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Executive Summary

This deliverable is a report on the final version of the Intelligent, Multi-engine Re-
source Scheduling (IReS) platform. In this version, new functionality has been imple-
mented while existing modules have been refined and enriched. The IReS platform
is presented in full detail in a self-contained manner, while newly designed and imple-
mented features are highlighted. The extensive experimental evaluation confirms that
IReS speeds up diverse and realistic workflows by up to 30% compared to their opti-
mal single-engine plan by automatically scattering parts of them to different execution
engines and datastores. Its optimizer incurs only marginal overhead to the workflow
execution performance, managing to discover the optimal execution plan within a few
seconds, even for large-scale workflow instances.
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1 Introduction

1.1 Motivation and Overview

Big Data analytics have become indispensable to organizations worldwide as a means
of extracting significant value out of the enormous amounts of data that stream into
their businesses. That, in turn, offers organizations an unprecedented competitive
advantage: The ability to identify new opportunities, take educated decisions based
on historical facts, render their operations faster and more cost efficient and keep
customers satisfied [25]. The volume, velocity and variety of Big Data pose new chal-
lenges to analytics, entailing a high degree of parallelism in both storage and compu-
tation: Modern data centers host huge volumes of data over large numbers of nodes
with multiple storage devices and process them using thousands or millions of cores.

In the landscape of Big Data analytics, multiple and diverse execution engines and
datastores have emerged as platforms of choice for specific computation types and
data formats (e.g., [3, 7, 4, 5], etc.). To alleviate the burden of building and maintain-
ing such systems, many of them are currently either offered as-a-service by the most
prevalent Cloud providers (e.g., [2, 11, 15]) or packaged in pre-cooked VM or container
images for ease of deployment [9]. Still, although many approaches in the relevant lit-
erature manage to optimize the performance of single engines by automatically tuning
a number of configuration parameters [32, 36], they bind their efficacy to specific data
formats and query/analytics task types.

However, one size does not fit all: No single execution model is suitable for all
types of tasks and no single data model is suitable for all types of data. Indeed, modern
workflows have evolved into increasingly long and complex series of diverse operators,
ranging from simple Select-Project-Join (SPJ) and data movement to complex NLP-,
graph- or custom business-related tasks, with varying data formats (e.g., relational,
key-value, graph, etc.) and shrinking delivery deadlines [28]. Time constraints aside,
analysts may be equally interested in other execution aspects, such as cost, resource
utilization, fault-tolerance, etc., and thus need to be able to impose various – and
often multi-objective – optimization policies, adding another degree of complexity to an
already convoluted problem.

Multi-engine analytics have recently been proposed as a promising solution that
can optimize for this complexity [41] and are gaining ground ever since. Cloud vendors
currently offer software solutions that incorporate a multitude of processing frame-
works, data stores and libraries to facilitate the management of multiple installations
and configurations [8, 12, 18]. This is where the ASAP project comes into place: it
leverages the power and opportunities offered by multi-engine environments to har-
vest Big Data through complex analytics workflows.

One of the most compelling, yet daunting challenges in such a multi-engine envi-
ronment is the design and creation of a meta-scheduler that automatically allocates
tasks to the right engine(s) according to multiple criteria, deploys and runs them with-
out manual intervention. IReS takes over that role exactly within the ASAP project.
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IReS is an open-source Intelligent Multi-Engine Resource Scheduler that inte-
grates multiple execution engines and datastores into the optimizing, planning and
execution of complex analytics workflows1. IReS adopts a black-box approach on the
analytics operators. This facilitates the handling of any kind of task, ranging from low-
(e.g., join, sort, etc.) to higher-level operators (e.g., machine learning, graph pro-
cessing, etc.) that run on any state-of-the-art, centralized or distributed system (e.g.,
Map-Reduce, BSP, RDBMSs, NoSQL, distributed file-systems, etc.). Moreover, the
engine-agnostic approach allows for easy addition of new operators and engines. All
that IReS requires is a description of the analytics tasks and data via an extensible
meta-data framework, as well as a model of the cost and performance characteristics
of the required tasks over the available platforms. Consequently, utilizing a DP-based,
state-of-the-art planner, the platform is able to map distinct parts of a workflow to the
most advantageous store, indexing and execution pattern and decide on the exact
amount of resources provisioned in order to optimize any user-defined policy. The re-
sulting optimization is orthogonal to (and in fact enhanced by) any optimization effort
within an engine. Moreover, IReS can efficiently adapt to the current cluster/engine
conditions and recover from failures by effectively monitoring the workflow execution
in real-time.

1.2 Purpose of the Deliverable

This deliverable presents the final version of the IReS platform. We present the final
system architecture, which has been refined and enriched since Y2 with new mod-
ules to better reflect the functionality offered. We delve into the implementation details
of the IReS architectural modules, both old and new ones, and provide an extensive
experimental evaluation of the platform’s accuracy of operator/engine modeling, effi-
cacy of profiling, performance of decision-making and effectiveness of fault-tolerance
mechanism.

In Deliverable D3.2 we already presented the first version of the IReS platform,
which included the initial version of the following:

• A modeling methodology that provides performance and cost metrics of the avail-
able analytics operators for different engine configurations. In the initial version,
the metrics were collected offline in order to train all available WEKA models.
The resulting models are utilized in multi-engine workflow optimization.

• A multi-engine planner that selects the most prominent workflow execution plan
among existing engines, datastores and operators, based on a dynamic pro-
gramming (DP) algorithm.

• An extensible meta-data description framework for operators and data, which
allows IReS to automatically discover all alternative execution paths of an ab-
stractly described workflow by matching operators that perform similar tasks.

1https://github.com/project-asap/IReS-Platform
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• An execution layer that enforces the selected multi-engine execution plan.

This deliverable, which describes the second version of the IReS platform enriches
D3.2 in the following:

• The models of the available operators/engines are constructed using the metrics
collected from actual executions of the operators both offline (training phase)
and online (refinement phase). Thus, the models are refined with every work-
flow execution, achieving higher accuracy and capturing temporal performance
degradations.

