the number of its inputs and outputs:

Constraints.Input.number=<number of inputs>
Constraints.Output.number=<number of outputs>

In the above description, the metadata were presented with a key-value representation
were the key denotes the path from the root node of the tree to the specified metadata
leaf. For each defined input and output the respective specification metadata should be
put in the following subtrees:

Constraints.Input{id}
Constraints.Output{id}

The respective metadata subtrees are automatically matched with the existing datasets
in order to check for usability or move/transform operators that should be applied. The
respective output metadata specifications are also copied to the metadata of the
intermediate output workflow datasets in order to enforce data constraints along the
workflow.

3.1.1.2 Execution

This subtree contains all the information required for the execution of a materialized
operator. Our execution engine is described in detail in Section 3.4 and utilizes YARN in
order to execute a DAG graph of operators. Execution specific metadata like dataset

D 3.2 – IReS Platform v.1 18 / 64

paths or details about staging in/out files from containers that use their local file system
are provided here. This subtree has the following predefined metadata for datasets:

Execution.path=<the path of the dataset>

For operators we have the following metadata:

Execution.LuaScript=<Lua script of the operator>
Execution.Arguments.number=<number of arguments of the execution script>
Execution.Argument{id}=<value of the specific argument>
Execution.Output{id}.path=<the path of the specific output dataset>
Execution.copyToLocal=<list of files that need to be copied in the container before the
execution of the operator>
Execution.copyFromLocal=<list of files that need to be maintained after the execution of the
operator>

The use of those metadata is further described in Section 3.4, where the Enforcer
module of IReS is presented. In general, these metadata give information about the
location of execution script for the operator as well as for its arguments. We also give
information about stage in and stage out files that are required by the distributed
execution of operators using YARN containers.

3.1.1.3 Optimization

This part of the metadata gives information required by the profiler module. They are
used to effectively estimate the execution metrics of operators and utilize them to
generate execution plans for workflows.

Optimization.inputSpace.{metric name}=<type>
Optimization.outputSpace.{metric name}=<type>
Optimization.model.{metric name}=<UserFunction or Profile>

As can be seen from the above metadata, described in Section 3.2.1, users are able to
define the input/output profiling space for each materialized operator. For each of the
output metrics the user is able to either provide a user defined function, used for
estimation, or state to the system that the metric should be estimated using a profiling
procedure.

In the following sections, we give some concrete examples for the metadata of datasets
and operators. For better understanding we give both a visual representation of the
metadata tree as can be seen from the platform’s web interface and also the actual
metadata in key-values where the key denotes the path of the specific metadata node.

3.1.2 Dataset metadata description

In this section, we give an example of a dataset description (Figure 4).

D 3.2 – IReS Platform v.1 19 / 64

Figure 4: Dataset metadata

Optimization.documents=2000
Constraints.Engine.FS=HDFS
Constraints.type=SequenceFile
Execution.path=hdfs:///user/root/asapDataAll

3.1.3 Operator metadata description

In this section, we give an example of a materialized operator description (Figure 5).

D 3.2 – IReS Platform v.1 20 / 64

Figure 5: Materialized operator metadata

Constraints.Input.number=1
Constraints.Output.number=1
Constraints.Input0.Engine.FS=HDFS
Constraints.Input0.type=SequenceFile
Constraints.Output0.Engine.FS=HDFS
Constraints.Output0.type=SequenceFile
Constraints.OpSpecification.Algorithm.name=TF_IDF
Constraints.EngineSpecification.Distributed.MapReduce.masterLocation=127.0.0.1
Optimization.inputSpace.In0.documents=Double,100.0,150000.0,10000.0

D 3.2 – IReS Platform v.1 21 / 64

Optimization.outputSpace.execTime=Double
Optimization.outputSpace.Out0.points=Integer
Optimization.outputSpace.cost=Double
Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.AbstractWekaModel
Optimization.model.Out0.points=gr.ntua.ece.cslab.panic.core.models.UserFunction
Optimization.Out0.points=In0.documents
Optimization.model.cost=gr.ntua.ece.cslab.panic.core.models.UserFunction
Optimization.cost=15.0
Execution.LuaScript=TF_IDF_mahout.lua
Execution.Arguments.number=2
Execution.Argument0=In0.path
Execution.Argument1=$HDFS_OP_DIR/tfidf
Execution.Output0.path=$HDFS_OP_DIR/tfidf

3.1.4 Tree-metadata matching

Apart from materialized operators and datasets the user of the IReS platform can define
abstract operators and datasets that are used for creating abstract workflows and can be
matched with the existing materialized ones in order to find all possible execution plans.
Abstract operators are described using the same tree metadata framework, described in
the previous sections. The main difference is that abstract operators can have less
metadata attributes than the materialized ones. We also allow users to add regular
expressions in the abstract operator metadata. This is done in order for IReS platform to
be able to support more generic matching. For example the * symbol under a field means
that the abstract operator can match materialized ones with any value in that field.

The matching procedure checks if all the metadata of the abstract operator are present
in (match if they are regular expressions) the materialized operator. To make this check
efficient, the metadata trees are stored in main memory tree structures. The tree
structure used store all children of a metadata node in a sorted list according to their
name. Thus, if both metadata trees are stored with ordering we can perform a merge
check of both trees in order to find if the operators match. This procedure iterates over
the sorted metadata and tries to match the abstract with the materialized ones. To check
the matching of two operators we require, in worst case, only one pass over the
metadata of both operators. Thus, the matching process is linear to the size of the
metadata trees and can be used very efficiently.

3.1.5 Abstract operator description

In this section, we give an example of an abstract operator description (Figure 6).

D 3.2 – IReS Platform v.1 22 / 64

Figure 6: Abstract operator metadata

Constraints.Output.number=1
Constraints.Input.number=1
Constraints.OpSpecification.Algorithm.name=TF_IDF

As we can see, the abstract operator contains metadata only under the constraints
subtree because only those are used for the matching procedure. It mainly targets the
matching of the algorithmic operation of the operators as well as the matching of inputs
and outputs used. This operator matches with the materialized TF_IDF operator
presented in the previous section.

3.1.6 Abstract workflow description

In this section, we present the description of an abstract workflow. The user of the IReS
platform has the ability to describe a workflow in an abstract way and the let the system
find all possible matches for the operators and generate the materialized workflow that
contains all the possible alternative execution plans. An abstract workflow can be
created using both materialized and abstract datasets and operators. Materialized
datasets are used to define the already existing input datasets of the workflow. Abstract
datasets can be used for defining the intermediate results that are created after the
execution of a specific operator. These abstract datasets will get concrete specifications
from the materialized operator’s output specifications when the materialized workflow
is generated. Concerning operators, the user can create her workflow using materialized
operators that exist in the operator library or abstract operators that match with several
of the existing materialized operators.

An example of an abstract workflow is depicted in Figure 7.

D 3.2 – IReS Platform v.1 23 / 64

Figure 7: Abstract workflow description

An abstract workflow is defined as a DAG graph that connects a mixture of abstract and
materialized datasets and operators. The missing information needed for describing the
DAG graph is a set of edges. For example the description of the previous workflow can
be created using the following list of edges (d1 is the output of TF_IDF and d2 is the
output of k-Means).

crawlDocuments,TF_IDF
TF_IDF,d1
d1,k-Means
k-Means,d2
d2,$$target

A special tag $$target is used to define which dataset is the final output of the DAG
graph.

3.2 Profiling and modeling modules

In this section, we present the techniques used by the IReS platform in order to estimate
the performance and cost characteristics of different operators over various engines,
offering adaptive and highly extensible analytics execution. The main idea is to provide
predictions for each operator’s performance by actually running the operator in
representative configuration combinations. Although the number of these combinations
grows exponentially to the number of inputs, ASAP’s Profiler is able to intelligently
narrow down the field of profiling scenarios and to maximize the accuracy of the
produced models under specific temporal and monetary constraints, as discussed in
Section 3.2.2. Using these measurements, we can train surrogate estimator models that
can be used to approximate its performance for non-tested configurations. To do so in a
generic and extendable way, we propose a black-box operator profiling framework. The
code of the profiling and modeling modules is available at the github project repository4.

3.2.1 Black box profiling approach

In order to provide a generic operator profiling framework, we follow a "black box"
approach. According to this, we model each operator as a black box that has user defined

4 https://github.com/project-asap/IReS-Platform/tree/master/panic

D 3.2 – IReS Platform v.1 24 / 64

inputs and outputs. The input space of an operator contains all the parameters that
affect its performance and need to be varied in order to profile it. For example, the input
space of an operator may contain parameters like:

• Amount of resources (e.g. number of VMs, number of CPUs, available RAM, etc.)

• Data complexity (e.g. dataset size in GBs, type, distribution, etc.)

• Operator parameters (e.g. k in k-means, number of iterations, accuracy, etc.)

• As mentioned before, the input space of an operator is user defined, giving the
users the capability of defining the parameters that affect the operator’s
performance. The user should also give the type of each parameter in order for
our profiling system to be able to vary it and test different configuration
automatically. For example, a parameter like number of VMs is a discrete integer
value that can have a minimum and maximum value in order to prune the
possible combinations. Concerning data input parameters, like the dataset size or
type, the user can provide a set of sample datasets or a dataset generator that can
be used in order to test various configurations.

• The output space of an operator can be also described as its optimization space
and contains all performance/cost metrics that need to be approximated for the
various input configurations. For example, the output space of an operator can
contain the following metrics:

• Performance metrics (Execution time, throughput, latency, etc.)

• Cost metrics (monetary or resource usage, e.g., memory utilization, CPU, iops
etc.)

• Operator-related metrics (e.g., number of results, output size, etc.)

Currently we profile 45 metrics, including:

• Execution time

• All the monitoring metrics reported by the ganglia5 monitoring tool (e.g., CPU,
RAM, iops, network traffic etc.)

• Operator-related metrics (e.g., #clusters in k-means, output size, etc.).

• Our profiling framework is extensible and allows the user to define the output
parameters that she wants to model for a specific operators. Such a parameter
can be defined simply by providing a monitoring probe that can measure it as the
operator executes.

3.2.2 Profiling challenges

The operator profiling is a process that allows the automated execution of operators and
monitors their behavior over representative input space configurations. The collected
information can form the basic knowledge used to train surrogate estimator models that
can approximate the operator’s behavior (the function that relates the
input/configuration space parameters with the output/optimization metrics).

5 http://ganglia.info/

D 3.2 – IReS Platform v.1 25 / 64

The main challenge for the Profiler is to intelligently choose the set of profiled
configurations. For example, if we have an operator with 3 integer input parameters that
range from 1 to 10, there exist 103 different deployment configurations. Furthermore,
each execution of an operator has a respective temporal and monetary cost in order to
be sufficiently profiled. A brute force profiler would need to execute and monitor all
those configurations. In such case, the execution time of the profiler could be
exponential to the number of inputs, something which is not acceptable. ASAP’s Profiler
should be able to intelligently narrow down the field of profiling scenarios. Therefore,
the Profiler attempts to tackle the problem of generating the most accurate operator
profile within a user specified profiling budget of experiments.

The nature of operator profiling is clearly multi-objective, often requiring tradeoffs
between diverse and conflicting objectives. While the input parameters, design space, of
an application include the number of VMs, their RAM, their disk capacity etc., an
application user can be interested in various objectives such as cost, throughput, latency
etc. Therefore, the operator can be modeled as a function that maps the design space
(number of VMs, RAM, data size, operator parameters, etc.) to the user defined objective
space (cost, execution time, etc.). This function represents the operator’s profile. Our
Profiler will use targeted operator runs, according to a specified financial and time
budget, to provide a global surrogate approximation model of the operator’s profile
function that maps its input space to its optimization/output space.

Many engineering and science problems require expensive experiments or time
consuming simulations to generate sample points of the mapping between the input and
the output parameters of a system. In such cases, researchers have focused on building
accurate surrogate approximation models that, when properly constructed, can mimic
the behavior of the system while being computationally cheap to evaluate. Examples of
surrogate models include: Kriging models [36] [1] , Splines [5] Artificial Neural
Networks [8] , Support Vector Machines [28] etc. The challenge here is how to generate
a surrogate model that is as accurate as possible over the domain of interest and at the
same time minimize the cost of the performed experiments. Since the system's response
behavior is not known upfront and the sample data points are too costly to obtain, the
main approach followed is the iterative adaptive sampling of the design space. Each data
point obtained is used to update the surrogate approximation model as well as the
sampling function. In each iteration, the sampling function selects the next sampling
point according to an estimation of its benefit to the surrogate approximation accuracy.
This technique is called importance or adaptive sampling and is also known as
sequential design.

3.2.3 Profiling approach

In Algorithm 1 (Figure 8), we provide the general methodology used to create a profile
for a given operator. The algorithm expects a valid operator/application description A
followed by an input domain D, representing the possible setups the operator can be
executed with and a list of surrogate models. The profiling process occurs iteratively:
while the termination condition is not fulfilled, the domain space is sampled, a new point
p is picked and the operator is executed according to p. The deployment produces an
optimization vector d, containing the measured outputs, which is then used to train in an

D 3.2 – IReS Platform v.1 26 / 64

incremental manner all the available surrogate models. The output of the profiling
process is the surrogate model which achieves the highest accuracy, according to a user
specified metric.

Figure 8 Main profiling algorithm

The termination condition can vary. It can be a threshold of sampled points that, if
reached, the algorithm terminates. In other cases, it can be related to the achieved
accuracy: if the trained model achieves to predict the objective function with error lower
than a user defined threshold, the termination condition is reached. As we will present
in the following section, the nature of the termination condition is directly entwined
with the nature of the sampling algorithm.

3.2.4 Adaptive sampling

The sampling procedure occurs at the beginning of each profiling loop. The sampler
receives as input the domain space D of the operator, which determines all the
acceptable deployment points. Each point returned by the sampler is used for execution.
The operator’s output metrics are measured and then an approximation model is
trained using the acquired information.

There are many methodologies for sampling a multidimensional space. We can
categorize the methods we support in the following categories:

1. Static sampling, where the sampler needs no other information than the domain
space characteristics (dimensions and acceptable values) to pick the next sample

2. Adaptive sampling, where the sampler exploits the knowledge obtained by the
deployment of previously picked samples.

The static approach does not take into consideration the operator’s performance.
Typical examples of static sampling are the Random sampler that returns random points
and the Uniform sampler which constructs a multidimensional grid in the input space D,
and returns points belonging to the grid. We opt for an adaptive sampling approach
which exploits the knowledge obtained from each deployment/sample, enabling the
sampler to retrieve more samples in regions of the domain space D where the
performance appears to have fluctuations or the models have the maximum estimation
errors. Equivalently, an adaptive sampler favors areas of D where the operator
performance has the most deviations in order to use them to provide more accurate

D 3.2 – IReS Platform v.1 27 / 64

approximation models. There are no theoretical guarantees for the adaptive sampling
technique. In fact the samples are biased and this has proved to beneficial for the
specific use case of application profiling [11] .

3.2.5 Approximation models

When a new sample is picked by the sampler and executed, the performance metrics are
stored and given as input to an approximation model. The training set of the model
consists of the chosen samples along with their output values. After the training process
is finished, the model will be able to approximate the objective function for the entire
space D. There exist many methodologies for approximating an unknown function. We
can categorize them in two major categories: regression based techniques and
classification techniques. Algorithms on the former category create an analytical form of
the objective function. The classification techniques, on the other hand, do not target to
create an analytical function but to classify the points of the domains space in classes.
These objects are treated in a similar manner, indicating that the same properties stand
for objects in the same class.

In our approach, we utilize the approximation models offered by WEKA [43] , an open

source data mining software which implements a variety of machine learning
algorithms. Specifically, the supported approximation techniques are the following:

• Gaussian Process, that approximates the objective function using Gaussian
distributions

• Multilayer Perceptron, that represents a typical neural network with many hidden
layers and neurons

• Linear Regression (Least Median Squares), that implements the methodology
introduced at [34]

• Bagging, that executes classification as described in [2]

• Random SubSpace, that constructs a decision tree using the approach presented in
[14]

• Regression by Discretization, that enforces regression over a discretized domain of
the input space

• RBF Network, which trains a Radial Basis Function Network, as presented at [3]

The accuracy of each one of the aforementioned models is highly affected from the
configuration of the model and the nature of the objective function. For example, a linear
hyper- plane will be approximated faster using a linear regression method. On the
contrary a complex surface which has spikes and valleys is more likely to be
approximated more accurately using a non-linear approach. All the available models are
trained in parallel by the system, and the model which achieves the best accuracy is
eventually chosen.

3.3 Decision making module

In this section, we describe the decision making module6 and in particular the
algorithms used in order to intelligently explore the space of all available execution

6 https://github.com/project-asap/IReS-Platform/tree/master/asap-platform

D 3.2 – IReS Platform v.1 28 / 64

plans of a workflow and decide on the execution plan that best fits to the user-provided
optimization objectives. In analogy to traditional query optimizers, the IReS Decision
Making module tries to approximate the optimum by comparing several alternatives to
provide in a reasonable time a "good enough" plan which typically does not deviate
much from the best possible result7. In the following, the term "optimizer" is used in
exactly this sense. The algorithm of our dynamic programming (DP) optimizer is
depicted in Figure 9.

Figure 9 Dynamic programming workflow optimizer

7 https://en.wikipedia.org/wiki/Query_optimization

D 3.2 – IReS Platform v.1 29 / 64

Our optimizer explores the space of alternative execution plans generating the
materialized workflow graph and selecting the optimal plan with respect to the user
optimization policy. It maintains a dpTable structure that is responsible for storing the
best execution plan for each different format of a dataset node. Due to the fact that
intermediate results can be produced in different formats, e.g. csv, json, etc., we maintain
for each different produced format the best plan. Our optimizer processes all abstract
operators of the workflow following a DAG topological order, which can be found using a
depth-first search. This ordering ensures that when we process an operator all its
predecessors in the DAG will have been processed and thus the dpTable will contain the
optimal plans for all its inputs.

For each abstract operator, we search the library of available materialized operators to
find all matches. As discussed in Section 3.1.4, we use an efficient tree matching
algorithm to avoid unnecessary comparisons and follow the hierarchical structure of the
tree-based metadata constraints. The optimization process consults the input
specifications of materialized operators adding, if this exists in the operator library, the
required move/transform operators to utilize all different produced inputs. All such
input formats are recorded in the dpTable along with their costs.

Here we make the assumption that operator alternatives have a 1 to 1 relationship (we
do not yet consider the possibility of one operator being equivalent to a combination of
2 or more operators) and that only one move/transform operator is used to match
consecutive operators with different output/input formats.

Consequently, to estimate operator performance metrics (e.g., cost, execution time) our
planner consults the Model DB that holds estimator models for each one of the
materialized operators. In our current implementation, the planner is configured to
optimize one metric or a function of multiple performance metrics that the user is
interested in. We are currently investigating methods for optimizing multiple
dimensions of performance metrics, such as finding Pareto frontier execution plans.
After estimating the operator cost, we add all its output datasets in the dpTable. When
all abstract operators have been processed, the optimal cost of the target dataset is
returned using the respective dpTable record.

In conclusion, given:

• the performance and cost estimations provided by the models (which may or
may not be accurate) and

• the alternative plans that are created under the assumption that equivalent
operator implementations have a one-to-one relationship (we do not yet
consider the possibility of one operator being equivalent to a combination of 2
operators) and that only one move or transform operator can be used to link
operators with different input/output formats,

the DP algorithm of the Decision making module ensures the selection of the optimal
alternative plan, which is a very good approximation of the best possible plan.

D 3.2 – IReS Platform v.1

We now study the complexity of our optimizer.
�� number of abstract operators and the maximum number of materialized operators
that match to an abstract operator is
maximum number of � inputs. In detail, for each in
contain at most � records, each generated from one of the
the abstract operator that has it as output. Therefore, the inner dpTable loop of
will run at most � times. Therefore the worst case complexity of our optimizer is:

The following figures depict two examples of abstract workflows along with their
respective materialized workflows that contain their alternative execution plans. More
precisely, Figure 11 depicts the alternative execution plans of the abstract workflow of
Figure 10, which contains a TF/IDF operation over a corpus of documents followed by k
means clustering. Figure 13
workflow in Figure 12).

Figure

Figure 11: Alternative

We now study the complexity of our optimizer. Let us assume that a workflow contains
er of abstract operators and the maximum number of materialized operators

that match to an abstract operator is �. Let us also assume that operators have a
inputs. In detail, for each intermediate dataset, our dpTable will

each generated from one of the � materialized operators, of
the abstract operator that has it as output. Therefore, the inner dpTable loop of

times. Therefore the worst case complexity of our optimizer is:

���� ∗�� ∗ �)

The following figures depict two examples of abstract workflows along with their
tive materialized workflows that contain their alternative execution plans. More

depicts the alternative execution plans of the abstract workflow of
contains a TF/IDF operation over a corpus of documents followed by k

13 materializes an SQL query over TPC

Figure 10: Abstract TF/IDF, k-Means workflow

: Alternative plans for the TF/IDF, k-Means workflow

30 / 64

Let us assume that a workflow contains
er of abstract operators and the maximum number of materialized operators

also assume that operators have a
termediate dataset, our dpTable will

materialized operators, of
the abstract operator that has it as output. Therefore, the inner dpTable loop of Figure 9

times. Therefore the worst case complexity of our optimizer is:

The following figures depict two examples of abstract workflows along with their
tive materialized workflows that contain their alternative execution plans. More

depicts the alternative execution plans of the abstract workflow of
contains a TF/IDF operation over a corpus of documents followed by k-

materializes an SQL query over TPC-H data (abstract

D 3.2 – IReS Platform v.1

Figure

Figure 13: Alternative plans for the

We note that, for the materialized TPC
move operators were used in order to transfer intermediate results b
SQL engines, Hive and PostgreSQL. These move operators were automatically added by
the platform in order to match the inputs of the discovered materialized operators.
However, observing the TF/IDF and k
results were not utilized across different engines due to the fact that the respective
move operators were not available in the IReS library.

For our running examples, let u
minimization of execution time. Intuitively, small datasets run faster in a centralized
manner while distributed implementations outperform the centralized ones for bigger
datasets. In the following figures (
optimization result for our two example workflows. In the case of the first workflow
consisting of TF/IDF followed by k
the fastest for both steps, due to the small size of the document corpus. The second
workflow joins and sorts two TPC
is expected to run faster in Hive than in PostgreSQL. Contrarily, since

Figure 12: Abstract TPCH SQL query workflow

Alternative plans for the TPCH SQL query workflow

We note that, for the materialized TPC-H SQL query workflow depicted in
move operators were used in order to transfer intermediate results b
SQL engines, Hive and PostgreSQL. These move operators were automatically added by
the platform in order to match the inputs of the discovered materialized operators.

, observing the TF/IDF and k-means workflow we note that intermedia
results were not utilized across different engines due to the fact that the respective
move operators were not available in the IReS library.

For our running examples, let us assume a user optimization policy that targets the
time. Intuitively, small datasets run faster in a centralized

manner while distributed implementations outperform the centralized ones for bigger
datasets. In the following figures (Figure 14 and Figure 15 respectively) we see the
optimization result for our two example workflows. In the case of the first workflow
consisting of TF/IDF followed by k-means, the WEKA implementation is estimated t
the fastest for both steps, due to the small size of the document corpus. The second
workflow joins and sorts two TPC-H tables. Since one of the initial tables is large, the join
is expected to run faster in Hive than in PostgreSQL. Contrarily, since

31 / 64

H SQL query workflow depicted in Figure 13,
move operators were used in order to transfer intermediate results between the two
SQL engines, Hive and PostgreSQL. These move operators were automatically added by
the platform in order to match the inputs of the discovered materialized operators.

means workflow we note that intermediate
results were not utilized across different engines due to the fact that the respective

s assume a user optimization policy that targets the
time. Intuitively, small datasets run faster in a centralized

manner while distributed implementations outperform the centralized ones for bigger
respectively) we see the

optimization result for our two example workflows. In the case of the first workflow
means, the WEKA implementation is estimated to be

the fastest for both steps, due to the small size of the document corpus. The second
H tables. Since one of the initial tables is large, the join

is expected to run faster in Hive than in PostgreSQL. Contrarily, since the output of the

D 3.2 – IReS Platform v.1 32 / 64

join is relatively small, its sorting is expected to perform better in PostgreSQL. The
selected execution plans for each workflow is marked in green.

In the course of the workflow execution, the real-time monitoring information is fed
back to the decision making module in order to take into account current running
conditions and adapt accordingly. Moreover, our planner considers more than a single
final plan to ensure that alternatives will exist in case of failures or other unpredictable
circumstances.

Figure 14: Selected TF/IDF, k-Means execution plan

Figure 15 Selected TPC-H SQL query workflow execution plan

3.4 Enforcer module

In this Section, we describe the enforcer module8 of the IReS platform. This module
undertakes the execution of the selected execution plan. In the era of big data, clusters of
commodity servers as well as clusters of cloud resources have become the primary
computing platform choice. Such clusters power large Internet services and a growing

8 https://github.com/project-asap/IReS-Platform/tree/master/cloudera-kitten

D 3.2 – IReS Platform v.1 33 / 64

number of data-intensive applications. Additionally, a large and diverse selection of
computing frameworks has been and is being developed in order to take advantage of
those cluster resources. In this landscape, where organizations run multiple cluster
computing frameworks and in which each framework has its own advantages and
disadvantages, a cluster multiplexing approach emerges as the best solution for
resource utilization. Resource allocation and scheduling frameworks like Yarn [42] and
Mesos9 have been introduced. Those frameworks target the fine-grained resource
allocation, in a container level, as well as the online resource scheduling and sharing
between various cluster-computing frameworks.

In order for the IReS platform to be able to fit in this landscape and integrate with the
various cluster computing frameworks, we have build our enforcer module on top of the
YARN resource scheduler. Our enforcer module requests container resources from
YARN in order to launch the execution of operators. It also orchestrates the execution of
a DAG graph of operators in order to successfully execute the selected workflow
execution plans.

3.4.1 YARN workflow execution engine

In order to provide the above-mentioned functionality, our enforcer module extends the
Apache Kitten10 framework. Apache Kitten is a framework that lets you define the
execution of operators on top of YARN. It allows the description of resource
configuration (CPU, RAM etc. of the containers launched) as well as the execution
configuration of the script or commands that need to be executed inside the allocated
container resources. We extend Apache Kitten in order to add support for the execution
of a DAG of operators that is required for our workflow execution.

Apache Kitten is a set of tools for writing and running applications on YARN, the general
purpose resource scheduling framework that ships with Hadoop 2.2.0. Kitten handles
the boilerplate around configuring and launching YARN containers, allowing developers
to easily deploy distributed applications that run under YARN. Kitten makes extensive
use of Lua tables to organize information about how a YARN application should be
executed. Here is how Kitten defines an example of a distributed shell application:

distshell = yarn {

 name = "Distributed Shell",

 timeout = 10000,

 memory = 512,

 master = {

 env = base_env, -- Defined elsewhere in the file

 command = {

 base="java -Xmx128m com.cloudera.kitten.appmaster.ApplicationMaster",

 args = {

 "-conf job.xml" },

 }

 },

9 http://mesos.apache.org/

10 https://github.com/cloudera/kitten

D 3.2 – IReS Platform v.1 34 / 64

 container = {

 instances = 3,

 env = base_env, -- Defined elsewhere in the file

 command = "echo 'Hello World!' >> /tmp/hello_world"

 } }

The yarn function of the Lua description provides all the required information for
running an operator using YARN. The following fields can be defined in the Lua table
that is passed to it, optionally setting default values for optional fields that were not
specified:

1. name (string, required): The name of this application.
2. timeout (integer, defaults to -1): How long the client should wait in milliseconds

before killing the application due to a timeout. If < 0, then the client will wait
forever.

3. user (string, defaults to the user executing the client): The user to execute the
application as on the Hadoop cluster.

4. queue (string, defaults to ""): The queue to submit the job to, if the capacity
scheduler is enabled on the cluster.

5. conf (table, optional): A table of key-value pairs that will be added to
the Configuration instance that is passed to the launched containers via the job.xml
file. The creation of job.xml is built-in to the Kitten framework and is similar to
how the MapReduce library uses the Configuration object to pass client-side
configuration information to tasks executing on the cluster.

6. env (table, optional): A table of key-value pairs that will be set as environment
variables in the container. Note that if all of the environment variables are the
same for the master and container, you can specify the env table once in the yarn
table and it will be linked to the subtables by the yarn function.

7. memory (integer, defaults to 512): The amount of memory to allocate for the
container, in megabytes. If the same amount of memory is allocated for both the
master and the containers, you can specify the value once inside of the yarn table
and it will be linked to the subtables by the yarn function.

8. cores (integer, defaults to 1): The number of virtual cores to allocate for the
container. If the same number of cores is allocated for both the master and the
containers, you can specify the value once inside of the yarn table and it will be
linked to the subtables by the yarn function.

9. instances (integer, defaults to 1): The number of instances of this container type
to create on the cluster. Note that this only applies to
the container/containers arguments; the system will only allocate a single
master for each application.

10. priority (integer, defaults to 0): The relative priority of the containers that are
allocated. Note that this prioritization is internal to each application; it does not
control how many resources the application is allowed to use or how they are
prioritized.

11. tolerated_failures (integer, defaults to 4): This field is only specified on the
application master, and it specifies how many container failures should be
tolerated before the application shuts down.

D 3.2 – IReS Platform v.1 35 / 64

12. command/commands (string(s) or table(s), optional): command is a shortcut
for commands in the case that there is only a single command that needs to be
executed within each container. This field can either be a string that will be run
as-is, or it may be a table that contains two subfields: a base field that is a string
and an args field that is a table. Kitten will construct a command by
concatenating the values in the args table to the base string to form the command
to execute.

13. resources (table of tables, optional): The resources (in terms of files, URLs, etc.)
that the command needs to run in the container. YARN has a mechanism for
copying files that are needed by an application to a working directory created for
the container that the application will run in. These files are referred to in Kitten
as resources.

3.4.2 Execution description

As mention in Section 3.1.3, all materialized operators are accompanied by a set of
execution metadata that are used for their actual execution. The main part of the
execution description is the lua script that was mentioned in the previous section and is
used to describe the execution details of an operator. An example description of an
operator using a lua script is presented below:

-- The command to execute.

SHELL_COMMAND = "./tfidf_mahout.sh"

-- The number of containers to run it on.

CONTAINER_INSTANCES = 1

-- The location of the jar file containing kitten's default ApplicationMaster
implementation.

MASTER_JAR_LOCATION = "kitten-master-0.2.0-jar-with-dependencies.jar"

-- CLASSPATH setup.

CP = "/opt/hadoop-2.6.0/etc/hadoop:/opt/hadoop-2.6.0/etc/hadoop:/opt/hadoop-
2.6.0/etc/hadoop:/opt/hadoop-2.6.0/share/hadoop/common/lib/*:/opt/hadoop-
2.6.0/share/hadoop/common/*:/opt/hadoop-2.6.0/share/hadoop/hdfs:/opt/hadoop-
2.6.0/share/hadoop/hdfs/lib/*:/opt/hadoop-2.6.0/share/hadoop/hdfs/*:/opt/hadoop-
2.6.0/share/hadoop/yarn/lib/*:/opt/hadoop-2.6.0/share/hadoop/yarn/*:/opt/hadoop-
2.6.0/share/hadoop/mapreduce/lib/*:/opt/hadoop-
2.6.0/share/hadoop/mapreduce/*:/contrib/capacity-scheduler/*.jar:/opt/hadoop-
2.6.0/share/hadoop/yarn/*:/opt/hadoop-2.6.0/share/hadoop/yarn/lib/*"

-- Resource and environment setup.

base_resources = {
 ["master.jar"] = { file = MASTER_JAR_LOCATION }
}

base_env = {
 CLASSPATH = table.concat({"${CLASSPATH}", CP, "./master.jar", "./tfidf_mahout.sh"}, ":"),

D 3.2 – IReS Platform v.1 36 / 64

}

-- The actual distributed shell job.

operator = yarn {
 name = "TF/IDF using mahout library",
 timeout = -1,
 memory = 2048,
 cores = 2,

 container = {
 instances = CONTAINER_INSTANCES,
 env = base_env,
 resources = {
 ["tfidf_mahout.sh"] = {
 file = "/opt/asap-server/asapLibrary/operators/TF_IDF_mahout/tfidf_mahout.sh",
 type = "file", -- other value: 'archive'
 visibility = "application", -- other values: 'private', 'public'
 }
 },
 command = {
 base = SHELL_COMMAND,
 }
 }
}

D 3.2 – IReS Platform v.1 37 / 64

4 Infrastructure and deployment

This chapter describes the testbed on which the IReS platform has been deployed and
tested. This includes technical details about the physical infrastructure, the runtimes
and data stores that have been installed and the operators that have been implemented
and imported to the IReS operator library. The engines and operator implementations
that have so far been considered form an initial set that allows us to execute some of the
workflows defined by our use case partners (see D8.2 and D9.2). This set will be
enriched in the course of the project with additional engines and operators to
accommodate the ASAP related use cases of web and telecommunication analytics, as
well as general purpose analytics workflows.

4.1 Engines

This section is a presentation of the Data Analytics engines that have been tested thus
far with the IReS platform. A more complete presentation of the various software
ecosystems available by the industry and academia is available in D3.1.