• The planner does not only choose the (near) optimal execution plan but also
elastically provisions the correct amount of resources, consulting the cost and
performance models of the various operators.

• The execution layer actively monitors the selected multi-engine execution plan,
allowing for fine grained resource allocation control and fault tolerance.

• The second version of our open-source prototype has been extensively evaluated
over various real-life and synthetic workflows chosen to include diverse datasets
and computation types under realistic conditions. The results attest the ability of
IReS to efficiently decide on the optimal execution plan based on the optimiza-
tion policy and the available engines within a few seconds, even for large-scale
workflow graphs, adapt to changes in the underlying infrastructure and temporal
degradations with minimal overhead and, most importantly, speed-up the fastest
single-engine workflow executions up to 30% by exploiting multiple engines.

1.3 Structure of the Deliverable

D3.3 is structured as follows:

• Section 2 describes the final architecture of the IReS platform delving into the im-
plementation details of each module. While all modules involved are presented,
emphasis has been given to the newly added features of IReS that were not
present in the first version of the platform, as described in Deliverable D3.2.

• In section 3 we present how IReS exposes its functionality and interfaces with
the rest of the ASAP components. The section also includes a brief installation
and usage guide.

• Section 4 includes an extensive experimental evaluation of IReS under various
circumstances, using a subset of the project’s use case scenarios as well as syn-
thetic workflows. Apart from the gains in workflow performance, which constitute
the intuition that inspired IReS, the experiments aim to prove that the overhead
of the IReS decision making process is affordable, the resource provisioning
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strategy caters for the user needs and the system improves its accuracy as it op-
erates, being adaptable to any short- or long-term change in the characteristics
of the supported engines.

• Section 5 briefly discusses an emerged side system specifically plans and opti-
mizes SQL-based analytics over multi-engine environments.

• Section 6 concludes the report.
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2 Final IReS Architecture

IReS focuses on the highly efficient and user-customizable execution of analytics
workflows. This is made possible through the transparent modeling, monitoring and
scheduling that involves different execution engines and storage technologies. Our
system is able to handle all types of analytics workflows by adaptively choosing to ex-
ecute each sub-part of the workflow in a (possibly different) deployed engine. IReS
assigns sub-tasks to the most advantageous technology available and ensures re-
source and dataflow scheduling in order to enhance performance: If a single engine is
used, enhancement will be achieved through optimized and elastic resource allocation
(e.g., execute on the right cluster size, etc.); if multiple ones are required, enhance-
ments will relate both to single-engine optimization and to workflow management that
decides on the best execution plan and data placement (e.g., first execute subtask A
in Spark, store intermediate results in a NoSQL engine and then run subtasks B and
C in parallel, having the final results written in HDFS).

The central notion behind IReS is to utilize detailed models of the costs and per-
formance characteristics of analytics operators over multiple execution engines. The
models are stored and updated in an IReS library. Whenever a new workflow is run
atop IReS, these models are used in order to intelligently assign and orchestrate work-
flow parts to the underlying engines according to the user optimization policy. The
architecture of the IReS platform is depicted in Figure 1. IReS comprises of three
layers, the interface, the optimizer and the executor layer. In the following, we de-
scribe in more detail the role, functionality and internals of these layers, delving into
the specifics of the modules of the platform.

2.1 Interface Layer

The interface layer is responsible for handling the interaction between IReS and its
users. A user should be able to accurately define execution artefacts such as opera-
tors, data, workflows, etc., along with their inter-dependencies, properties and restric-
tions using a common meta-data description framework. Based on this framework,
the parser module parses the user-provided workflow as a dependency graph and
validates the user-defined policy.

The main challenges of defining such a framework are extensibility and abstrac-
tion. Users should be granted the ability to define custom meta-data for fine-grained
operator and dataset description. This freedom supports the effortless addition of new
engines and operators, as opposed to the rigidity of having a predefined set of meta-
data fields. Moreover, users should be able to specify the data and operators that com-
pose their workflow at any desired abstraction level on its various steps, ranging from
the fine-grained definition of specific implementations/engines to the coarse-grained
description of the general functionality regardless of the platform. It is IReS that will
remove this abstraction, examine alternative execution paths of the same conceptual
workflow and select the most beneficial one, according to the user-defined policy.
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Figure 1: Architecture of the IReS platform

The main entities of our framework are data and operators, which need to be ac-
companied by a set of meta-data, i.e., properties that describe them. Data and op-
erators can be either abstract or materialized. Abstract operators and datasets are
defined and used when composing a workflow, whereas materialized ones refer to
specific implementations and existing datasets and are usually provided by the opera-
tor developer or the dataset owner respectively. Materialized operators along with their
descriptions are stored in the operator library, as depicted in Figure 1.

The meta-data accompanying operators (e.g., input types, execution parameters,
invocation scripts, etc.) and data (e.g., schemata, location of objects, etc.) are or-
ganized in a generic tree format. To avoid restricting the user and allow for flexibility,
only the first levels of the meta-data tree are predefined. Users can add their ad-hoc
subtrees to define custom data or operator properties. Moreover, some fields (mostly
the ones related to the operator and data requirements) are compulsory while the rest
(e.g., known cost models, statistics, etc.) are optional and user-defined. Materialized
data and operators need to have all their compulsory fields filled in with information.
Abstract data and operators do not adhere to this rule. Apart from having empty fields,
they can also support regular expressions (e.g., the ∗ symbol under a field means that
the abstract object matches materialized ones with any value of that field). In general,
we pre-define the following the meta-data fields:
IConstraints: This sub-tree contains all the information that is required to match (a)
abstract operators to materialized ones and (b) data to operators. Mandatory fields in-
clude specifications of operator inputs/outputs, algorithms, engines and anything con-
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(a) (b)

Figure 2: Meta-data descriptions of (a) a dataset of crawled web pages and (b) an
abstract tf-idf operator.