4.1.1 Hadoop and MapReduce

Hadoop [24] is the de facto standard in batch Big-Data processing. It started as
framework implementing a distributed file system and a Map-Reduce execution engine,
running over that filesystem. In the last 10 years of its lifetime, it has evolved in an large
ecosystem of open-source software solutions for big data processing, offering products
for a diverse set of needs from NoSQL Databases [18] [16] to in-memory stream
processing [20] . We will focus only on the products of the Hadoop Ecosystem that we
have used with the IReS platform. Those are mainly MapReduce Libraries ran over Yarn
[17] . Their main characteristics and design principles will be presented.

MapReduce [26] is the core execution engine that most of the analytics operations of
Hadoop use to access the filesystem and manipulate the stored data. Any operation
using it needs to be expressed in steps of Map-Combine-Shuffle-Reduce phases. This
phased execution also necessitates the spilling of intermediate data (after the Combine
phase) to disk. This approach although very powerful and adaptive, carries the inherit
tradeoff of high administrative overhead due to the intermediate disk access.

That being said the combination of HDFS-MapReduce that is in the core of Hadoop has
been the go-to choice for most all of batch processing for Web-Scale datasets.

In more modern Hadoop installations the responsibility for managing the computing
resources for the execution of MapReduce jobs lies not within the library itself but with
the Yarn [14] resource negotiator.

4.1.1.1 HDFS

HDFS ("the Hadoop Distributed File System") is the basic layer of the Hadoop
Framework. It is developed in Java, runs in userspace and shares some design principles
with GFS [10] . HDFS, like GFS, was created to run on top of commodity hardware. Its
most crucial design goal is scalability to a high number (100s) of nodes, each offering

D 3.2 – IReS Platform v.1 38 / 64

local computation and storage. It also offers redundancy for fault tolerance and ad-hoc
node additions.

It was originally used to store files that are large (GBs to TBs), immutable and
sequentially read and written. Those are still the use cases that are most fitting for
HDFS, but many others have been introduced in its lifetime.

HDFS was also mostly used in bare-metal installations with an emphasis on IO
performance. Lately, it has been used often in virtualized environments too.

The architecture model of HDFS benefits from the use of a large number of nodes with
dedicated storage. The client receives metadata information from a “Namenode” server
(that is replicated for fault tolerance) and then can stream the file data in parallel from,
possibly, a large number of “Datanodes”, thus leveraging their aggregate sequential IO
performance. When used for large files and parallel sequential computations, this
approach is very effective in handling large amounts of bulk data efficiently.

However it does not offer good performance in handling requests for random seeks of
small amounts of data. Those use cases incur a significant performance penalty for using
HDFS and are more suited to main-memory cached storage.

In the use cases and operations we have tested with IReS, HDFS is indeed used to
read/write large, sequential, write-once files. We believe those are the most common
and well-suited use cases of HDFS.

4.1.1.2 Mahout

Mahout is a widely used ML library for Hadoop MapReduce. It has evolved as a stable
and dependable tool for Big Data analysis.

Mahout takes the aim of bringing conventional ML algorithms to the Big Data era, and it
does so with the use of MapReduce library and the M-R paradigm. There is a recent
attempt to bring some of Mahout’s operations to Spark, but it is in a very experimental
stage.

Mahout inherits the basic performance limitations of MapReduce. Namely, it needs a
long time (in the order of minutes) to initialize a job, it suffers an administrative
overhead and also, it uses HDFS which is inefficient for handling smaller input sizes.

4.1.1.3 HIVE

Hive brings SQL-like Relational operations to an HDFS back-end. It is a very popular tool
because it allows developers to access Big-Data datasets stored in the distributed
filesystem with familiar SQL operations. However HIVE uses MapReduce as its back-end.
Therefore, contrary to conventional RDMS, HIVE cannot provide interactive
performance for its queries. At the same time the user can use custom M-R code in
conjunction with HIVE queries to express complex data manipulations easily.

HIVE is mainly used in Data Warehousing applications where a simple interface to
access large amounts of data is necessary and interactive response times are not.

The use case we built for HIVE is running a typical SQL query over tabular data stored in
HDFS as large text files.

D 3.2 – IReS Platform v.1 39 / 64

4.1.2 Spark and MLib

Spark is a relatively new execution engine. It is based on the RDD abstraction which is:

“a read-only, partitioned collection of records. RDDs can only be created through

deterministic operations on either (1) data in stable storage or (2) other RDDs” [45] .

RDDs are suited for in-memory computations and are mainly comprised from data that
are retrievable from a filesystem and a timeline of mutations that need to be performed
on them.

Spark’s RDD abstraction is a very powerful and promising concept and can overcome
many of the limitations of the Map-Reduce paradigm. In theory RDDs can be orders of
magnitude faster for iterative, graph [19] and streaming computations [38] .

Spark promises graceful fall back to secondary storage for datasets that cannot fit to
memory and integration to Scala, Python and Java.

Spark is in active development with a release cycle of a few months and much effort in
the open source community is aimed at enriching its libraries and ensuring seamless
and efficient operation. However many parts of its implementation and documentation
(particularly for Python and Java) are not as mature as other ML libraries. More
importantly, in our experiments so far an order of magnitude difference is not observed
for datasets of few GBs.

We are using Spark as an alternative to Hadoop and Mahout for both batch and iterative
operations.

4.1.3 WEKA

WEKA (Waikato Environment for Knowledge Analysis) suite contains textbook
implementations for most popular ML Algorithms. It runs as a centralized java engine
and does not include multi-thread capabilities. It is thus a very popular tool for people to
train in ML and verify the results they obtained from more complex execution engines.
WEKA’s library is also a good building block for custom implementations. WEKA can
also be used for processing smaller datasets that do not have the volume requiring a
distributed implementation.

We have used WEKA for text manipulation and unsupervised learning.

4.2 Clusters

For the testing and development of the IReS platform and the various analytics engines
used by the operators, we have set up, two clusters with different configurations.

The first one is hosted and managed by IMR and the other one is hosted by ICCS. The
two setups are diverse in hardware and this presents the opportunity to examine the
performance characteristics of the underlying software platforms in more than one
setting.

4.2.1 IMR Cluster

IMR has allocated a cluster for the needs of ASAP. It consists of 4 server-grade physical
nodes. Each one of those is equipped with a 3rd generation i5 CPU (@ 2.90 GHz) and

D 3.2 – IReS Platform v.1 40 / 64

16GB of physical memory and an array of two HDDs on RAID-0. The operating system is
Debian 6 (squeeze) Linux.

For the time being, the two software platforms running on this setup are Hadoop and
Weka. The distribution of Hadoop is CDH 4.6.0 (a popular bundling of Hadoop by
Cloudera) which uses Hadoop version 2.0.0 over MapReduce scheduler (not the newer
YARN resource negotiator). Hadoop is so configured so that all the machines run as
workers and one of them runs the master.

There are also plans to set-up spark on this cluster too.

Weka is on version 3-6-12.

4.2.2 ICCS Cluster

The second cluster used for WP3 is hosted by ICCS and runs on a private OpenStack
installation. It consists of 11 Virtual machines with 8GB of RAM, and 4 virtual CPU cores
each. The volumes used by the VMs are stored on SSD storage. Ubuntu Linux 14.04 is the
operating system. The Hadoop and Spark installation on this cluster is configured so that
the master runs alone in one of the VMs and the rest run as workers.
Hadoop, Spark, Hive and Weka are set up on this cluster.

The version of Hadoop used is 2.7.0, over Yarn, as it is packaged by Apache.
The version of Spark is 1.4.1, running in “standalone” mode.

The version of Hive is 1.1.1 and the version of Weka is 3-6-12.

4.3 Operator library

This section enumerates the operator implementations that have been imported to the
IReS platform library, going through the whole process of the Profiling Workflow, as
described in Section 2.2.1. The operators are so far classified in two major categories,
the analytics operators, that is, the operators that perform the core analytics jobs over
the data provided, and the auxiliary operators, namely the operators that are added by
the Decision Making module to match data to operator input constraints. Auxiliary
operators serve as "glue" between different engines and include move and
transformation operations.

4.3.1 Analytics operators

The following subsections describe the implementations of the analytics operations
examined, profiled and modeled so far by the IReS platform. These operators have been
chosen to be in line with the ASAP use cases as described in deliverables D8.2 and D9.2.
Section 4.4 outlines the basic web and telecommunication analytics workflows that are
constructed utilizing these operators.

4.3.1.1 TF/IDF

TF/IDF analysis (abr. term frequency/inverse document frequency) is a method of
converting a set of text documents into weighted vectors. The coordinates of those
vectors signify the importance and relevance of a specific term (word) relative to the
document it appears in. This metric is proportional to the frequency that a term appears

D 3.2 – IReS Platform v.1 41 / 64

in the document and inversely proportional to the frequency it appears in all of the
documents.

TF/IDF is a straight-forward approach in judging word relevance in a specific document
context. It is the basis and core component of plain text search, but its (numeric) output
can be used for a variety of post-processing like document summarization, latent
semantic indexing and cluster analysis for a corpus of documents.

While TF/IDF analysis has a lineal complexity, it can be parallelized. Moreover there is
more than one approach in computing document vectors.

Input: A set (corpus) of human-readable text documents in some form.

Output:

1) A set of document vectors (usually in sparse vector representation - keeping
only the indexes and values of the non-zero coordinates)

2) A term<->term_id dictionary (optional). This maps the term IDs - which are the
indexes in the document vector coordinates - into their corresponding text terms

Algorithm: There are two common approaches in computing the Term Frequencies and
the IDF metric. Both have lineal complexity, but in real life present very different
performance characteristics and cannot be parallelized in the same way and with the
same results.

• Bag-of-Words approach: This is the most straightforward approach that maps
a single term to a single term id and computes the TF and IDF and TF/IDF based
on those IDs. This ensures a 1:1 mapping of terms and their IDs and allows for
the ability to strictly argue about a words presence in a document. Standard
optimizations include discarding terms with low document frequencies,
discarding terms with very high document frequencies (‘stopwords’ like
and/or/a etc.) and stemming of the terms so as to reduce the total count of
available terms and group those with the same lexicographical stem to a single
one ID. Figure 16 shows the effect of stemming on term count and thus the
dimensions of the coordinates of the algorithm’s output vectors (basic stopwords
are removed in both cases).

A fundamental tradeoff of this approach is that for large sets of, possibly
multilingual, documents the number of terms available increases to the 10s of
thousands and thus computing storing and distributing (for parallel
computations) the dictionary becomes a bottleneck. Consider that in order to
achieve a 1:1 mapping of terms; a synchronization step is necessary for
distributing the dictionary to all the computing nodes.

• Feature Hashing Approach: In this approach, which is also known as “hashing
trick”, we are willing to accept some term ID collisions. The terms ids are the
hashes of the terms themselves and thus we are able to pick the exact dimensions
of the output vectors as the hash-bucket size. The tradeoff presented here is, on
the one hand, more accurate document representation and, on the other hand,
lower storage requirements as well as much higher performance. In practice this
approach yields much better performance results and can be much easier to

D 3.2 – IReS Platform v.1

parallelize. Stemming is also orthogonal to this approach and can also be
an added enhancement.

Figure 16 The effect of stemming of document vector dimensions

4.3.1.2 K-Means

K-Means is an unsupervised learning algorithm for classifying the members of a vector
collections according on their geometrica
used clustering algorithm for ML analyses.

K-Means is used for any type of clustering on data that are either purely numerical or
have been derived from textual sources (e.g. through

Input: A set of (numerical) vectors. These can be in either dense or sparse
representation.

Algorithm: K-Means requires a random initialization step in order to choose starting
point of the cluster centroids. It is iterative, performing many passes on the data and
adjusting an estimation of the cluster centroids on each step.

Theoretically, this process is NP
cluster centroids. However all of the popular implementations can be used with a fixed
number of iterations and various optimizations of the algorithm (e.g. in choosing the
start state in more sophisticated manner than purely random). The complexity in those
cases is theoretically O(ikdn) where “
centroids we wish to compute, “d” is the cardinality (dimensions) of the input vectors
and “n” is the input count.

parallelize. Stemming is also orthogonal to this approach and can also be
an added enhancement.

The effect of stemming of document vector dimensions

Means is an unsupervised learning algorithm for classifying the members of a vector
collections according on their geometrical distances. K-Means is the most commonly
used clustering algorithm for ML analyses.

Means is used for any type of clustering on data that are either purely numerical or
have been derived from textual sources (e.g. through TF/IDF or Word2Vec

et of (numerical) vectors. These can be in either dense or sparse

Means requires a random initialization step in order to choose starting
point of the cluster centroids. It is iterative, performing many passes on the data and
adjusting an estimation of the cluster centroids on each step.

Theoretically, this process is NP-Complete for finding a globally optimum choice of
cluster centroids. However all of the popular implementations can be used with a fixed

nd various optimizations of the algorithm (e.g. in choosing the
start state in more sophisticated manner than purely random). The complexity in those
cases is theoretically O(ikdn) where “i” is the number of iterations, “k” is the number of

sh to compute, “d” is the cardinality (dimensions) of the input vectors

42 / 64

parallelize. Stemming is also orthogonal to this approach and can also be used as

Means is an unsupervised learning algorithm for classifying the members of a vector
Means is the most commonly

Means is used for any type of clustering on data that are either purely numerical or
Word2Vec).

et of (numerical) vectors. These can be in either dense or sparse

Means requires a random initialization step in order to choose starting
point of the cluster centroids. It is iterative, performing many passes on the data and

Complete for finding a globally optimum choice of
cluster centroids. However all of the popular implementations can be used with a fixed

nd various optimizations of the algorithm (e.g. in choosing the
start state in more sophisticated manner than purely random). The complexity in those

” is the number of iterations, “k” is the number of
sh to compute, “d” is the cardinality (dimensions) of the input vectors

D 3.2 – IReS Platform v.1 43 / 64

The various implementations of K-Means do fall under this general theoretical
complexity bounds, but have important differences in their practical performance. The
reason for their differences in performance is the way they handle sparse vectors, the
method they use to parallelize the computation and how they handle intermediate data
between iterations.

4.3.1.3 Word2Vec

Word2Vec [44] is an unsupervised feature extractor for text processing and natural
language processing (NLP) purposes. In particular, Word2Vec is a neural network that
turns raw text data into numerical vectors that deep neural networks can understand. In
most use cases, given enough data it can extract meaningful, semantic information from
text and return accurate predictions about word’s meaning based on past occurrences.
The most well-known application of Word2Vec is the case of finding word synonyms.
We provide an implementation of Word2Vec for Spark in Scala [37] .

Input: A corpus of raw text data

Output: A set of words in vector format of same size as the dictionary. Each vector is a
distributed representation of the word.

Algorithm: As aforementioned, the main abstraction of Word2Vec is a Feed Forward
Neural Network (FFNN) model with its architecture consisted as follows: The input
layer w(t) represents words using 1-of-K coding, where K the vocabulary size. The
hidden layer computes probability distribution over all words in the vocabulary. The
result is an output layer with dimensionality K. In their last paper about distributed
representations of words, Tomas Mikolov et al. proposes two log-linear models:
Continuous Bag-of-Words and Continuous Skip-gram [31] [32] .

• Continuous Bag-of-Words model: The continuous Bag-of-Words model aims to
predict a word based on its context, that is, the surrounding words. For example,
given a sequence of words wi-2 wi-1... wi+1 wi+2 in the input layer the model tries to
predict wi . The model is characterized as a Bag-of-words because its prediction is
not affected by the order of the other words in the document.

• Continuous Skip-gram model: The skip-gram model tries to find distributed
word representation in order to predict the surrounding words in a sentence of a
document. Specifically, it’s goal is to minimize the average log-probability p(wt+j

|wt). Furthermore, the probability p(wt+j |wt) is defined by the Softmax Function11.
In order to speed up training of Word2Vec, Hierarchical-Softmax can be applied,
that is, an efficient approximation of the traditional Softmax. The main advantage
of Hierarchical-Softmax is that it needs to evaluate only log2(W)nodes using a
binary tree representation instead of W nodes, where W the number of words.

4.3.1.4 LDA (Latent Dirichlet Allocation)

Latent Dirichlet Allocation (LDA) [23] is an unsupervised learning algorithm for topic
modeling - clustering that infers topics from a collection of documents. LDA can be seen
as a clustering algorithm as it contains such characteristics like cluster centers (topics)

11 https://en.wikipedia.org/wiki/Softmax_function

D 3.2 – IReS Platform v.1 44 / 64

and feature vectors (topics and documents). In contrast with traditional clustering
algorithms such as K-Means, LDA generates results using statistical inference instead of
algebraic distances (e.g. the Euclidean distance). We provide two implementations of
LDA, one in Apache Spark [29] and one in Gensim [9] .

Input: (a) A collection of documents in Sparse-Vector format, (b) k - Number of topics,
(c) max iterations

Output: A set of k Sparse Vectors, that is, the cluster centers (topics)

Algorithm: LDA is an algorithm that automatically discovers topics in a collection of
documents. It takes as input a corpus and a k value (number of topics). At the initial step,
it assigns each word in a topic in a semi-random manner using the Dirichlet distribution.
Then, it updates the topics iteratively, passing each word in each document. The updates
are based on each word’s frequency across topics and documents. More precisely, for
each document d and word w of d, LDA computes P(t |d) for each topic t and P(w |d).
Then, it assigns the word w a new topic with a probability P(t |d)*P(w |d) . This
procedure is applied repeatedly with a user-specified number of iterations.

4.3.2 Auxiliary operators

In order to implement multi-engine workflows we had to write custom code to move
data from one engine’s format to the other.

We have implemented this functionality for the output vectors of all the TF/IDF
operators. This process was more than a simple stateless transformation, because none
of the output vectors’ term numbering was compatible with another engine. Spark In
particular uses hashed term IDs, so its vector space was non-consecutive, which was
violating the assumptions the engines had for their input.

We wrote custom programs in java, able to make an in-memory re-map of terms and
term ids in order to produce a result compatible with the targeted engine. By using
Hadoop’s API, we are able to transform vectors from any of Spark’s, WEKA’s and
Mahout’s formats to any of the others.

Input:

• a set of vectors, either in a local .arff file (WEKA) or a Hadoop SequenceFile [21]
of SparseVectors (Mahout) or a Hadoop text file of SparseVectors (Spark).

• A dictionary of {term � term ID} in the same format (in either a SequenceFile or
a text file - local or on HDFS).

Output:

• a set of vectors of the specified format that respects the assumptions of the
output engine

• a dictionary {term � term ID} with the same assumptions

Algorithm: An in-memory mapping of {input term ID � output term ID} is populated
on-the-fly, based on the input dictionary. All of the dataset vectors are re-mapped and
stored in the corresponding format, based on this mapping

D 3.2 – IReS Platform v.1 45 / 64

4.4 Workflows

The operators described above cover a diverse set of tasks of varying complexity and
execution parameters. The user can assemble any workflow she wants using any of the
operators that reside in the IReS operator library. To evaluate our platform though, we
have created 3 abstract workflows, inspired by the ASAP use cases as described in D8.2
and D9.2. These cover complex data manipulations in the areas of business analytics on
telecommunication data and web data analytics, provided by WIND and IMR
respectively. The input datasets for these workflows consist of anonymized
telecommunication traces and web content data (WARC files).

A short description for each workflow follows:

4.4.1 Web analytics - Clustering

The workflow starts by selecting a subset of the initial web content. Feature-extraction
(e.g., TF/IDF) is performed on these documents; the outputs are clustered using k-
means clustering (chosen among weka, mahout and MLlib running centrally or over
Hadoop or Spark respectively).

4.4.2 Telco analytics - Peak Detection

The workflow involves processing of anonymized CDR data (residing in an RDBMS) via
clustering along time and space in order to detect peaks in load, according to a set of
criteria. The results of this phase enrich a database (relational) that contains peaks
detected in previous runs. The dataset of peaks is used to discover clusters of calls that
occur with or without regularity.

4.4.3 SQL workflow

A sample workflow that showcases a simple join operation between two datasets
residing in different stores, namely PostgreSQL and Hive, followed by a sorting
operation. For this workflow, we use synthetic data produced by the popular TPC-H
[40] benchmark generator.

D 3.2 – IReS Platform v.1

5 Results and evaluation

In this chapter we evaluate the performance and accuracy of the core IReS modules,
namely profiling, modeling and decision making/planning.
has been performed using the ICCS cluster, as described in Se

5.1 Profiling

In order to investigate the performance characteristics of the operators and the
underlying implementations we have worked with, a number o
rounds were performed.

For each experiment we have kept a number of information metrics
could be useful in modeling the operators’ performance. However it is not necessary that
all of those metrics will contribute

The metrics collected include:

1. The operator’s execution time
2. Input and output sizes (where applicable)
3. Input count (e.g. Number of documents, vectors, etc.)
4. Cardinality of the output (for vectors)
5. Date of the experiment
6. Operator specific parameters (like the number of clusters for clustering

operations)
7. A timeline of system metrics (CPU, RAM usage, network traffic, IOPS, etc.) for the

whole cluster, periodically pulled from the monitoring system (ganglia)
Figure 17).

Results and evaluation

In this chapter we evaluate the performance and accuracy of the core IReS modules,
namely profiling, modeling and decision making/planning. The evaluation of this section
has been performed using the ICCS cluster, as described in Section 4.2.2

In order to investigate the performance characteristics of the operators and the
underlying implementations we have worked with, a number of exhaustive profiling

For each experiment we have kept a number of information metrics
could be useful in modeling the operators’ performance. However it is not necessary that
all of those metrics will contribute in a performance model.

The metrics collected include:

The operator’s execution time
Input and output sizes (where applicable)
Input count (e.g. Number of documents, vectors, etc.)
Cardinality of the output (for vectors)
Date of the experiment

ecific parameters (like the number of clusters for clustering

A timeline of system metrics (CPU, RAM usage, network traffic, IOPS, etc.) for the
whole cluster, periodically pulled from the monitoring system (ganglia)

Figure 17 Monitoring Metrics

46 / 64

In this chapter we evaluate the performance and accuracy of the core IReS modules,
The evaluation of this section

4.2.2.

In order to investigate the performance characteristics of the operators and the
f exhaustive profiling

For each experiment we have kept a number of information metrics (45 in total) that
could be useful in modeling the operators’ performance. However it is not necessary that

ecific parameters (like the number of clusters for clustering

A timeline of system metrics (CPU, RAM usage, network traffic, IOPS, etc.) for the
whole cluster, periodically pulled from the monitoring system (ganglia)(see

D 3.2 – IReS Platform v.1 47 / 64

5.1.1 Results overview

In analyzing the performance results obtained by the profiling experiments, we tried to
identify how the execution parameters affect the execution time of each one of the
execution engines. The initial intuition regarding engine performance was that:

• The centralized implementation would only be quicker for smaller datasets that
fit in-memory of a single node.

• Mahout would be quicker for non-iterative operations with few intermediate
steps. Also, it could be a better fit for very large input sizes, in which cases the
intermediate processing result might not fit in-memory.

• Spark would be significantly preferable for iterative operators since it avoids
persisting intermediate results to disk. However, for very large inputs, keeping
data in-memory could be problematic and spilling intermediate outputs to disk
would significantly tax performance.

After running the full set of experiments we realized that none of the above intuitions
were entirely correct.

The implementation particulars in all of the experiments seem to play a more important
role than the basic operational principles of Spark and Mahout. As for WEKA, it follows
that it is indeed preferable only for smaller input sizes.

All of the results presented here for Spark and Mahout were obtained in the larger ICCS
cluster but those for Mahout were also verified qualitatively in the IMR cluster.
For performance reasons the experiments on WEKA were ran natively on one of IMR’s
machines.

5.1.2 TF/IDF

The implementations of TF/IDF that we examined have fundamental qualitative
differences between them. WEKA and Mahout follow a conventional bag-of-words
approach that maps a single integer id to each term in the document corpus (apart from
those it does not keep as features due to their low document frequency). Their output is
not only a set of document vector (which were used for K-Means) but also a dictionary
with the aforementioned mapping. This procedure, conventionally, needs at least two
phases to complete:

• Dictionary construction, document frequency calculation and feature selection

• Document Vector creation

Spark on the other hand uses a feature hashing approach (a.k.a “hashing trick” [22]). It
is thus much quicker in that it can create the document vectors without previously
constructing a dictionary. In fact, by itself the TF/IDF for MLib does not output a
dictionary that maps terms to term IDs.

In order for the two approaches to be more comparable and for Spark’s output to be
more usable later where one might want to use the dictionary, we have added a
dictionary construction job in the TF/IDF operator for Spark.

Performance Analysis:

D 3.2 – IReS Platform v.1

WEKA: TF/IDF shows linea
centralized implementation is limited by the capacity of a single machine, and is thus
preferable only for smaller datasets. For more than 60K documents the preproce
phase would fail and we were thus unable to test it for larger data sizes. However up
until that point it enjoyed a marginal advantage over Mahout. This might be due to
WEKA’s lower output dimensions (as seen in

Mahout, Spark: The approach used by Mahout is much slower than the one used by
Spark for this operation. Both have linear performance but Spark seems to enjoy an
advantage of 9x faster performance.

Output Data Analysis:

Since the output data of this operator were used as input to other operations (namely, K
Means clustering) it makes sense that we review its output.

The output of this operation is a set of document vectors and a term dictionary.

All of the engines choose a sparse representation of the vectors, so their output is
comparable. However, the dimensions of the output vectors for WEKA and Mahout
equals to the count of the dictionary entries, while for Spark it is the size of the hash
bucket (which the user can specify). Therefore, for Mahout and WEKA it makes sense to

1. Examine the dimension sizes of the output for various input sizes
2. Try to affect these dimensions explicitly or implicitly
3. Examine how the output size changes with those dimensions

WEKA: TF/IDF shows linear performance on all engines since it is I/O bound. The
centralized implementation is limited by the capacity of a single machine, and is thus
preferable only for smaller datasets. For more than 60K documents the preproce
phase would fail and we were thus unable to test it for larger data sizes. However up
until that point it enjoyed a marginal advantage over Mahout. This might be due to
WEKA’s lower output dimensions (as seen in Figure 18).

Mahout, Spark: The approach used by Mahout is much slower than the one used by
Spark for this operation. Both have linear performance but Spark seems to enjoy an

9x faster performance.

Figure 18 TF/IDF Engine Comparison

Since the output data of this operator were used as input to other operations (namely, K
Means clustering) it makes sense that we review its output.

The output of this operation is a set of document vectors and a term dictionary.

All of the engines choose a sparse representation of the vectors, so their output is
comparable. However, the dimensions of the output vectors for WEKA and Mahout

the count of the dictionary entries, while for Spark it is the size of the hash
bucket (which the user can specify). Therefore, for Mahout and WEKA it makes sense to

Examine the dimension sizes of the output for various input sizes
mensions explicitly or implicitly

Examine how the output size changes with those dimensions

48 / 64

performance on all engines since it is I/O bound. The
centralized implementation is limited by the capacity of a single machine, and is thus
preferable only for smaller datasets. For more than 60K documents the preprocessing
phase would fail and we were thus unable to test it for larger data sizes. However up
until that point it enjoyed a marginal advantage over Mahout. This might be due to

Mahout, Spark: The approach used by Mahout is much slower than the one used by
Spark for this operation. Both have linear performance but Spark seems to enjoy an

Since the output data of this operator were used as input to other operations (namely, K-

The output of this operation is a set of document vectors and a term dictionary.

All of the engines choose a sparse representation of the vectors, so their output is
comparable. However, the dimensions of the output vectors for WEKA and Mahout

the count of the dictionary entries, while for Spark it is the size of the hash
bucket (which the user can specify). Therefore, for Mahout and WEKA it makes sense to:

Examine the dimension sizes of the output for various input sizes

D 3.2 – IReS Platform v.1

In Figure 19 we can see that although new terms are introduced with larger document
collections, this trend is not linear
that raising the minDF parameter (the minimum number of documents a term needs to
be found in so as to be considered a feature) has a dramatic effect to the total term
count.

However, as is obvious in Figure
in output size. Another interesting observation (not visible in the latter figure) is that
this particular operator actually inflates (by approx. 1.6:1) the output size
to the input. This is true for Mahout and Spark, but not true for WEKA (~1
suspect this would not be the case if the document corpus was comprised of larger
documents.

Figure 19 Documents vs Term count

we can see that although new terms are introduced with larger document
not linear. This is to be expected. More interestingly, we can see

meter (the minimum number of documents a term needs to
be found in so as to be considered a feature) has a dramatic effect to the total term

Figure 20 this does not translate to any observable difference
in output size. Another interesting observation (not visible in the latter figure) is that
this particular operator actually inflates (by approx. 1.6:1) the output size
to the input. This is true for Mahout and Spark, but not true for WEKA (~1
suspect this would not be the case if the document corpus was comprised of larger

49 / 64

we can see that although new terms are introduced with larger document
. This is to be expected. More interestingly, we can see

meter (the minimum number of documents a term needs to
be found in so as to be considered a feature) has a dramatic effect to the total term

this does not translate to any observable difference
in output size. Another interesting observation (not visible in the latter figure) is that
this particular operator actually inflates (by approx. 1.6:1) the output size in comparison
to the input. This is true for Mahout and Spark, but not true for WEKA (~1.1:1 ratio). We
suspect this would not be the case if the document corpus was comprised of larger

D 3.2 – IReS Platform v.1

5.1.3 K-Means

Performance Analysis

The particular implementation used (WEKA) was single threaded and its performance
fell behind Mahout and Spark long before the memory capacity became an issue. We
plan to examine an alternative custom thread
As for WEKA, for input sizes larger than about 3000 documents (~30MB), it becomes
slower than the respective implementation on the other engines.

For medium sized data and smaller (<50K documents) Mahout was not slower than
Spark. Contrary to expectations, Spark was faster for large and very large datasets and
higher cluster counts. This difference became apparen
point where secondary memory spills would become necessary

Spark offers no order-of-magnitude difference compared to mahout for K
However, it is observably faster for larger datasets.

Figure 20 TF/IDF input vs output sizes

The particular implementation used (WEKA) was single threaded and its performance
fell behind Mahout and Spark long before the memory capacity became an issue. We
plan to examine an alternative custom thread-based on C and the Cilk framework
As for WEKA, for input sizes larger than about 3000 documents (~30MB), it becomes

implementation on the other engines.

For medium sized data and smaller (<50K documents) Mahout was not slower than
Spark. Contrary to expectations, Spark was faster for large and very large datasets and
higher cluster counts. This difference became apparent without coming close to the
point where secondary memory spills would become necessary

magnitude difference compared to mahout for K
faster for larger datasets.

50 / 64

The particular implementation used (WEKA) was single threaded and its performance
fell behind Mahout and Spark long before the memory capacity became an issue. We

and the Cilk framework [25] .
As for WEKA, for input sizes larger than about 3000 documents (~30MB), it becomes

For medium sized data and smaller (<50K documents) Mahout was not slower than
Spark. Contrary to expectations, Spark was faster for large and very large datasets and

t without coming close to the

magnitude difference compared to mahout for K-means.

D 3.2 – IReS Platform v.1

Output Data Analysis

The K-Means operators examined emit as output the cluster centroids in the form of a
set of terms that have the highest value in the corresponding coordinates.
Quantitatively, this means that the output is
and is thus close to zero -
important differences that are beyond the scope of this analysis

5.1.4 LDA

In order to analyze LDA’s performance, we run through
implementations. One on Spark (Distributed)
Results are plotted in Figure

Gensim: LDA implementation on a single machine, runs with a linear correlation
between the number of documents and the execution time. Examining the results we
observe that Gensim has a better performance than Spark on smaller datasets but as the
input size grows it continuously gets slower.

Spark: On the other hand, Spark seems to be slowe
reasonable since Spark needs to do some preparation before processing, such as
distributing data over the nodes in the cluster and RDD allocation. Subsequently, as the
input size gets bigger it scales up better than Gensim

Figure 21 K-Means Engine Comparison

Means operators examined emit as output the cluster centroids in the form of a
set of terms that have the highest value in the corresponding coordinates.
Quantitatively, this means that the output is relative to the number of centroids asked,

 compared to the input size. Qualitatively there are some
important differences that are beyond the scope of this analysis

In order to analyze LDA’s performance, we run through several benchmarks using two
implementations. One on Spark (Distributed) [29] and one on Gensim (Centralized)

Figure 22.

LDA implementation on a single machine, runs with a linear correlation
the number of documents and the execution time. Examining the results we

observe that Gensim has a better performance than Spark on smaller datasets but as the
input size grows it continuously gets slower.

On the other hand, Spark seems to be slower on the small datasets. This is
reasonable since Spark needs to do some preparation before processing, such as
distributing data over the nodes in the cluster and RDD allocation. Subsequently, as the
input size gets bigger it scales up better than Gensim centralized implementation.

51 / 64

Means operators examined emit as output the cluster centroids in the form of a
set of terms that have the highest value in the corresponding coordinates.

relative to the number of centroids asked,
compared to the input size. Qualitatively there are some

several benchmarks using two
and one on Gensim (Centralized) [9] .

LDA implementation on a single machine, runs with a linear correlation
the number of documents and the execution time. Examining the results we

observe that Gensim has a better performance than Spark on smaller datasets but as the

r on the small datasets. This is
reasonable since Spark needs to do some preparation before processing, such as
distributing data over the nodes in the cluster and RDD allocation. Subsequently, as the

centralized implementation.

D 3.2 – IReS Platform v.1

Figure 22 Scaling the performance of the two LDA implementations in Spark for

documents.