Figure 3: Meta-data description of a materialized tf-idf operator, implemented in ma-
hout/Hadoop

sidered necessary in the abstract/materialized matching of operators.
IExecution: This sub-tree provides the execution parameters of a materialized oper-
ator, such as the path of a dataset or the execution arguments of an operator script.

IOptimization: This optional part of the meta-data holds additional information that
assists in the optimization of the workflow. This information could include, for instance,
a cost function provided by the developer of the operator or instructions on how to
create one by profiling over specific metrics (e.g., execution time, required RAM, etc.).

As an example, let us assume an analyst wants to perform tf-idf over a corpus of
documents crawled from the Internet. First, she needs to describe the input dataset,
crawlDocuments, as depicted in Figure 2.a: It is a sequence file stored in HDFS, fol-
lowing the path specified by the Execution field. The information under Optimization
notifies the system of the number of documents contained in the dataset. Then, she
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needs to specify the operation to be performed. In its abstract form, the TF_IDF opera-
tor (see Figure 2.b) needs only define one input parameter, the implemented algorithm
(under opSpecification.Algorithm) and an output parameter. In short, TF_IDF de-
fines a format that any tf-idf implementation of the specific functionality needs to follow.

Additionally, a materialized tf-idf operator includes all information required in order
to perform the operation on an execution engine. In TF_IDF_mahout (see Figure 3),
the operator calculates tf-idf over Mahout/Hadoop; it thus includes Hadoop-specific
information about the input, output and the engine. The input and output in this case
have specific types and an engine specification (under Engine). The operator itself
also has an EngineSpecification, indicating its execution location.

To discover the actual implementations that comply with the description of both
the abstract operator and the dataset provided by the user, we employ a tree matching
algorithm to ensure that all meta-data constraints are met, i.e., all compulsory fields are
consistent. This is performed during the planning and optimization phase, described
subsequently. In our example, TF_IDF_mahout matches TF_IDF in the fields designated
by the red rectangles. Moreover, the crawlDocuments dataset can be used as input to
TF_IDF_mahout as is, as the matched greed rectangles suggest. Thus, TF_IDF_mahout
is considered when constructing the optimized execution plan.

2.2 Optimizer Layer

The optimizer layer is responsible for optimizing the execution of an analytics work-
flow with respect to the policy provided by the user. The core component of this layer
is the planner, which determines the optimal execution plan in real-time. This entails
deciding on where each subtask is to be run, under what amount of resources provi-
sioned and whether data need to be moved to/from their current locations and between
runtimes (if more than one is chosen).

Such a decision must rely on the characteristics of the analytics task in hand which
are modeled and stored within IReS. The initial model of an operator results from the
offline profiling of it using a profiler that directly interacts with the pool of physical
resources and the monitoring layer in-between. Moreover, while the workflow is being
executed, the initial models are refined in an online manner by the model refinement
module, using monitoring information of the actual run. This mechanism allows for
dynamic adjustments of the models and enables the planner to base its decisions on
the most up-to-date knowledge.

2.2.1 Profiler/Modeler

While accurate models exist for SQL operations over an RDBMS, which includes its
own cost-based optimizer, this is not the case for other analytics operators (e.g., ma-
chine learning, graph processing, etc.) and modern runtimes (be it distributed or cen-
tralized): Only a very limited number of operators and engines has been studied, while
most of the proposed models entail knowledge of the code to be executed [21, 43, 39].
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Moreover, there is no trivial way to compare or correlate cost estimations derived from
different engines at a meta-level.

To that end, we adopt an engine-agnostic approach that treats materialized oper-
ators as “black boxes”, assuming no prior knowledge of their internals, and models
them using profiling in an offline mode, as well as machine learning over actual runs.

The profiling mechanism adopted builds on prior work [29]. Its input parameters fall
into three categories:

• data-specific, which describe the data to be used for the operator profiling (e.g.,
the type of data and its size)

• operator-specific, which relate to the algorithm of the operator (e.g., the number
of output clusters in k-means), and

• resource-specific, which define the resources to be tweaked during profiling (e.g.,
cluster size, main memory, etc.)

The output of each run is the profiled operator’s performance and cost under each
combination of the input parameter values for specific user-defined optimization met-
rics. Both the input parameters as well as the output metrics are specified by the
user/developer. Currently we monitor 45 metrics in total, including:

• The operators execution time

• Input and output sizes (where applicable)

• Input count (e.g. Number of documents, vectors, etc.)

• Cardinality of the output (for vectors)

• Date of the experiment

• Operator specific parameters (like the number of clusters for clustering opera-
tions)

• A timeline of system metrics (CPU, RAM usage, network traffic, IOPS, etc.) for
the whole cluster, periodically pulled from the ganglia monitoring system [10].

The collected metrics are then used to create estimation models [34], making use
of neural networks, SVM, interpolation and curve fitting techniques for each operator
running on a specific engine. However it is not necessary that all of those metrics will
contribute to the estimation model.

In our approach, we utilize the approximation models offered by WEKA[31], an
open source data mining software which implements a variety of machine learning
algorithms. Specifically, the supported approximation techniques are the following:

• Gaussian Process, which approximates the objective function using Gaussian
distributions
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• Multilayer Perceptron, which represents a typical neural network with many hid-
den layers and neurons

• Linear Regression (Least Median Squares), which implements the methodology
introduced at [38]

• Bagging, which executes classification as described in [23]

• Random SubSpace, which constructs a decision tree using the approach pre-
sented in [33]

• Regression by Discretization, which enforces regression over a discretized do-
main of the input space

• RBF Network, which trains a Radial Basis Function Network, as presented in [24]

The cross validation technique [35] is used to maintain the model that best fits the
available data.

2.2.2 Model Refinement

This is a new feature introduced in the second version of the IReS platform. Upon
execution of a workflow, the currently monitored execution metrics provide feedback
to the existing models in order to refine them and capture possible changes in the
underlying infrastructure (e.g., hardware upgrades) or temporal degradations (e.g.,
due to unbalanced use of engines, collocation of competing tasks, surges in load, etc.).
This mechanism contributes to the adaptability of IReS, ameliorating the accuracy of
the models while the platform is in operation.