5.1.5 Word2Vec

Concerning Word2Vec, we run through some benchmarks on Spark’s Scala API. A plot
execution time and number of documents is collocated below. It is clear
that Word2Vec has a linear performance
documents.

caling the performance of the two LDA implementations in Spark for

Concerning Word2Vec, we run through some benchmarks on Spark’s Scala API. A plot
execution time and number of documents is collocated below. It is clear
that Word2Vec has a linear performance with respect to the number of input

52 / 64

caling the performance of the two LDA implementations in Spark for for varying number

Concerning Word2Vec, we run through some benchmarks on Spark’s Scala API. A plot of
execution time and number of documents is collocated below. It is clear from Figure 23

o the number of input

D 3.2 – IReS Platform v.1

Figure 23 Performance of Word2Vec with respect to the number of input documents.

5.1.6 Auxiliary operators

Performance analysis

The Move operations for vectors all present a similar behavior
running time seems to be exponentially related to the input size. This is related to the
implementation and possibly to the fact that between engines, the mover needs to re
calculate the term IDs since they are not consistent between engines. As the data
structure that keeps the input and output term ID mapping, seeking in it becomes more
expensive, and thus each item takes more time to be processed. We could speed up this
process with a parallel (possibly Map

Performance of Word2Vec with respect to the number of input documents.

The Move operations for vectors all present a similar behavior (
running time seems to be exponentially related to the input size. This is related to the
implementation and possibly to the fact that between engines, the mover needs to re

the term IDs since they are not consistent between engines. As the data
structure that keeps the input and output term ID mapping, seeking in it becomes more
expensive, and thus each item takes more time to be processed. We could speed up this

a parallel (possibly Map-Reduce) implementation.

53 / 64

Performance of Word2Vec with respect to the number of input documents.

(Figure 24). Their
running time seems to be exponentially related to the input size. This is related to the
implementation and possibly to the fact that between engines, the mover needs to re-

the term IDs since they are not consistent between engines. As the data
structure that keeps the input and output term ID mapping, seeking in it becomes more
expensive, and thus each item takes more time to be processed. We could speed up this

D 3.2 – IReS Platform v.1

5.2 Modeling

5.2.1 Introduction

In the Profiling Section we present some results of several benchmarks we run on our
platform operators in order to investig
number of documents and other parameters. In this section we present how we take
advantage of these results and use them in order to model benchmark data in IReS
platform. Using this data, IReS analyzes the
machine learning algorithms. Then it selects the best model, that is, the model with
minimum error and makes accurate predictions about the performance of each
operator. Furthermore, it provides detailed vi

5.2.2 Data Modeling

The operators in the library are modeled as follows. Using data obtained from profiling
stage, we represent each operator as a feature vector. Each
metric such as execution time, input size, CPU usage etc. For example, a vector gained
from a Word2Vec run has the format
vector_size, metrics]. The features are explained below:

• d: The number of input documents

• exec_time: Execution time

• input_size: The input size in KB

• min_df: The limit of minimum document frequency for each term

Figure 24 Mahout-to-Spark Mover

ection we present some results of several benchmarks we run on our
platform operators in order to investigate how they react to different input data sizes,
number of documents and other parameters. In this section we present how we take
advantage of these results and use them in order to model benchmark data in IReS
platform. Using this data, IReS analyzes the performance of each operator using several
machine learning algorithms. Then it selects the best model, that is, the model with
minimum error and makes accurate predictions about the performance of each
operator. Furthermore, it provides detailed visualizations of benchmark data.

The operators in the library are modeled as follows. Using data obtained from profiling
stage, we represent each operator as a feature vector. Each dimension represents
metric such as execution time, input size, CPU usage etc. For example, a vector gained
from a Word2Vec run has the format V = [d, exec_time, input_size, min_df, iterations,

. The features are explained below:

input documents

exec_time: Execution time

input_size: The input size in KB

min_df: The limit of minimum document frequency for each term

54 / 64

ection we present some results of several benchmarks we run on our
ate how they react to different input data sizes,

number of documents and other parameters. In this section we present how we take
advantage of these results and use them in order to model benchmark data in IReS

performance of each operator using several
machine learning algorithms. Then it selects the best model, that is, the model with
minimum error and makes accurate predictions about the performance of each

ations of benchmark data.

The operators in the library are modeled as follows. Using data obtained from profiling
dimension represents a

metric such as execution time, input size, CPU usage etc. For example, a vector gained
V = [d, exec_time, input_size, min_df, iterations,

min_df: The limit of minimum document frequency for each term

D 3.2 – IReS Platform v.1 55 / 64

• iterations: Number of maximum iterations the algorithm will perform

• vector_size: The dimensionality of the vector, that is, the vocabulary size

• metrics: System metrics such as CPU usage, Memory usage, disk I/Os etc.

Example vector: [1000, 69244.0, 8833233, 5, 1, 100, (metrics in JSON format)]

5.2.3 Machine Learning Models

In order to make better decisions in workflow planning and optimization, IReS uses
Machine Learning models to predict operator performance, i.e. the execution time.
Currently we use PANIC [27] , a framework for application performance and modeling in
the cloud. PANIC works with WEKA [43] , an open-source machine learning library. For
each operator in the Operator Library, IReS takes the benchmark data and trains all the
following WEKA models that PANIC framework contains:

1. Bag Classifier
2. Discretization
3. Gaussian Curves
4. Isotonic Regression
5. Bag Classifier with Least Squares
6. Linear Regression
7. Multi-layer Perceptron
8. RBF
9. Random Committee
10. Random Sub-Spaces

After training the above mentioned models, it evaluates them and selects the model that
fits best in the data, that is, the model with the minimum error. For example, as we can
see in Figure 25, IReS chose Least Squares model for the Scala implementation of
Word2Vec operator in Spark.

D 3.2 – IReS Platform v.1 56 / 64

Figure 25 Model and sample values of the Word2Vec operator implemented in Scala over Spark

5.2.4 Data Visualization

Another component of IReS data modeling is data visualization. For every operator’s
data obtained from past runs, scatter plots are provided. The variables in the plots are
user-specified in the description file of each operator. Figure 26 represents a visualized
description of the K-Means operator in MLlib and Figure 27 plots the ML-Perceptron
model of K-Means in Spark with three variables/dimensions.

D 3.2 – IReS Platform v.1 57 / 64

Figure 26 Metadata description of the k-means operator in MLlib

D 3.2 – IReS Platform v.1 58 / 64

Figure 27 Visualization of the 3-dimensional ML-Perceptron model of the k-means operator in MLlib

Finally, Figure 28 shows how IReS visualizes the Isotronic Regression and MLPerceptron
models of the execution time of a sort operator, implemented in Hive, taking into account
the number of cluster nodes, the number of unique keys in the dataset and the number
of cores per node.

D 3.2 – IReS Platform v.1 59 / 64

Figure 28 Visualization of the 4-dimensional IsoRegression and MLPerceptron models of a sort operator

implementation in Hive.

5.3 Decision Making

In this Section, we present the performance of our decision making module. As
presented in previous sections, this module is responsible for exploring the alternative
execution paths according to the existing matches between abstract and materialized
operators and select the one that best conforms to the user-defined optimization policy.

The above operations are executed in one optimization step by our Decision making
module. Figure 29 depicts the time required for our Decision making module to
materialize and optimize abstract workflows with variable sizes. To test the efficiency of
our module we range the number of the abstract workflow nodes from 2 to 20. We also
range the number of materialized operators that match with one of the abstract
operators. This is also a very important parameter because it increases the number of
possible execution paths. We note that our optimization approach manages to both
materialize and optimize the tested workflows in less than a second. For the majority of
the tested workflows the optimization time was less than 500 ms. Thus, our optimizer
proves efficient and we can expect it to handle all our use case workflows.

D 3.2 – IReS Platform v.1 60 / 64

Figure 29: Decision Making execution time for variable number of workflow nodes

Figure 30 depicts the performance of our Decision making module with respect to the
number of matches between abstract and materialized operators. This parameter affects
the number of possible execution plans and is crucial for the optimizer’s complexity. The
experimental results show that the optimization time scales well as we range the
possible matches. In all cases we observe acceptable response times for the workflow
optimization.

Figure 30: Decision Making execution time for various numbers of materialized operator matches

D 3.2 – IReS Platform v.1 61 / 64

6 Conclusion

This deliverable describes the first version of the IReS platform prototype. More
specifically, it finalizes the IReS system architecture and provides details on the
implementation of its various components. The functionality of IReS is accessible to
external components via a Restful API, which has been defined. The IReS operator
library has been populated with a number of analytics as well as auxiliary operators,
which have been profiled, modeled and used in the composition of user-driven
workflows. The profiling, modeling and decision making modules have been evaluated
in terms of performance and accuracy. The results prove the efficacy of the IReS
platform and its ability to (a) create accurate models within a limited time budget and
(b) discover the optimal execution plan of a medium-sized workflow (consisting of up to
20 nodes) in less than a second on average.

D 3.2 – IReS Platform v.1 62 / 64

References

 [1] Blei, D. M., Ng, A. Y. and Jordan, M. I. Latent dirichlet allocation. the Journal of

machine Learning research 3 (2003): 993-1022.

 [2] Breiman, L. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

 [3] Broomhead, D. S. and Lowe, D. Radial basis functions, multi-variable functional

interpolation and adaptive networks. Technical report, DTIC Document, 1988.

 [4] Cloudera Distribution CDH 5.2.0.

http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-5-2-0.html.

 [5] De Boor, C., et al. A practical guide to splines. Vol. 27. New York: Springer-Verlag,

1978.

 [6] Dean, J. and Ghemawat, S. MapReduce: simplified data processing on large clusters.

Communications of the ACM 51.1 (2008): 107-113.

 [7] Doka, K., et al. IReS: Intelligent, Multi-Engine Resource Scheduler for Big Data

Analytics Workflows. Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. ACM, 2015.

 [8] Funahashi, K. On the approximate realization of continuous mappings by neural

networks. Neural networks 2.3 (1989): 183-192.

 [9] Gensim Latent Dirichlet Allocation,

https://radimrehurek.com/gensim/models/ldamodel.html

 [10] Ghemawat, S., Gobioff, H. and Leung, S. T. The Google file system. ACM SIGOPS

operating systems review. Vol. 37. No. 5. ACM, 2003.

 [11] Giannakopoulos, I., Tsoumakos, D., Papailiou, N. and Koziris, N.: PANIC: Modeling

Application Performance over Virtualized Resources. In Proceedings of the 2015 IEEE

International Conference on Cloud Engineering (IC2E 2015), 9-13 March, Tempe, AZ,

USA.

 [12] Herodotou, H. et al. Starfish: A Self-tuning System for Big Data Analytics. In CIDR,

2011.

 [13] Heroku add-ons. https://addons.heroku.com/.

 [14] Ho, T. K. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

 [15] Hortonworks Sandbox 2.1.

http://hortonworks.com/products/hortonworks-sandbox/.

 [16] http://cassandra.apache.org/

 [17] http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

 [18] http://impala.io/

 [19] http://spark.apache.org/graphx/

 [20] http://spark.apache.org/streaming/

 [21] http://wiki.apache.org/hadoop/SequenceFile

 [22] https://en.wikipedia.org/wiki/Feature_hashing

 [23] https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

 [24] https://hadoop.apache.org/

 [25] https://software.intel.com/en-us/intel-cilk-plus

 [26] https://wiki.apache.org/hadoop/MapReduce

D 3.2 – IReS Platform v.1 63 / 64

 [27] I. Giannakopoulos, D. Tsoumakos, N. Papailiou and N. Koziris: PANIC: Modeling

Application Performance over Virtualized Resources. In Proceedings of the 2015 IEEE

International Conference on Cloud Engineering (IC2E 2015), 9-13 March, Tempe, AZ,

USA.

 [28] Joachims, T. Making large scale SVM learning practical. (1999).

 [29] Latent Dirichlet Allocation http://spark.apache.org/docs/latest/mllib-

clustering.html#latent-dirichlet-allocation-lda

 [30] Lim, H., Herodotou, H. and Babu, S. Stubby: A Transformation-based Optimizer for

Mapreduce Workflows. VLDB, 2012.

 [31] Mikolov, T., et al. Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781 (2013).

 [32] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their

compositionality." Advances in neural information processing systems. 2013.

 [33] Papailiou, N., et al. Graph-Aware, Workload-Adaptive SPARQL Query Caching.

Proceedings of the 2015 ACM SIGMOD International Conference on Management of

Data. ACM, 2015.

 [34] Rousseeuw, P. J. and Leroy, A. M. Robust regression and outlier detection. 1987.

 [35] Running Databases on AWS. http://aws.amazon.com/running_databases/.
 [36] Simpson, T. W., et al. Kriging models for global approximation in simulation-based

multidisciplinary design optimization. AIAA journal 39.12 (2001): 2233-2241.

 [37] Spark - Word2Vec,

https://spark.apache.org/docs/latest/mllib-feature-extraction.html#word2vec

 [38] spark.apache.org/streaming/

 [39] Thusoo, Ashish, et al. Hive: a warehousing solution over a map-reduce framework.

Proceedings of the VLDB Endowment 2.2 (2009): 1626-1629.

 [40] TPC-H benchmark. http://www.tcp.org/hspec.html.

 [41] Tsoumakos, D. and Mantas, C. The Case for Multi-engine Data Analytics. In

Proceedings of the 2013 Workshop on Middleware for HPC and Big Data Systems

(MHPC'13, part of Euro-Par 2013), Aachen, Germany, August 27, 2013.

 [42] Vavilapalli, V. K., et al. Apache hadoop yarn: Yet another resource negotiator.

Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013.

 [43] WEKA, http://weka.wikispaces.com

 [44] Word2Vec, https://code.google.com/p/word2vec/

 [45] Zaharia, M., et al. Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation. USENIX Association, 2012.

D 3.2 – IReS Platform v.1 64 / 64

Appendix A

K. Doka, N. Papailiou, D. Τsoumakos, C. Mantas and N. Koziris: IReS: Intelligent, Multi-
Engine Resource Scheduler for Big Data Analytics Workflows. In Proceedings of the
2015 ACM SIGMOD/PODS International Conference on Management of Data (Demo
Track), May 31- June 4, 2015, Melbourne, Australia.

Appendix B

I. Giannakopoulos, D. Tsoumakos, N. Papailiou and N. Koziris: PANIC: Modeling
Application Performance over Virtualized Resources. In Proceedings of the 2015 IEEE
International Conference on Cloud Engineering (IC2E 2015), 9-13 March, Tempe, AZ,
USA.

IReS: Intelligent, Multi-Engine Resource Scheduler for Big
Data Analytics Workflows

Katerina Doka
Computing Systems Lab

National Technical University
of Athens, Greece

katerina@cslab.ece.ntua.gr

Nikolaos Papailiou
Computing Systems Lab

National Technical University
of Athens, Greece

npapa@cslab.ece.ntua.gr

Dimitrios Tsoumakos
Department of Informatics

Ionian University
Corfu, Greece

dtsouma@ionio.gr

Christos Mantas
Computing Systems Lab

National Technical University
of Athens, Greece

cmantas@cslab.ece.ntua.gr

Nectarios Koziris
Computing Systems Lab

National Technical University
of Athens, Greece

nkoziris@cslab.ece.ntua.gr

ABSTRACT
Big data analytics tools are steadily gaining ground at be-
coming indispensable to businesses worldwide. The com-
plexity of the tasks they execute is ever increasing due to
the surge in data and task heterogeneity. Current analytics
platforms, while successful in harnessing multiple aspects
of this “data deluge”, bind their efficacy to a single data
and compute model and often depend on proprietary sys-
tems. However, no single execution engine is suitable for all
types of computation and no single data store is suitable for
all types of data. To this end, we demonstrate IReS, the
Intelligent Resource Scheduler for complex analytics work-
flows executed over multi-engine environments. Our system
models the cost and performance of the required tasks over
the available platforms. IReS is then able to match dis-
tinct workflow parts to the execution and/or storage engine
among the available ones in order to optimize with respect
to a user-defined policy. During the demo, the attendees
will be able to execute workflows that match real use cases
and parametrize the input datasets and optimization pol-
icy. The underlying platform supports multiple compute
and data engines, allowing the user to choose any subset
of them. Through the inspection of the produced plan, its
execution and the collection and presentation of numerous
cost and performance metrics, the audience will experience
first-hand how IReS takes advantage of heterogeneous run-
times and data stores and effectively models operator cost
and performance for actual and diverse workflows.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735377.

Keywords
Multi-Engine Optimization, Cost Modelling, Profiling, Big
Data, Analytics Workflows

1. INTRODUCTION
Big data analytics have become a necessity for the major-

ity of industries [17], taking the lead in risk assessment, busi-
ness process effectiveness, market analysis, etc. [23, 16]. En-
abling engineers, analytics experts and scientists alike to tap
the potential of vast amounts of business-critical data has
grown increasingly important. Such data analysis demands
a high degree of parallelism in both storage and computa-
tion: Modern datacenters host huge volumes of data, stored
over large numbers of nodes with multiple storage devices
and process them using thousands or millions of cores.