2.2.3 Planner

This module, in analogy to traditional query planners, intelligently explores all the avail-
able execution plans and discovers the optimal one with respect to the user-defined
optimization objectives. In reality, just like traditional query optimizers, our planner tries
to approximate the optimum by comparing several alternatives to provide in a reason-
able time a ”good enough” plan which typically does not deviate much from the best
possible result. In the following, the term “optimizer” is used in exactly this sense.

Algorithm 1 describes the optimization process, which relies on dynamic program-
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ming (DP) to select the optimal execution plan.

ALGORITHM 1: Optimizer
1 //G(Datasets,Operators) : abstract workflow graph
2 //Datasets : set of datasets
3 //Operators : set of abstract operators
4 //target : target dataset
5 for d ∈ Datasets do
6 //initialize dpTable
7 if d.isMaterialized() then
8 if d == target then
9 return 0;

10 dpTable[d].insert(d, 0);
11 for o ∈ Operators following DAG topological ordering do
12 MOperators = findMaterializedOperators(o);
13 for mo ∈MOperators do
14 inputCost = 0;
15 for in ∈ mo.getInputs() do
16 minCost =∞;
17 for tin ∈ dpTable[in] do
18 if tin.matchWithOperatorInput(mo) then
19 if tin.getCost < minCost then
20 minCost = tin.getCost;
21 else
22 if tin.checkMove(mo) then
23 moveCost = tin.getCost+ tin.moveCost(mo);
24 if moveCost < minCost then
25 minCost = moveCost;
26 inputCost+ = minCost;
27 operatorCost = estimateCost(mo);
28 cost = inputCost+ operatorCost;
29 for out ∈ o.getOutputs() do
30 tout = outputFor(mo, out);
31 dpTable[out].insert(tout, cost);
32 return dpTable[target].getMinCost();

The algorithm receives as input the abstract workflow graph, expressed as a DAG
of operator and dataset nodes G(Datasets,Operators). It maintains a dpTable struc-
ture, responsible for storing the best execution plan for each different format of a
dataset node (e.g., csv, json, etc.). The planner processes all abstract operators of
the workflow following a DAG topological order, using a depth-first search (line 11).
This ordering ensures that when an operator is being processed, all its predecessors
in the DAG have already been processed and thus the dpTable always contains the
optimal plans per input.

For each abstract operator, the IReS library is explored to find all matching material-
ized operators, i.e., operators that share the same meta-data (line 12). To speedup this
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Figure 4: Abstract tf-idf, k-means workflow.

procedure we use string labeled and lexicographically ordered meta-data trees. This
data structure allows for efficient, one pass tree matching. The complexity of matching
two meta-data trees with up to t nodes is O(t). We further improve the matching pro-
cedure by indexing the IReS library operators using a set of highly selective meta-data
attributes (e.g., algorithm name). Only operators that contain the correct attributes are
considered as candidate matches and are further examined by the above algorithm.

When all operator matches have been discovered, the process consults the input
and output specifications of the materialized operators and adds the required move/-
transform operators (lines 22-25). Those operators are needed in order to connect
operators of different engines and input/output configurations. Here, we make the as-
sumption that operator alternatives have a 1-1 relationship (we do not yet consider the
possibility of one operator being equivalent to a combination of 2 or more operators)
and that only one move/transform operator is used to match consecutive operators
with different output/input formats.

Consequently, to estimate operator performance metrics (e.g., cost, execution time)
our planner consults the estimator models for each one of the materialized operators
(line 27). In our current implementation, the planner is configured to optimize one
metric or a function of multiple performance metrics that the user is interested in.

We are currently investigating methods for optimizing multiple dimensions of per-
formance metrics, such as finding Pareto frontier execution plans. After estimating the
operator cost, we add all its output datasets in the dpTable. When all abstract opera-
tors have been processed, the optimal cost of the target dataset is returned using the
respective dpTable record.

To study the complexity of the Optimizer algorithm, let us assume that a work-
flow contains op number of abstract operators, with at most m materialized operators
matching an abstract one. Moreover, let us assume that each operator has k inputs at
maximum. For each intermediate dataset, our dpTable will contain at most m records,
each generated from one of the m materialized operators that match the abstract one
that produces it. Therefore, the inner loop of Algorithm 1 (line 17 onwards) will run at
most m times. Thus, the worst case complexity of our optimizer is:

O(op ·m2 · k)

Figure 4 depicts an abstract workflow which performs tf-idf feature-extraction over
a corpus of documents and clusters the output using the k-means clustering algo-
rithm. Assuming each operator has 2 implementations, using either the mahout or
WEKA libraries (running in Hadoop and Java respectively) we have the possible al-
ternative execution plans of Figure 5. The planner automatically adds the necessary
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Figure 5: Materialized workflow and optimal plan.

move/transform operators in order to transfer intermediate results between the two
engines (i.e., match the output of an operator to the input of the subsequent one).

Let us assume an optimization policy that targets execution time minimization. In-
tuitively, small datasets run faster in a centralized manner while distributed implemen-
tations outperform the centralized ones for bigger datasets. Indeed, the WEKA imple-
mentation is estimated to be the fastest for both steps, due to the small input size and
is thus included in the selected execution path, marked in green.

2.2.4 Resource Provisioning

This is another novel feature of IReS platform v2.0. Apart from deciding on the spe-
cific implementation/engine of each workflow operator, the planner of IReS provisions
the correct amount of resources to execute the workflow conforming as much as pos-
sible to the user-defined optimization policy. This policy may involve the execution
time or any user-defined cost function. The resource provisioning process builds on
the MOEA framework [1] and relies on the NSGA-II genetic algorithm [26] to sup-
ply resource-related parameters (e.g., #cores, memory) from the local minima of the
trained models. NSGA-II is the most prevalent evolutionary algorithm that has become
the standard approach to generating Pareto optimal solutions to a multi-objective op-
timization problem. The estimated parameter values are passed as arguments to the
workflow execution during run-time.

2.3 Executor Layer

The executor layer is the layer that enforces the optimal plan over the physical infras-
tructure. Its main responsibilities include the execution of the ensuing plan, a task
undertaken by the enforcer, and the assurance of the platform’s robustness, carried
out by the execution monitor.

The enforcer adopts methods and tools that translate high level “start runtime under
x amount of resources”, “move data from site Y to Z” type of commands to a workflow
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of primitives as understood by the specific runtimes and storage engines. Such actions
might entail code and/or data shipment if necessary.

Our current working prototype relies on YARN [42], a cluster management tool that
enables fine-grained, container-level resource allocation and scheduling over various
processing frameworks. Apart from requesting from YARN the necessary container
resources for each workflow operator, the enforcer needs to pay special attention to the
workflow execution orchestration. To that end, IReS extends Cloudera Kitten [13], a set
of tools for configuring and launching YARN containers as well as running applications
inside them, in order to add support for the execution of a DAG of operators instead of
just one.

The newly added feature of this version is the fault-tolerance mechanism. The
execution monitor captures faults and failures occurring on-the-fly through real-time
monitoring. Thus, it ensures the robustness and availability of the system by employing
two mechanisms:

• A mechanism that monitors the health status of the underlying infrastructure by
periodically executing customizable and parametrized health scripts in all cluster
nodes. The health status (HEALTHY/UNHEALTHY state per cluster node) is
reported back to the IReS server.

• A mechanism that checks the availability of all services (i.e., engines and datas-
tores) needed for the enforcement of an execution plan (ON/OFF status).

This information is used during the phases of both planning and execution of a
workflow. During planning, unavailable engines are excluded when constructing the
optimal execution plan and resources are provisioned exclusively taking into account
the currently available ones.

During the execution of a workflow, failures are detected in real-time. The remain-
ing workflow is re-planned and the new plan is enforced. We should note here that our
system does not discard results of tasks that have been successfully executed. Con-
trarily, it takes advantage of any intermediate materialized data, effectively reducing
the part of the workflow that needs to be re-scheduled.
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3 IReS Documentation

This section serves as an installation and execution manual for IReS. The full docu-
mentation of IReS is available online2.

3.1 IReS Installation

To have the IRes platform up and running, 4 steps are required:

1. Clone IReS code to the server

2. Run install.sh

3. Validate installation

4. Start the IReS server

3.1.1 Clone IReS code to the server

For a quick reference of how to use git, click here. Open a terminal (Linux) and navi-
gate to a desired directory where IReS-Platform files will be cloned e.g. asap. Then,
clone the project by entering the following command:

git clone git@github.com:project-asap/IReS-Platform.git

3.1.2 Run install.sh

After successful cloning of the IReS platform, various folders and files can be found
inside $IRES HOME. Among them there exists install.sh. Assuming that the current
working directory is $IRES HOME, executing

./install.sh

will start building IReS. Upon successful build you will be prompted to provide the
path where Hadoop YARN is located in your computer. By doing this, IReS gets con-
nected to Hadoop YARN. Alternatively, executing

./install.sh -c $YARN HOME,$IRES HOME

will make the connection of IReS and YARN, where $YARN HOME and $IRES HOME
correspond to the absolute paths of YARNs and IReSs home folder.

Assuming that the connections have been established, update the file

2https://project-asap.github.io/ASAP-documentation/ires docs/
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$YARN HOME/etc/hadoop/yarn-site.xml

with the following property values,

yarn.nodemanager.services-running.per-node

yarn.nodemanager.services-running.check-availability

yarn.nodemanager.services-running.check-status

These properties enable IReS to run workflows over YARN and monitor cluster
resources and services.

3.1.3 Validate installation

If anything goes wrong during the build process of IReS, error messages will be printed
out and a log file will be provided.

3.1.4 Start the IReS server

Start the IReS server by running the command

./install.sh -r start

No exception should be raised. Also, the jps command should print a Main process
running that corresponds to ASAP server. Open the ASAP server web user interface
at http://your_hostname:1323/web/main. The IReS home page should be displayed.
Run the hello world workflow from the “Abstract Workflows” tab and check what hap-
pens not only in IReS web interface but also in YARN and HDFS web interfaces. Make
sure that YARN has been started before running any workflow.

3.2 Running a sample workflow

The HelloWorld is a simple workflow constists of just a single operator, designed for
demonstration purposes. To run the HelloWolrd follow the next steps:

1. Go to IReS UI: http://ires host:1323/web/main

2. Go to the Abstract Workflows tab and select the HelloWorld workflow

3. Click on Materialize Workflow button

4. Click on the Execute Workflow button to start the execution

In the figures 6 and 7 below we can see the execution process.
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Figure 6: The execution has started.

3.3 Creating a workflow from scratch

This section describes the process of designing a new workflow from scratch. We will
create a workflow that consists of a single operator and takes as input a text file and
produces as output the number of lines. The basic steps that need to be followed are:
(1) The description of the materialized input dataset, (2) the addition of the materialized
operators (and their descriptions) to the IReS operator library, (3) the description of
the abstract operator, (4) the definition of the workflow and finally (5) the workflow
materialization. For steps (2) and (4) there exist alternative ways, which are described
in the following.

1. Dataset definition: In order to create the workflow input dataset, the dataset
definition must be added to the IReS library. Create a file named asapServerLog
into the asapLibrary/datasets/ folder and add the following content:

Optimization.documents=1

Execution.path=hdfs\:///user/root/asap-server.log

Constraints.Engine.FS=HDFS

This step assumes that a file named asap-server.log exists in the HDFS.
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Figure 7: The execution has been completed.

2. a Materialized Operator Definition (Server-Side): This is the first alternative
way of adding a materialized operator to the IReS operator library. One must
essentially create a folder structure in the IReS server, containing a minimum set
of files required to describe and run an operator.