The demand for near-real-time, data-driven analytics has
given rise to diverse execution engines and data stores that
target specific data and computation types (e.g., [1, 4, 2, 13,
3, 10]). Many of these systems are now offered as a service
by IaaS providers, enabling a very wide deployment range.
There also exist approaches in the literature that manage to
optimize their performance (e.g., [20, 22]) by automatically
tuning a number of configuration parameters. Yet, these
schemes assume strictly single-engine environments (mainly
the Hadoop ecosystem), thus considering specific data for-
mats and query/analytics task types.

However, modern workflows have become increasingly long
and complex [19]. Specifically, workflows may include mul-
tiple data types (e.g., relational, key-value, graph, etc.) gen-
erated from different resources. What is more, they are
executed under varying constraints and policies (e.g., op-
timize performance or cost, require different fault-tolerance
degrees, etc.). Finally, workflow operators can be greatly di-
verse, from simple Select-Project-Join (SPJ) and data move-
ment to complex NLP-, graph- or custom business-related
operations. There currently exists no single platform that
can optimize for this complexity [27].

Sensing this trend, cloud software companies now offer
software distributions in pre-cooked VM images or as a ser-
vice. These distributions incorporate different processing
frameworks, data stores and libraries to alleviate the bur-
den of multiple installations and configurations (e.g., [5, 9,

8, 12]). Yet, such multi-engine environments lack a meta-
scheduler that could automatically match tasks to the right
engine(s) according to multiple criteria, deploy and run them
without manual intervention. A recent attempt along this
line [25, 26] focuses more on lower-level database operators,
emphasizing on their automatic translation from/to specific
engines via an XML-based language. Yet, this is a propri-
etary tool with limited applicability and extension possibil-
ities for the community.

To address multi-engine analytics workflow optimization
we present the Intelligent Multi-Engine Resource Scheduler
(IReS), an integrated, open source platform for managing,
executing and monitoring complex analytics workflows1. Its
goal is to provide adaptive, cost-based and customizable re-
source management of the diverse execution and storage en-
gines available. IReS incorporates a modelling framework
that constantly evaluates the cost, quality and performance
of data and computational resources in order to decide on
the most advantageous store, indexing and execution pat-
tern.

To that direction, our system handles existing open-source
execution models (e.g., Map-Reduce, Bulk Synchronous Par-
allel) as well as state-of-the-art centralized and distributed
storage engines (RDBMSs, NoSQL, distributed file-systems,
etc.) in order to have a broad applicability and increased
performance gains. IReS is able to optimize workflows con-
sisting of tasks that range from simple group-by, aggregation
or complex joins between different data sources to machine-
learning tasks and queries on graph data in combination
with relational data. In the current implementation, the
system bases its operation on the following elements:

• A profiling and modelling engine that benchmarks oper-
ator performance and cost for different engine configura-
tions. Outputs are collected via budget-constraint exe-
cuted benchmarks. The learned models are stored and
utilized for the planning phase of the workflow.

• A JSON-based metadata framework that describes oper-
ators in abstract and instantiated forms, enabling search
and matching of operators that perform a similar task in
the planning phase.

• A decision-making and enforcing process that chooses among
different equivalent workflow execution plans (i.e., on dif-
ferent engines, resulting in equivalent output) based on
cost and performance models and schedules the execution.

The resulting optimization is orthogonal to (and in fact
enhanced by) any optimization effort within a single engine.
Unlike [25, 26], IReS is a fully open-source platform that
targets both low (e.g., join, sort, etc.) as well as high level
(e.g., machine learning, graph processing) operators, treat-
ing them as black boxes. The generic profiling/modelling
method it relies upon allows for easy addition of new oper-
ators and engines.

Our demonstration of the IReS system will showcase its
ability to i)model operator performance according to dif-
ferent engines and their resources and ii)adaptively decide
on which operator version to run based on the optimiza-
tion policy and the available engines. The demonstration
platform will integrate Hadoop [1], Hama [2], Spark [4] and

1IReS is a central component of the ASAP (Adaptive, highly
Scalable Analytics Platform) EU-funded project. ASAP en-
visions a unified, open-source execution framework for scal-
able data analytics. http://www.asap-fp7.eu/

Workflow User policy

 m
o

n
ito

rin
g

Enforcer

Model DB

processing
engines

data stores
Decision
Making

Modeling

Planner

IReS Platform

Job Parsing

IReS DB

M
o

n
ito

rin
g

D
B

In
te

rf
ac

e
O

p
ti

m
iz

er
Ex

ec
u

to
r

Model
refinement

Profiling

Figure 1: Architecture of the IReS platform

PostgreSQL [11] with HDFS [7], HBase [3] and Elasticsearch
[6] and operate upon real-life and synthetic workflows cho-
sen to include diverse datasets and computation types. The
participants will have a rich interaction with IReS, control-
ling policy and input aspects, while being able to evaluate
the advantages of multi-engine optimization by inspecting
generated plans and output.

2. ARCHITECTURE
IReS focuses on highly efficient and user-customizable ex-

ecution of analytics tasks (or workflows). This is made
possible through the transparent modeling, monitoring and
scheduling that involves different execution engines and stor-
age technologies. Consequently, our system is able to exe-
cute all types of analytics workflows by adaptively choosing
to execute each sub-part of the workflow to a (possibly differ-
ent) deployed engine. The IReS platform assigns sub-tasks
to the most advantageous technology(-ies) available and en-
sures resource and dataflow scheduling in order to enhance
performance: If a single engine is used, enhancement will
be achieved through optimized resource allocation and elas-
ticity modeling (e.g., execute on more VMs, or on smaller
cluster with larger main memory, etc.); if multiple ones are
required, enhancements will relate both to single-engine op-
timization and to workflow management that decides what is
the best execution plan and data-flow (e.g., execute sub-task
1 first, intermediate results should be stored on a NoSQL en-
gine and then sub tasks 2 and 3 run in parallel and write
final results to HDFS files).

The central notion behind the IReS platform is to create
detailed models of the costs and performance characteris-
tics of various analytics operations over multiple execution
engines. These models are then used to match the user op-
timization policy with the available execution engines.

The architecture of the IReS platform is depicted in Fig-
ure 1. IReS comprises of three layers, the interface, the
optimizer and the executor layer.

The interface layer is responsible for communicating with
the application UI in order to receive the input that is neces-
sary for its operations. It consists of the job parser module,
which identifies execution artifacts such as operators, data,
their dependencies and accompanying metadata. Moreover,

Figure 2: Metadata description of the abstract join
operator

it validates the user-defined policy. All this information
must be robustly identified, structured in a dependency graph
and stored.

The optimizer layer is responsible for optimizing the ex-
ecution of an analytics workflow with respect to the policy
provided by the user. The core component of the optimizer
is the Decision Making module, which determines the op-
timal execution plan in real-time. This entails deciding on
where each subtask is to be run, under what amount of re-
sources provisioned, the plan for moving data to/from their
current locations and between runtimes (if more than one
is chosen) and defining the output destinations. Such a de-
cision must rely on the characteristics of the analytics task
in hand and the models of all possible engines. These mod-
els are produced by the Modeling module and stored in a
database called Model DB. The initial model of an engine
results from profiling and benchmarking operations in an
offline manner, through the Profiling module. This module
directly interacts with the pool of physical resources and the
monitoring layer in-between. While the workflow is being
executed, the initial models are refined in an online manner
by the Model refinement module, using monitoring informa-
tion of the actual run. Such monitoring information is kept
in the IReS DB and is utilized by the decision making mod-
ule as well, to enable real-time, dynamic adjustments of the
execution plan based on the most up-to-date knowledge.

The executor layer is the layer that enforces the opti-
mal plan over the physical infrastructure. It includes meth-
ods and tools that translate high level “start runtime un-
der x amount of resources”, “move data from site Y to Z”
type of commands to a workflow of primitives as understood
by the specific runtimes and storage engines. Moreover, it
is responsible for ensuring fault tolerance and robustness
through real-time monitoring.

In the following, we describe in more detail the role, func-
tionality and internals of the most important modules of the
platform.

Job Parsing Module: This module takes as input the
user-defined workflow, formulated in a dependency graph
format and expressed in a way that allows for various lev-
els of abstraction using a metadata framework. Moreover,
the module takes as input the user optimization parameters,
which could translate to performance, cost, availability, etc.

The main challenge of defining a workflow description
metadata framework is the fact that it requires to be ab-
stract at the user level. The user should be able to describe

the data and operators that comprise her workflow in a way
as abstract as she desires. The IReS planner and workflow
scheduler need to remove that abstraction, find all the al-
ternative ways of materializing the workflow and select the
most beneficial, according to the user-defined policy.

Our proposed metadata framework describes data and op-
erators. Data and operators can be either abstract or mate-
rialized. Abstract are the operators and datasets that are de-
scribed partially or in a high level by the user when compos-
ing her workflow whereas materialized are the actual oper-
ator implementations and existing datasets, either provided
by the user or residing in a repository.

Both data and operators need to be accompanied by a set
of metadata, i.e., properties that describe them and can be
used to match (a) abstract operators to materialized ones
and (b) data to operators. Such properties include input
data types and parameters of operators, location of data
objects or operator invocation scripts, data schemata, im-
plementation details, engines, etc. The metadata defined
for each object have a generic tree format (JSON). To avoid
restricting the user and allow for extensibility, the first lev-
els of the metadata tree are predefined, while users can add
their ad-hoc subtrees to define their custom data or opera-
tors. Moreover, some fields (mostly the ones related to the
operator and data requirements) are compulsory while the
rest (e.g., known cost models, statistics, etc.) are optional.
Materialized data and operators need to have all their com-
pulsory fields filled in with information. Abstract data and
operators do not adhere to this rule. Apart from having
empty fields, they can also support regular expressions (e.g.,
the * symbol under a field means that the abstract object
matches materialized ones with any value of that field).

Let us take a join operator on a single attribute as an ex-
ample. In its abstract form, the joinOP operator (see Figure
2) needs only define two input parameters, the condition un-
der which they are joined and an output parameter. Each of
the input parameters and the output are abstract data_info
objects with two attributes: “attr1” represents the field of
the join predicate while “attr2” represents the second avail-
able field in each data_info object. The op_specification

field of this operator specifies its operation, a single join al-
gorithm, and defines the join condition (in this case an inner
join). In short, the abstract join operator defines a format
that any join operator implementing the specific functional-
ity needs to follow.

The materialized operators include, on top of that, all in-
formation required in order to perform the operation on an
execution engine. In join_1 (see Figure 3.a), the opera-
tor executes the join over Hadoop; it thus includes Hadoop-
specific information about the input, output and the engine.
The inputs and output in this case have specific attribute
types and an engine specification (under engine) containing
the location of the data and information about their struc-
ture. The operator itself also has an engine specification
(engine_specification) indicating its execution location.
The example in Figure 3.b describes join_2, which joins
an HBase and a relational table and outputs the result to
HDFS. It runs as a local Java process.

To discover the actual implementations that comply with
the description of an abstract operator provided by the user,
we employ a tree matching algorithm to make sure that all
metadata constraints are met, i.e., all compulsory fields are
consistent. This is performed by the decision making mod-

(a) (b)

Figure 3: Metadata descriptions of the two materialized join operators

ule, described subsequently. In our example, both join_1

and join_2 match joinOP and are thus considered when
constructing the optimized execution plan.

Apart from the compulsory fields, which are necessary
for the matching of abstract to materialized operators, the
metadata descriptions of the materialized joins both contain
the optional optimization field, which holds additional in-
formation that assists in the optimization of the workflow.
In the case of join_1, a cost function is provided by the
developer of the operator while for join_2 the platform is
instructed to create one by profiling over specific metrics
(execution time and required RAM in our case).

Modelling Module: This module is responsible for con-
structing models on a per operator–engine combination ba-
sis. The relevant literature review [18, 28, 24] has revealed
that models already exist for a very limited number of op-
erators and engines and some of them entail knowledge of
the code to be executed. Contrarily, we treat materialized
operators as “black boxes”, assuming no prior knowledge of
their internals, and model them using profiling in an offline
mode, as well as machine learning over actual runs.

Profiling Module: The profiling module functions in
an operator-agnostic way, having no prior knowledge other
than the profiler input parameters. These parameters fall
into three categories:

• Data specific parameters: These parameters describe the
data to be used for the operator profiling, e.g., the type
of data and its size.

• Operator specific parameters: These parameters relate to
the algorithm of the operator, e.g., the number of output
clusters in k-means.

• Resource specific parameters: These parameters define
the resources to be tweaked during profiling, e.g., clus-
ter size, storage size, main memory, etc.

The output of each run is the profiled operator’s perfor-
mance and cost (e.g., completion time and I/O operations,
average memory and CPU consumption, etc) under each
combination of the input parameter values for specific user-
defined optimization metrics, such as cost in $ or I/O, la-
tency, throughput, etc. Both the input parameters as well
as the output metrics are given by the user/developer.

The aim of the profiling module is to create a surrogate
estimation model [21], including neural networks, SVM, in-
terpolation and curve fitting techniques, for each operator
running over a specific engine. To that end, we need to
sample the operator function by running automated exper-
iments for various values of each of the input parameters
and measure the outputs. To create the most accurate sur-
rogate within a budget of experiments, adaptive sampling
techniques are adopted to select the combinations of values
to be used as input of each run.

Decision Making Module: This module performs the
intelligent exploration of all the available execution plans
and the discovery of the optimal execution plan according to
the user-defined optimization objectives. Initially, it trans-
forms the abstract workflow representation, described as a
DAG graph, into a materialized workflow DAG graph that
contains all the alternative paths of materialized operators
that match the abstract workflow. To do so, for each ab-
stract operator, it searches the library of available material-
ized operators to find all matches. Our decision module is
using an efficient tree matching algorithm to avoid unneces-
sary comparisons and follow the hierarchical structure of the
tree-based metadata constrains. When all operator matches
are discovered, the decision making module intelligently con-
sults the input and output specifications of the materialized
operators and adds the required move/transform operators.
Those operators are needed in order to connect operators of
different engines and input/output configurations and gen-
erate the final materialized workflow DAG graph.

To find the optimal execution plan, our decision module
uses a dynamic programming planner that explores the ma-
terialized workflow DAG in order to find the plan that best
matches the user optimization policy. To estimate opera-
tor performance metrics, our planner consults the profiler
module that holds surrogate estimator models for each one
of the materialized operators. In our current implementa-
tion, our planner can be configured to optimize one metric
or a function of multiple performance metrics that the user
is interested in. We are currently investigating methods for
optimizing multiple dimensions of performance metrics, like
finding Pareto frontier execution plans.

In the course of the workflow execution, the real-time
monitoring information is fed back to the decision making
module in order to take into account current running condi-
tions and adapt accordingly. Moreover, our planner consid-
ers more than a single final plan to ensure that alternatives
will exist in case of failures or other unpredictable circum-
stances without having to run the whole decision making
process from scratch. These alternatives include the top-k
(instead of the best) plans according to the user’s optimiza-
tion preferences or a sample of the multi-dimensional space
covering different environments.

Enforcer Module: The enforcer module undertakes the
execution of the ensuing plan. First, the enforcer needs to
validate the plan by checking the availability of resources
and data, the load of the engines, etc. After ensuring that
everything is correct, it enforces the plan actions by trans-
lating the plan steps to standard, low-level API calls. Such
actions might entail code and/or data shipment if necessary.
In case of faults and failures occurring on-the-fly, an alter-
native plan will substitute the current.

3. DEMONSTRATION DESCRIPTION
Our system is controlled by a comprehensive web-based

GUI that attendees will utilize. The basic interaction di-
mensions include input parametrization, operator model vi-
sualization, execution plan inspection and execution output
evaluation. The GUI controls a cloud-based deployment of
several runtime engines and data stores over 16 virtual ma-
chines of an Openstack cluster hosted in our lab.

Workflows and Datasets: The users will have the op-
portunity to test the IReS platform either using one of four
predefined workflows or assembling their own, using opera-
tors from the ASAP operator library. A diverse set of op-
erations of varying complexity and execution parameters is
covered including basic SQL queries (selections, projections,
joins), ML algorithms (classification and clustering) as well
as NLP methods (named entity recognition).