(a) From the bash shell, go to the asapLibrary/operators folder in the IReS in-
stallation directory. cd $ASAP HOME/target/asapLibrary/operators

(b) Then, create a new folder named with the new materialized operators name.
mkdir LineCount

(c) Create the description file and enter the information below. A description file
should meet the standards of the template provided in the IReS online Doc-
umentation3. This template contains all the obligatory as well as optional
parameters that can be used to describe an operator.

$nano description

Constraints.Engine=Spark

Constraints.Output.number=1

3https://project-asap.github.io/ASAP-documentation/ires_docs/files/description_

template
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Constraints.Input.number=1

Constraints.OpSpecification.Algorithm.name=LineCount

Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.UserFunction

Optimization.model.cost=gr.ntua.ece.cslab.panic.core.models.UserFunction

Optimization.outputSpace.execTime=Double

Optimization.outputSpace.cost=Double

Optimization.cost=1.0

Optimization.execTime=1.0

Execution.Arguments.number=2

Execution.Argument0=In0.path.local

Execution.Argument1=lines.out

Execution.Output0.path=$HDFS_OP_DIR/lines.out

Execution.copyFromLocal=lines.out

Execution.copyToLocal=In0.path

(d) Create the .lua file with the execution instructions

$ nano LineCount.lua

operator = yarn {

name = "LineCount",

timeout = 10000,

memory = 1024,

cores = 1,

container = {

instances = 1,

--env = base_env,

resources = {

["count_lines.sh"] = {

file = "asapLibrary/operators/LineCount/count_lines.sh",

type = "file", -- other value: ’archive’

visibility = "application" -- other values: ’private’, ’public’

}

},

command = {

base = "./.sh"

}

}

}

(e) Create the executable named count lines.sh with the following content

$ #!/bin/bash

$ wc -l $1 >> $2

$ chmod +x count_lines.sh

(f) Restart the IReS server

$ IRES_HOME/asap-server/src/main/scripts/asap-server restart
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2. b Materialized Operator Definition (via REST): This is the second alternative
way to create a materialized operator using the IReS REST API. To do so, create
a folder locally and add the required description file as well as all other files
needed for the execution. In this case, an extra parameter should be added to
the description file which defines the execution command (Execution.command).

(a) Create inside the folder a file named description with the following content:

$nano description

Constraints.Engine=Spark

Constraints.Output.number=1

Constraints.Input.number=1

Constraints.OpSpecification.Algorithm.name=LineCount

Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.UserFunction

Optimization.model.cost=gr.ntua.ece.cslab.panic.core.models.UserFunction

Optimization.outputSpace.execTime=Double

Optimization.outputSpace.cost=Double

Optimization.cost=1.0

Optimization.execTime=1.0

Execution.Arguments.number=2

Execution.Argument0=In0.path.local

Execution.Argument1=lines.out

Execution.Output0.path=$HDFS_OP_DIR/lines.out

Execution.copyFromLocal=lines.out

Execution.copyToLocal=In0.path

Execution.command=./count_lines.sh

(b) Create the executable named count lines.sh with the following content

$ #!/bin/bash

$ wc -l $1 >> $2

$ chmod +x count_lines.sh

(c) Send the operator via the send operator.sh script:
$ ./send operator.sh LOCAL OP FOLDER IRES HOST LineCount

The script is available at $IRES HOME/asap-server/src/main/scripts. It can
also be downloaded directly4.

3. Abstract operator definition: Create the LineCount abstract operator by creat-
ing a file named LineCount in the asapLibrary/abstractOperators folder with the
following content:

Constraints.Output.number=1

Constraints.Input.number=1

Constraints.OpSpecification.Algorithm.name=LineCount

4https://github.com/project-asap/IReS-Platform/blob/master/asap-platform/

asap-server/src/main/scripts/send_operator.sh
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4. a Abstract workflow definition (Server-Side): This is the first way to describe
the abstract workflow. Create the LineCountWorkflow workflow by creating a
folder named LineCountWorkflow in the asapLibrary/abstractWorkflows. The ab-
stract workflow folder should consist of three required components: the datasets
folder, the operators folder and a file named graph.

(a) Create a folder named datasets and copy the asapServerLog file from the
asapLibrary/datasets/ folder into it. Then, create an empty file named d1,
which represents the abstract output dataset.

(b) Create a file named graph and add the following content

asapServerLog,LineCount,0

LineCount,d1,0

d1,$$target

This graph file defines the workflow graph as follows: asapServerLog dataset
is being given as input to the LineCount abstract operator and LineCount
operator outputs the result into d1. Finally, d1 node maps to the final result
($$target).

(c) Create a folder named operators which will contain the description of the
abstract operators involved in the workflow, namely the LineCount operator
description as created in step 3.

(d) Restart the server for changes to take effect
$ IRES HOME/asap-platform/asap-server/src/main/scripts/asap-server

restart

4. b Abstract Workflow Definition (GUI): Alternatively, the abstract workflow can
be defined through the Web UI as follows.

(a) Go to the Abstract Workflows tab and click the New Workflow button.

(b) Then we add the workflow parts one-by-one. First we add the asapServer-
Log dataset from the dataset library. Select the Materialized Dataset radio
button and enter the dataset name in the comma seperated list text box.
Then click the Add nodes button to add the dataset node to the workflow
graph. Repeat this step to add an output node with name d1. Just enter the
name d1 to the text box and click the Add nodes button.

(c) Add the LineCount abstract operator to the workflow. Select the Abstract
Operator radio button, enter the operator’s name (LineCount) in the text box
and click again the Add nodes button.

(d) Describe the workflow by connecting the graph nodes defined in the previ-
ous steps by entering the following text in the large text box:

asapServerLog,LineCount

LineCount,d1

d1,$$target
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Click the Change graph button.

5. Workflow materialization: To materialize the workflow:

(a) Navigate to the Abstract Workflows tab and click on the LineCountWorkflow
created in the previous steps.

(b) Click on the Materialize Workflow button

(c) Now you can see the materialized workflow. Click on the Execute Workflow
button to trigger the execution (see Figure 8). When the execution finishes,
navigate to the HDFS to see the output.

Figure 8: The LineCount workflow.

All resources and sample files described in this section are available online 5.

3.4 Creating a text clustering workflow

This example describes how to define a text clustering workflow consisting of two
operators. This workflow takes as input a dataset with raw text files. In the first operator
the files are transformed into tf-idf vectors. Then the vectors are given as input to the
next operator which performs the clustering using a k-means algorithm. We will use
two Cilk-based implementations for this example, and we will create all the required
files and directories using the server-side method.

5https://project-asap.github.io/ASAP-documentation/ires_docs/files/

LineCountExample.tar
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1. Dataset definition: We will use this text file for our example. The following file
should exists in the HDFS cluster with name textData. Create the data definition
as follows: 1. Create a file named textData in the asapLibrary/datasets folder 2.
Add the following content:

Constraints.Engine.FS = HDFS

Constraints.type = text

Execution.path = hdfs:///user/asap/input/textData

Optimization.size = 932E06

2. TF-IDF abstract operator definition: Next, we will define the abstract definition
for a TF-IDF operator. First, create a file named tf-idf in the asapLibrary/abstrac-
tOperators folder and add the following content:

Constraints.Input.number = 1

Constraints.OpSpecification.Algorithm.name = TF_IDF

Constraints.Output.number = 1

3. K-Means abstract operator definition: Create the abstract definition of K-
Means operator as follows: Create a file named kmeans in the asapLibrary/ab-
stractOperators folder and add the following content:

Constraints.Input.number = 1

Constraints.OpSpecification.Algorithm.name = kmeans

Constraints.Output.number = 1

4. Abstract workflow definition: In this step well describe how to connect the two
aforementioned operators in order to define the text clustering workflow. 1. Cre-
ate a folder named TextClustering in the asabLibrary/abstractWorkflows folder
2. Specify the workflow graph by creating a file named graph with the following
content:

testdir,tfidf_cilk,0

tfidf_cilk,d1,0

d1,kmeans,0

kmeans,d2,0

d2,$$target

Next, we will define the materialized operators. We will use Cilk for our imple-
mentations.

5. TF-IDF materialized operator definition (Cilk):

(a) Create a folder named TF IDF cilk in the asapLibrary/operators folder.

(b) Create the description file named description and add the following content:
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Constraints.Output0.Engine.FS=HDFS

Constraints.OpSpecification.Algorithm.name=TF_IDF

Constraints.Input0.type=text

Constraints.Output0.type=arff

Constraints.Engine=Cilk

Constraints.Output.number=1

Constraints.Input.number=1

Execution.LuaScript=TF_IDF_cilk.lua

Execution.Arguments.number=2

Execution.Argument0=In0.path.local

Execution.Argument1=tfidf.out

Execution.copyFromLocal=tfidf.out

Execution.copyToLocal=In0.path

Execution.Output0.path=$HDFS_OP_DIR/tfidf.out

(c) Create the .lua file named TF IDF cilk.lua as follows:

operator = yarn {

name = "Execute cilk tfidf",

timeout = 10000,

memory = 1024,

cores = 1,

container = {

instances = 1,

--env = base_env,

resources = {

["tfidf"] = {

file = "asapLibrary/operators/TF_IDF_cilk/tfidf",

type = "file", -- other value: ’archive’

visibility = "application" -- other values: ’private’, ’public’

}

},

command = {

base = "export LD_LIBRARY_PATH=/0/asap/qub/gcc-5/\

lib64:$LD_LIBRARY_PATH./tfidf"

}

}

}

(d) Add the tf-idf executable (a link with the corresponding tarball is provided at
the end of this section).

6. K-Means materialized operator definition (Cilk):

(a) Create a folder named kmeans cilk in the asapLibrary/operators folder.

(b) Create the description file named description and add the following content:
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Constraints.Output0.Engine.FS=HDFS

Constraints.OpSpecification.Algorithm.name=kmeans

Constraints.Input0.Engine.FS=HDFS

Constraints.Input0.type=arff

Constraints.Engine=Spark

Constraints.Output.number=1

Constraints.Input.number=1

Execution.LuaScript=kmeans_cilk.lua

Execution.Arguments.number=2

Execution.Argument0=In0.path.local

Execution.Argument1=kmeans.out

Execution.copyFromLocal=kmeans.out

Execution.copyToLocal=In0.path

Execution.Output0.path=$HDFS_OP_DIR/kmeans.out

(c) Create the .lua file named kmeans cilk.lua as follows:

operator = yarn {

name = "Execute kmeans",

timeout = 10000,

memory = 1024,

cores = 1,

container = {

instances = 1,

--env = base_env,

resources = {

["kmeans"] = {

file = "asapLibrary/operators/kmeans_cilk/kmeans",

type = "file", -- other value: ’archive’

visibility = "application" -- other values: ’private’, ’public’

}

},

command = {

base = "export LD_LIBRARY_PATH=/0/asap/qub/gcc-5/lib64\

:$LD_LIBRARY_PATH ; ./kmeans"

}

}

}

(d) Add the kmeans executable (provided in the tarball).

7. Execute the workflow: After finishing the previous steps restart the server for
changes to take effect. Then:

(a) Go to Abstract Workflows and click on TextClustering.

(b) Materialize the workflow by clicking Materialize button.

(c) Start the workflow execution by clicking Execute button.

29



ASAP FP7 Project
ASAP D3.3

IReS Platform v.2

Figure 9: The Cilk text clustering workflow.

The files used in this example can be downloaded from the online IReS Documenta-
tion6.

3.5 External API

The functionality of the IReS platform is exposed to the rest of the ASAP components
through a RESTful API. The RESTful API can be accessed online 7. Also, a list with
all the available methods is provided below.