Three of the predefined workflows represent real use cases
driven by business needs. These cover complex data ma-
nipulations in the areas of business analytics on telecommu-
nication data and web data analytics, provided by a large
telecommunications company and a well-known web archiv-
ing organization respectively. The input datasets for these
workflows consist of anonymized telecommunication traces
and web content data (WARC files). Subsets of those datasets
can be used for each of the available workflows. A short de-
scription for each workflow follows:
Web analytics - Clustering: The workflow starts by se-
lecting a subset of the initial web content indexed by Elas-
ticsearch. Feature-extraction (e.g., tf-idf) is performed on
these documents; the outputs are clustered using k-means
clustering (chosen among weka, mahout and MLlib running
centrally or over Hadoop or Spark respectively).
Web analytics - Named Entity Recognition: A subset
of the dataset (obtained via a query over Elasticsearch as
before) undergoes named entity extraction. The results are
joined with the YAGO external ontology database [15] to
find possible matches and output them.
Telco analytics - Peak Detection: The workflow in-
volves processing of anonymized CDR data (residing in an
RDBMS) via clustering along time and space in order to de-
tect peaks in load, according to a set of criteria. The results
of this phase enrich a database (relational or graph DB)

Figure 4: IReS web application GUI - Materialized
Operator models

Figure 5: IReS web application GUI - Abstract
Workflow

that contains peaks detected in previous runs. The dataset
of peaks is used to discover clusters of calls that occur with
or without regularity.
Synthetic workflow: A sample workflow that showcases a
simple join operation between two datasets residing in dif-
ferent stores, namely PostgreSQL and HBase, followed by a
sorting operation. For this workflow, we use synthetic data
produced by the popular TPC-H [14] benchmark generator.
User defined workflow: The users will have the opportu-
nity to construct custom workflows by utilizing the current
library of operators and datasets.

Interface: Through the platform’s front-end, users are
able to inspect available operators and datasets, construct
the workflow they want to execute or choose one of the
pre-defined ones, specify the input parameters, review the
proposed execution plan and monitor its progress and out-
put. Our proposed interface consists of 6 sections, namely:
Datasets, Abstract Operators, Materialized Operators, Ab-
stract Workflow, Materialized Workflow and Results.

In the Datasets tab, the user can browse through the avail-
able datasets and view their metadata. In the Abstract Op-
erator tab, the user can chose an existing abstract operator
and customize it by changing its accompanying metadata.
Among others, the user can specify the engine(s) on which
an operator will be run or the storage where the data will
be saved. The engines supported by IReS include JVM,

Figure 6: IReS web application GUI - Materialized
Workflow tab

Hadoop MapReduce [1], Spark [4], Hama [2] for processing
and HDFS [7], HBase [3], Elasticsearch [6], PostgreSQL [11]
and local file system for storage.

The Materialized Operator tab visualizes the materialized
operator models that have been created offline and are stored
in the Model DB. The user can plot the modelled metrics
(e.g., execution time) versus various parameters (e.g., num-
ber of nodes, dataset size, etc.) for a plethora of machine
learning models (Figure 4).

The Abstract Workflow tab gives the user the opportunity
to view the predefined workflows and choose one of them
or create one of her own by combining abstract operators
and datasets. Either way, the workflow is visualized in its
abstract form as a graph, consisting of operator and data
nodes (Figure 5). Moreover, the user can specify the policy
for which the platform will optimize the execution plan. The
supported choices include minimizing cost, execution time or
a function of them.

After selecting the abstract workflow and its input param-
eters, the user is able to move forward to the Materialized
Workflow tab (Figure 6). A preview of the materialized plan
is presented here and the user can inspect the platform’s
choices for each of the operators and the intermediate re-
sults, along with an estimation of the execution cost and
performance. At this stage, the user should be able to vali-
date the strategy that will be followed in order to optimize
for the chosen attributes. It is also possible to go back and
change the input parameters if the user wants to override
some of the system’s decisions.

The Results section offers a live preview of the execution
so far. For each finished workflow stage, a summary of its
execution aspects is presented, including execution time, re-
sources allocated to each operator, resources actually used,
operator throughput and I/O and network costs (if appli-
cable). The cost of each operation as calculated by its cost
model is also shown. For the execution steps that have not
yet been concluded, an approximation for the anticipated
performance and cost measures is presented, if possible via
previous knowledge of the operator.

4. ACKNOWLEDGEMENTS
This work has been supported by the European Commis-

sion in terms of the ASAP FP7 ICT Project under grant
agreement no 619706. Nikolaos Papailiou has received fund-
ing from IKY fellowships of excellence for postgraduate stud-
ies in Greece - SIEMENS program.

5. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Apache Hama. https://hama.apache.org/.

[3] Apache HBase. http://hbase.apache.org/.

[4] Apache Spark. https://spark.apache.org/.

[5] Cloudera Distribution CDH 5.2.0.
http://www.cloudera.com/content/cloudera/

en/downloads/cdh/cdh-5-2-0.html.

[6] elasticsearch. http://www.elasticsearch.org/
overview/elasticsearch/.

[7] Hadoop Distributed File System.
http://hadoop.apache.org/docs/r1.2.1/hdfs design.html.

[8] heroku add-ons. https://addons.heroku.com/.

[9] Hortonworks Sandbox 2.1. http://hortonworks.com/
products/hortonworks-sandbox/.

[10] monetdb. https://www.monetdb.org/.

[11] Postgresql. http://www.postgresql.org/.

[12] Running Databases on AWS.
http://aws.amazon.com/running_databases/.

[13] Stratosphere Project. http://stratosphere.eu/.

[14] TPC-H benchmark. http://www.tcp.org/hspec.html.

[15] YAGO2s: A High-Quality Knowledge Base.
http://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/

yago-naga/yago/.

[16] The Power of Combining Big Data Analytics with
Business Process Workflow. CGI Whitepaper, 2013.

[17] 84% Of Enterprises See Big Data Analytics Changing
Their Industries’ Competitive Landscapes In The
Next Year . Forbes Magazine, 2014.

[18] S. Babu. Towards automatic optimization of
mapreduce programs. In ACM symposium on Cloud
computing, 2010.

[19] M. Ferguson. Architecting a big data platform for
analytics. A Whitepaper Prepared for IBM, 2012.

[20] H. Herodotou et al. Starfish: A Self-tuning System for
Big Data Analytics. In CIDR, 2011.

[21] Y. Jin. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation, 2011.

[22] H. Lim, H. Herodotou, and S. Babu. Stubby: A
Transformation-based Optimizer for Mapreduce
Workflows. VLDB, 2012.

[23] A. Pariyani, U. G. Oktem, and D. L. Grubbe. Process
risk assessment uses big data, 06-03-2013.
http://bit.ly/1vDlTVk.

[24] B. Sharma, T. Wood, and C. R. Das. Hybridmr: A
hierarchical mapreduce scheduler for hybrid data
centers. In ICDCS. IEEE, 2013.

[25] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu.
HFMS: Managing the Lifecycle and Complexity of
Hybrid Analytic Data Flows. In ICDE. IEEE, 2013.

[26] A. Simitsis, K. Wilkinson, and P. Jovanovic. xPAD: A
Platform for Analytic Data Flows. In SIGMOD 2013.

[27] D. Tsoumakos and C. Mantas. The Case for
Multi-Engine Data Analytics. In Euro-Par 2013:
Parallel Processing Workshops. Springer, 2014.

[28] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of pig
programs for meeting service level objectives. In
Conference on Autonomic computing. ACM, 2012.

PANIC: Modeling Application Performance over Virtualized Resources

Ioannis Giannakopoulos∗, Dimitrios Tsoumakos§, Nikolaos Papailiou∗ and Nectarios Koziris∗
∗ Computing Systems Laboratory, School of ECE, National Technical University of Athens, Greece

{ggian, npapa, nkoziris}@cslab.ece.ntua.gr
§ Department of Informatics, Ionian University, Corfu, Greece

dtsouma@ionio.gr

Abstract—In this work we address the problem of predicting
the performance of a complex application deployed over
virtualized resources. Cloud computing has enabled numerous
companies to develop and deploy their applications over cloud
infrastructures for a wealth of reasons including (but not
limited to) decrease costs, avoid administrative effort, rapidly
allocate new resources, etc. Virtualization however, adds an
extra layer in the software stack, hardening the prediction
of the relation between the resources and the application
performance, which is a key factor for every industry. To
address this challenge we propose PANIC, a system which
obtains knowledge for the application by actually deploying
it over a cloud infrastructure and then, approximating the
performance of the application for the all possible deployment
configurations. The user of PANIC defines a set of resources
along with their respective ranges and then the system samples
the deployment space formed by all the combinations of the
resources, deploys the application in some representative points
and utilizes a wealth of approximation techniques to predict
the behavior of the application in the remainder space. The
experimental evaluation has indicated that a small portion
of the possible deployment configurations is enough to create
profiles with high accuracy for three real world applications.

Keywords-application profiling; application performance;
cloud applications; performance modeling

I. INTRODUCTION

Cloud Computing has brought forth a new computing
paradigm, in which virtualized resources can be allocated
and freed on demand. Cloud-based deployments offer multi-
ple advantages including (but not limited to) decreased costs,
less administrative burden, bigger flexibility, seemingly in-
finite resources to harness on a pay-as-you-go manner. As
a direct consequence, almost all every-day users are using
at least one cloud-based application, while the amount of
businesses that take advantage of the Cloud’s offerings are
ever increasing [1]. This trend is particularly observed in
modern compute and data intensive platforms (e.g., Hadoop,
NoSQL DBs [2]), which are now the basis of every analytics
application/job. As most of these engines are designed to
scale horizontally, deploying them over virtualized infras-
tructures seems like a natural fit.

Predicting application performance is a well-known re-
search and business problem ([3], [4], [5], [6]). Building
a reliable model of application behavior offers engineers

and analysts a wide range of advantages: Most importantly,
it allows for better resource allocation both at deployment
and during runtime. This translates to happier customers
(minimizing delays, downtimes, denial of service, etc) and
better cost management.

As applications become more complex, so does building
accurate models of their behavior. This issue is exacerbated
by the fact that many applications are now deployed over
cloud infrastructures. Applications now run over virtualized
resources that: 1) are highly heterogeneous between different
providers and inside a single provider; 2) are shared with an
unknown number of other applications; 3) have performance
that is abstracted from the underlying physical layer that
the user understands. As a consequence, performance varies
greatly among different providers, different deployments
or even different times of day. This is especially true for
resource-demanding platforms that require large amounts of
CPU and memory/disk I/O and scale horizontally at runtime.
These engines are heavily utilized nowadays for storing and
analyzing Big Data for almost any conceivable reason.

In this work, we present PANIC (Profiling Applications
In the Cloud), an application profiling system that focuses
on this important element: It models performance based
on the amount and type of virtualized resources allocated
to the application. The main goals of PANIC are: (i) to
provide a generic methodology, applicable for any kind
of cloud application deployed, (ii) to offer customizable
tradeoff between performance accuracy and profiling cost
and (iii) to be customizable, in the sense that a user can
choose from a pool of resources for which the profiling will
be executed.

The main idea of PANIC is to provide predictions for
the application performance by actually deploying the appli-
cation in representative resource combinations and approx-
imate the performance for the rest, non deployed combi-
nations. The system confronts the application performance,
which should be a countable quantity, as a high dimensional
function and it utilizes a set of approximation techniques
(from regression to machine learning classifiers) to identify
the behavior of the application. Since the possible combina-
tions of resources grows exponentially with the complexity
of the application, PANIC exploits sampling techniques in

order to pick representative configurations, deploy the appli-
cation according to them and, eventually, provide predictions
for all the possible configurations. Through our experimental
evaluation where we deploy three typical cloud applications,
we demonstrate that our system is capable of providing an
accurate application profile by deploying only 10% of the
possible deployment setups.

II. THE PROBLEM AND SOME ASSUMPTIONS

Let us assume a two-tier application, consisting of a web
server and a database server, deployed over an IaaS provider.
We also assume that we can predict the application load and
we can deploy each tier in the following possible setups:

Table I: Possible setups of a typical Web Application

Tier 1 - Web server RAM (MB) 512, 1024, 2048
Cores 1, 2, 4, 8, 16

Tier 2 - Database Server Storage (GB) 5, 10, 20, 30, 100

We assume that both the Web and Database Servers
will run in a single host each. The following question
arises: what performance will the application achieve for
different choices of the offered resources for each tier, for a
specific load? Answering this question leads to an accurate
performance profile of the application that, in turn, delineates
the application behavior in general.

In the general case, assume that we have an application
described by n dimensions. Each dimension is denoted
as di, i ∈ [1, n] and it can be related to exactly one
application Tier. The Cartesian product of the dimensions
forms the space of the possible setups (denoted as D):
D = d1× d2× ...× dn. The performance of the application
is a countable size indicating the ability of the application to
fulfill its objectives (e.g. achieved throughput, latency, etc.).
The performance space is denoted as P and it is a single
dimensional space (our work is easily extensible to support
multidimensional performance spaces). Hence, the profile
of the application (denoted as p) is defined as a function
p : D → P , indicating the achieved performance for each
acceptable deployment setup.

Since the function p is unknown and it cannot be estimated
for the entire input space, we address its estimation as a
typical function approximation problem. Specifically, we
want to estimate the function p̂ : D → P with respect
to keeping

∑
d∈D

|p̂(d)− p(d)| minimum. The approximation

process involves sampling D (let Ds represent the set of
sampled points) and calculating the values p(d)∀d ∈ Ds.
Ds, along with the respective values p(di), d ∈ Ds are
given as input to our approximation algorithms, which in
turn create the function p̂. We utilize a large number of ap-
proximation techniques, from regression to machine learning
and classification algorithms. Since the estimation of p(d)
entails the actual deployment of the application, it is obvious

that the needed time to estimate p̂ is dominated by |Ds|:
assuming that the deployment time is constant regardless
of the deployment setup, the number of deployments will
eventually determine the execution time. Furthermore, the
points that are going to be picked into Ds have a huge impact
on the accuracy of p̂.

III. OUR APPROACH

In Algorithm 1, the general methodology used for creating
a profile for a given application is provided. The algorithm
expects a valid application description A followed by an
input domain D, representing the possible setups the applica-
tion can be deployed into and a list of applicable models. The
profiling process occurs iteratively: while the termination
condition is not fulfilled, the domain space is sampled, a new
point p is picked and the application is deployed according
to p. The deployment produces a performance metric d
which is then used to train in an incremental manner all
the available models. The output of the process is the model
which achieves the highest accuracy, according to a user
specified metric.

Algorithm 1 Main profiling algorithm

Require: application A, input domain D, models M
Ensure: model m

1: while not termination condition do
2: p ← SAMPLE(D)
3: d ← DEPLOY(p)
4: for m ∈ M do
5: m.train incrementaly(p,d)
6: end for
7: end while
8: return best model(M)

The termination condition can vary. In many cases, it
can be a threshold of sampled points that, if reached, the
condition is true and the algorithm terminates. In other
cases, it can be related to the achieved accuracy: if the
trained model achieves to predict the objective function with
error lower than a user defined threshold, the termination
condition is reached. As we will present in the following
section, the nature of the termination condition directly
relates to the nature of the sampling algorithm.

A. Sampling

The sampling procedure occurs at the beginning of each
profiling loop. The sampler receives as input the domain
space D of the application, which is composed of all the
acceptable deployment points. If the termination condition
in Algorithm 1 is related to the number of sampled points,
then the sampler receives as input a positive number 0 <
s ≤ 1.0 indicating the maximum number of points that the
sampler should return, as a portion of the number of points
in D. Each point returned by the sampler will be used for

deployment, the application performance will be measured
and then an approximation model will be trained using the
acquired information.

There are many methodologies for sampling a multidi-
mensional space; We can categorize the methods we support
in the following categories: (i) Static sampling, where the
sampler needs no other information than the domain space
characteristics (dimensions and acceptable values) to pick
the next sample, (ii) Adaptive sampling, where the sampler
exploits the knowledge obtained by the deployment of
previously picked samples.

The static approach does not take into consideration
the application performance. Typical examples of static
sampling are the Random sampler, that returns random
points and the Uniform sampler which constructs a mul-
tidimensional grid in the input space D, and returns points
belonging to the grid. The adaptive approach, on the other
hand, exploits the knowledge obtained from each deploy-
ment/sample, enabling the sampler to return more samples
in regions of the domain space D where the performance ap-
pears to have fluctuations. Equivalently, an adaptive sampler
will favor areas of D that affect the application performance
more. In Algorithm 2 we provide the Greedy Adaptive
Sampling Algorithm.

Algorithm 2 Greedy Adaptive Sampling Algorithm

Require: input domain D, chosen samples L, number K
Ensure: sample s

1: if |L| < K then
2: s = borderPoint(D)
3: else
4: max = 0
5: for all t1 ∈ L do
6: for all t2 ∈ L do
7: a = find midpoint(t1, t2, D)
8: if |t1 − t2| > max and a 6∈ L then
9: max = |t1 − t2|

10: s = a
11: end if
12: end for
13: end for
14: end if
15: return s

The algorithm expects as input the domain space D, the
list of all the previously picked samples L and a positive
number K. At first the algorithm returns K points from
the border of the hyperplane defined by all points d ∈ D.
The border points are picked with the notion that if the
application is deployed using the highest and lowest avail-
able resources for each dimension (in combination, between
different dimensions), the objective function will most likely
present its highest and lowest values in the respective points.

Furthermore, the K border points are also equidistant in
order to avoid high gathering of points in a small region of
the input space. When the number of chosen points exceeds
K, the algorithm then utilizes the knowledge obtained from
the first samples. Specifically, the distances1 between all the
points are calculated and the midpoint between each couple
is estimated. The midpoint is defined as follows: assuming
2 points p1, p2 ∈ D, the midpoint pmed is the point whose
values for each dimension equal to the average values of
points p1, p2 to the respective dimensions. If such point does
not exist (e.g. such resource combination is not applicable),
the geometrically closest point is returned. The eventually
picked midpoint is the result of the most distant points, as
long as this point was not previously picked.

B. Approximation models

When a new sample is picked by the sampler and de-
ployed, the performance metric for the deployment is stored
and given as input to an approximation model. The training
set of the model consists of the chosen samples along
with their performance values. After the training process is
finished, the model will be able to approximate the objective
function for the entire space D.

There exist many methodologies for approximating an
unknown function. We can categorize them in two major
categories: regression based techniques and classification
techniques. Algorithms on the former category create an
analytical form of the objective function. The classification
techniques, on the other hand, do not create an analytical
function but rather classify the points of the domains space
in classes; These objects are treated in a similar manner,
indicating that the same properties stand for objects in the
same class.

In our approach, we utilize the approximation models
offered by WEKA[7], an open source data mining software
which implements a variety of machine learning algorithms.
WEKA provides a handful of approximation models in-
cluding, but not limited to: (i) Multilayer Perceptron, that
represents a typical neural network with many hidden layers
and neurons, (ii) Linear Regression (Least Median Squares),
that implements the methodology introduced at [8], (iii) RBF
Network, which trains a Radial Basis Function Network, as
presented at [9], (iv) Gaussian Process, that approximates
the objective function using gaussian distributions, etc.

The accuracy of each of the models is highly affected from
its configuration and the nature of the objective function.
For example, a linear hyperplane will be approximated faster
using a linear regression method; On the contrary a complex
surface which has spikes and valleys is more likely to be
approximated more accurately using a non linear approach.

1The points t1 and t2 represent points p1, p2 ∈ D along with their
respective performance values r1, r2, so t1 = (p1, r1) and t2 = (p2, r2).
The norm |t1 − t2| in this paper represents the difference |r1 − r2|, until
otherwise stated.

All the available models are trained in parallel by the system,
and the most accurate model is eventually picked.

C. System Architecture

Application Modeling Domain Sampler

Profiling Engine

Web UIPANIC

Deployment Tool Monitoring Tool

Cloud Provider

Figure 1: The architecture of PANIC

In Fig 1 we provide the architecture of the system. The
core component of our system is the profiling engine. It is
responsible for the synchronization between different tasks
and it orchestrates the different components to achieve the
common goal. Each time a new profiling loop is triggered,
new application models and a new domain sampler is
initialized (according to the user preferences). The sampler
will initially create requests for new deployments and the
Profiling Engine will forward the request to the Deployment
Tool (a tool written for the needs of PANIC). When the
execution of the application is terminated, the monitoring
tool collects the user specified performance metrics and for-
wards them to the Profiling Engine. The monitoring system
which is used by default is Ganglia[10]. The engine will then
retrain the previously initialized Application Models and an
accuracy estimation will occur. If the desired accuracy is
achieved, then the profiling process is terminated, else a new
profiling iteration occurs. The whole process is exported to
the user through a Web UI.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of PANIC, we have selected
a set of distributed analytics jobs/applications that are nat-
urally deployed over large scale virtualized resources. The
first benchmark application is TeraSort [11], a well-known
benchmark that sorts a set of key values. We test it with
datasets of 10M up to 50M key-values (1GB to 5GB of
data respectively) and run the TeraSort in Hadoop clusters
with different number of nodes and different number of
cores per node. The second application is a BSP-based
implementation of PageRank [12], a well known graph
algorithm implemented over the Apache Hama framework.
We utilize 50K to 100K node graphs, each of which has at
most 50 outgoing edges and execute PageRank over different
cluster sizes as above. Finally, the third application is a
BSP implementation of the Single Source Shortest Path
(SSSP) algorithm [13], implemented for the Apache Hama
framework. For SSSP, we create synthetic graphs consisting
of 50k up to 500k vertices and at most 50 edges per node.
For all the aforementioned algorithms, the performance
metric we seek to predict is execution time.

The domain space for each of the three applications is
composed of two dimensions related with the virtualized
resources and one dimension related to the application load
which, in our case, is intimately related to the size of the
input dataset. The dimensions along with their respective
values are provided in Table II. To evaluate the efficacy
of PANIC, all three applications have been deployed for
each possible combination. Consequently, the sampling al-
gorithms presented in the previous section were applied
and classifiers were trained, allowing us to measure the
prediction accuracy.

Table II: Resource Dimensions

Dimension Values
Nodes 2, 3, 4, 5, 6, 7, 8, 9, 10
Cores/node 1, 2, 4

Dataset size
Terasort (Millions of Key Values) 10, 20, 30, 40, 50
PageRank (Thousands of Nodes) 50, 60, 70, 80, 90, 100
SSSP (Thousands of Nodes) 50, 100, 200, 300, 400, 500

A. Raw performance

 2 3 4 5 6 7 8 9 10 10
 20

 30
 40

 50

 100
 200
 300
 400
 500
 600

T
im

e
 (

s
e
c
)

Terasort performance (1 cores/node)

Terasort

Cluster size

Size (x10
6
 tuples)

T
im

e
 (

s
e
c
)

(a)

 2 3 4 5 6 7 8 9 10 50
 60

 70
 80

 90
 100

 120

 160

 200

 240

 280

T
im

e
 (

s
e
c
)

PageRank performance (1 cores/node)

PageRank

Cluster size

Size (x10
3
 nodes)

T
im

e
 (

s
e
c
)

(b)

 2 3 4 5 6 7 8 9 10
 100

 200
 300

 400
 500

 100
 150
 200
 250
 300
 350
 400

T
im

e
 (

s
e
c
)

SSSP performance (1 cores/node)

SSSP

Cluster size

Size (x10
3
 nodes)

T
im

e
 (

s
e
c
)

(c)

Figure 2: Raw performance

The running times for all three benchmark applications
is given in Figure 2. We only provide the execution times
of each benchmark application for the single core VM
cases; The 2 and 4 cores cases are not provided due to
space constraints. In Figure 2a we provide the execution
time of the Terasort benchmark with regard to the size
of the cluster and the dataset size (measured in millions
of key-values). It is obvious that the execution time is
inversely proportional to the cluster size and proportional
to the dataset size. Furthermore, for large clusters we notice
that the execution time decreases less rapidly, because the
communication overheads affect more the overall execution
time.

The execution time for both PageRank and SSSP are
also shown in Figures 2b and 2c respectively. PageRank
has a similar behavior to the Terasort case. SSSP, on the
other hand, presents a slightly different behavior in terms
of scalability. Specifically, when more nodes are added to
the Hama cluster, the execution time remains unaffected
for smaller dataset sizes (e.g., 50k nodes), while for larger
datasets it decreases, but less rapidly than in the other cases.
This is due to the larger number of supersteps executed by
SSSP. Specifically, for our datasets, each SSSP job requires
about 25–30 Hama supersteps while PageRank requires
only a third of them. As a consequence, SSSP needs more
sequential steps thus more time for synchronization between
the BSP workers. Thus, due to this cost, the addition of more
workers does not greatly benefit SSSP.

B. Sampling rate

One of the greatest factors that affect the performance
of our system is the sampling rate. This is defined as the
ratio between the number of the chosen points and the total
number of acceptable deployments. Lower sampling rates
lead to fewer chosen points, offering the classifiers less
knowledge for the objective function (the performance of the
application). Via the coefficient of determination R2 [14] we
quantify the accuracy of the profiling methods. R2 declares
the degree in which a classifier fits the original data. It is

calculated as follows: R2 = 1 −

∑
i

(yi−fi)2∑
i

(yi−y)2
where yi are

the real performance values, fi are the predicted values and
y is the mean of the observed data. The closer R2 gets to
1.0, the better the performed approximation. We also utilize
the Mean Absolute Error [15] metric which is defined as:
MAE = 1

n

∑
i

|fi − yi|.
We applied the sampling methodologies presented in

Section III-A and trained all the available models of Section
III-B with the chosen points along with the respective
performance values for different sampling rates. In Figure
3 we provide the accuracy level of the best model for each
sampling rate for all three applications; In Figures 3a, 3c,
3e, R2 is depicted whereas the ones on the right (3b, 3d, 3f)
represent the MAE. The best model is defined as the model
that presents the highest coefficient of determination. The
respective deviation for each application did not overtake
10% of the values of MAE and we do not depict it on the
figures.

In our results, we notice that the most accurate models
present slightly different behavior for each one of the three
applications. In all of them, it is obvious that an increase in
the Sampling Rate leads to higher accuracy. This result is
expected, since higher sampling rate means that more points
are picked, thus the model will obtain more knowledge for
the objective function. However, in many cases this might
not be the case: The sampler may pick more points but if

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.075 0.1 0.125 0.15 0.175 0.2

R
2

Sampling Rate

Terasort

Adaptive Sampling
Uniform Sampling

Random Sampling

(a)

 30

 35

 40

 45

 50

 55

 60

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

Sampling Rate

Terasort

Adaptive Sampling
Uniform Sampling

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.075 0.1 0.125 0.15 0.175 0.2

R
2

Sampling Rate

PageRank

Adaptive Sampling
Uniform Sampling

Random Sampling

(c)

 11
 11.5

 12
 12.5

 13
 13.5

 14
 14.5

 15
 15.5

 16

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

Sampling Rate

PageRank

Adaptive Sampling
Uniform Sampling

(d)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.075 0.1 0.125 0.15 0.175 0.2

R
2

Sampling Rate

SSSP

Adaptive Sampling
Uniform Sampling

Random Sampling

(e)

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

Sampling Rate

SSSP

Adaptive Sampling
Uniform Sampling

(f)

Figure 3: R2 and MAE for the benchmark applications

they are not representative ones, they may mislead the model
and eventually, this may cause lower accuracy. For example,
this is the case for Terasort, when increasing the sampling
rate from 0.125 to 0.15 for the Uniform sampler. More points
are chosen, but very few of them are picked in the regions
where the execution time is high, thus the model’s accuracy
degrades. Such cases are avoided by utilizing Adaptive
Sampling.

In conclusion, the provided models in cooperation with
the sampling methods enable the system to create an accu-
rate profile of the application even when the sampling rate
is less than 10% of the points of the domain space. In terms
of accuracy, we achieved R2 values higher than 0.8 for all
the benchmark applications, even when the sampling rate is
lower that 10%. Similarly, the accuracy of the trained models
increased rapidly in terms of MAE as well for increasing
sampling rates. Finally, the profiling process is quite fast:
Even when the Sampling Rate is 20%, the total time spent
in training is not more than 1.5 seconds. The input space
of our experiments consists of 135 discrete points for the
Terasort case and 162 points for the SSSP and Pagerank
cases. Sampling with 20% of these domains leads to 27 and
32 points respectively, thus the training time of our models is
less than 1.5 seconds when there exist 32 points for training.

V. RELATED WORK

Predicting the performance of applications running over
virtualized resources concerning the workload is vividly
researched in the literature. In [4], Kundu et al. proposed
an iterative model training technique for Neural Networks

with which the authors managed to predict the minimum
possible Virtual Machine (concerning its resources) which
would fulfill their objectives with respect to the SLAs. In an
extension of this work, at [3], also utilized Support Vector
Machines for the same objective. Their work achieved to
highly accurate predictions, however the authors did not
address the problem of sampling the input domain space,
as we do in this work. Furthermore, Iqbal et al. in [16],
propose a method with which, at first, identifies a workload
pattern and secondarily builds a model capable to predict the
application’s capacity (the number of requests it can serve
without violating given constraints). This work focuses on
web applications and the prediction happens with regres-
sion models; PANIC on the other hand, provides a wealth
of approximation techniques and the it also supports any
application able to deployed over a cloud infrastructure.

Similarly, Do et al. in [6] presented a profiling technique
which utilizes the Canonical Correlation Analysis, able to
identify the relationship between the allocated resources and
the application performance. This work targets to predict the
performance of a newly allocated Virtual Machine when it is
deployed in a specific host running other Virtual Machines.
Our work differentiates from this, since our target is to
provide an accurate application profile without having any
knowledge about the provider. Other works focus on predict-
ing specific application metrics based on I/O workload and
access patterns such as [17], [18] and [19]. Our approach
differentiates from them, as we propose a system where the
user can define application level metrics which indicate the
application performance.

VI. CONCLUSIONS

In this paper we addressed the problem of predicting
the performance of a complex application deployed over
virtualized resources. The goal of our work is to propose
a system which obtains knowledge about the application
by deploying it over a cloud infrastructure, in different
deployment setups and then approximating its performance
for all the possible setups. The application load, which is
a key factor to the performance, is addressed in the same
manner as the rest of the resources, contributing to a unified
view of all the components that affect the application. The
experimental evaluation indicated that such an approach can
lead to an accurate prediction of the performance by actually
deploying the application for only a very small portion of the
deployment space. Furthermore, by utilizing a large number
of approximation techniques, our system is able to quickly
recognize the behavior of the application by picking the most
suitable approximation model enabling the profiling process
to terminate faster.

ACKNOWLEDGMENTS

This work was supported by the European Commission
in terms of the CELAR 317790 FP7 project (FP7-ICT-

2011-8). Nikolaos Papailiou has received funding from IKY
fellowships of excellence for postgraduate studies in Greece
- SIEMENS program.

REFERENCES
[1] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghal-

sasi, “Cloud computingthe business perspective,” Decision
Support Systems, vol. 51, no. 1, pp. 176–189, 2011.

[2] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql
database,” in Pervasive computing and applications (ICPCA),
2011 6th international conference on. IEEE, 2011, pp. 363–
366.

[3] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta,
“Modeling virtualized applications using machine learning
techniques,” ACM SIGPLAN Notices, vol. 47, no. 7, pp. 3–14,
2012.

[4] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Appli-
cation performance modeling in a virtualized environment,”
in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on. IEEE, 2010, pp.
1–10.

[5] A. A. Bankole and S. A. Ajila, “Predicting cloud resource
provisioning using machine learning techniques,” in Electrical
and Computer Engineering (CCECE), 2013 26th Annual
IEEE Canadian Conference on. IEEE, 2013, pp. 1–4.

[6] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya,
and B. B. Zhou, “Profiling applications for virtual machine
placement in clouds,” in Cloud Computing (CLOUD), 2011
IEEE International Conference on. IEEE, 2011, pp. 660–
667.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–
18, 2009.

[8] P. J. Rousseeuw and A. M. Leroy, Robust regression and
outlier detection, 1987.

[9] D. S. Broomhead and D. Lowe, “Radial basis functions,
multi-variable functional interpolation and adaptive net-
works,” DTIC Document, Tech. Rep., 1988.

[10] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,” Parallel Computing, vol. 30, no. 7, pp. 817–840,
2004.

[11] O. OMalley, “Terabyte sort on apache hadoop,” Yahoo,
available online at: http://sortbenchmark. org/Yahoo-Hadoop.
pdf,(May), pp. 1–3, 2008.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web.” 1999.

[13] S. Pettie, “Single-source shortest paths,” Encyclopedia of
Algorithms, pp. 847–849, 2008.

[14] R. G. D. Steel and J. H. Torrie, “Principles and procedures of
statistics: with special reference to the biological sciences,”
1960.

[15] R. J. Hyndman and A. B. Koehler, “Another look at measures
of forecast accuracy,” International journal of forecasting,
vol. 22, no. 4, pp. 679–688, 2006.

[16] W. Iqbal, M. N. Dailey, and D. Carrera, “Black-box approach
to capacity identification for multi-tier applications hosted
on virtualized platforms,” in Cloud and Service Computing
(CSC), 2011 International Conference on. IEEE, 2011, pp.
111–117.

[17] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner,
“Predictive performance modeling of virtualized storage sys-
tems using optimized statistical regression techniques,” in
Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering. ACM, 2013, pp. 283–294.

[18] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kil-
patrick, “Io performance prediction in consolidated virtual-
ized environments,” in ACM SIGSOFT Software Engineering
Notes, vol. 36, no. 5. ACM, 2011, pp. 295–306.

[19] Kraft, Stephan and Casale, Giuliano and Krishnamurthy,
Diwakar and Greer, Des and Kilpatrick, Peter, “Performance
models of storage contention in cloud environments,” Soft-
ware & Systems Modeling, vol. 12, no. 4, pp. 681–704, 2013.