6https://project-asap.github.io/ASAP-documentation/ires_docs/files/TextClustering.

tar
7https://project-asap.github.io/ASAP-documentation/ires_docs/rest_api
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4 Evaluation of the IReS platform

In this section we experimentally evaluate IReS to showcase its ability to optimize the
execution of an analytics workflow with respect to a user-defined policy by mapping
parts of it to the most beneficial compute or data engines. Apart from the gains in work-
flow performance, which constitute the intuition that inspired IReS, the experiments
aim to prove that the overhead of the IReS decision making process is affordable,
the resource provisioning strategy caters for the user needs and the system improves
its accuracy as it operates, being adaptable to any short- or long term change in the
characteristics of the supported engines.

Our system prototype has been implemented in Java and is open-source8. In our
experiments, IReS controls a cloud-based deployment of several runtime engines and
data stores9 over 16 virtual machines of an Openstack cluster hosted in our lab. All
the supported engines have been tuned according to best practices.

Figure 10: The sql query of the relational analytics workflow.

Throughout the experiments we make use of three workflows, one of each of the
three categories which we consider as the most representative of modern, real-life
workflows, namely text analytics, graph analytics and relational analytics. Two of
them are driven by real business needs and have been specified in the context of
ASAP. These cover complex data manipulations in the areas of business analytics on
telecommunication data and web data analytics, provided by WIND and IMR respec-
tively. The input datasets for these workflows consist of anonymized telecommunica-
tion traces and web content data (WARC files). More precisely:

Graph analytics The workflow involves the processing of anonymized call detail records
(CDR), residing in HDFS, to calculate the influence score of a subscriber on a
telecommunications network. This is achieved by treating CDR data as a graph,
where each customer (i.e., phone number) represents a vertex and each call

8https://github.com/project-asap/IReS-Platform
9Hadoop 2.7.0, Spark 1.6.0, Hama 0.7.1, scikit-learn 0.17.1, MemSQL 5.0, Postgres 9.5.3
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Figure 11: Execution times for the graph analytics workflows vs. various input sizes
when running on single- and multi-engine (through IReS) environments.

corresponds to an edge, and applying Pagerank over them. Pagerank has been
implemented in Spark, Hama and Java.

Text analytics The workflow starts by performing tf-idf on web content that resides in
HDFS; the outputs are then clustered using k-means. Both operators are chosen
between scikit and MLlib running centrally or over Spark respectively.

Relational analytics The workflow contains 3 synthetic SQL queries (Figure 10) which
join tables residing in different stores. For this workflow, we use data produced
by the popular TPC-H [20] benchmark generator. We make the assumption that
the small tables containing legacy data (customer, nation, region) are stored in
PostgreSQL, the medium ones (part, partsupp) in MemSQL, taking advantage
of the collective memory of the cluster and the large ones (lineitem, orders) in
HDFS, since their size can not be accommodated by any of the former.

4.1 Efficiency of Workflow Execution Plan

In this set of experiments, assuming the optimization objective of minimizing execu-
tion time, we plan and execute all three test workflows in a multi-engine environment
using IReS and plot the execution time of the chosen plan for various sizes of the
input dataset. These measurements are compared against the time required to run
each workflow in its entirety using exclusively a single engine. The goal is to confirm
that the execution plan chosen by IReS is at least as efficient as the fastest single-
engine choice (with some small overhead) and can in fact speed up the single-engine
execution combining different engines in the same plan.

Figure 11 depicts the execution times of the graph analytics workflow (which con-
sists of a single operator, i.e., pagerank) when run in Java, Hama and Spark as well
as the execution times of the plan adaptively selected by IReS for each input size. As
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Figure 12: Execution times for the text analytics workflows vs. various input sizes
when running on single- and multi-engine (through IReS) environments.
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Figure 13: Execution times for the relational analytics workflows vs. various input sizes
when running on single- and multi-engine (through IReS) environments.

expected, a centralized, Java-based, implementation outperforms its alternatives for
small-scale graphs. However, this approach fails as the input size grows larger than
the available main-memory of a single node. In contrast, a distributed, Spark-based
implementation incurs overheads for small graphs but proves scalable when handling
larger input sizes. The Hama-based implementation, which relies on a distributed
main-memory execution model, proves better for medium scale datasets that can fit in
the aggregate cluster memory but also fails for larger graph sizes. We observe that
IReS successfully chooses the most efficient operator implementation for each input
dataset size. Furthermore, the IReS workflow optimization and YARN-based execution
incur a small overhead of a couple of seconds. This overhead is visible for small input
sizes but is alleviated for longer running operators.

Figure 12 refers to the text analytics workflow, proving that the centralized scikit
implementation achieves better performance than Spark only for small datasets (less
than 10K documents in our case). Using trained cost estimators, IReS selects the
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Figure 14: Workflow optimization times for 4 and 8 engines, using various workflow
types of ranging size.

proper engines for executing the workflow, depending on the input data size. We
also note that IReS performs hybrid executions by combining operators of different
engines for a range of input sizes. Indeed, from 10k to about 40k documents IReS
maps tf-idf to scikit and k-means to Spark and manages to outperform even the fastest
single-engine execution by up to 30%. In these cases, IReS automatically inserts the
required move/transform operators.

Figure 13 depicts the execution performance of the relational analytics workflow.
While PostgreSQL can provably perform well for small datasets, the cost of data trans-
fer from other engines is prohibitive. MemSQL fails to execute the workflow for sizes
larger than 2GB due to intermediate results exceeding the available cluster memory.
IReS executes each workflow query in the engine where its tables reside (q1 in Post-
greSQL, q2 in MemSQL and q3 in Spark), minimizing the required data movements and
thus achieving a constantly good performance, regardless of the data size. In fact, the
workflow execution starts to accelerate as the dataset scales to larger sizes (50G), for
which the planning and movement overhead is amortized by the pure task execution
speed-up.

4.2 Workflow Planner Performance

In this section we experimentally evaluate the performance of our multi-engine work-
flow planner with respect to the workflow complexity and the number of alternative
implementations of a workflow operator. To provide a reproducible experimental set-
up and comparable results we use the Pegasus workflow generator [22]. The produced
workflow graphs fall into five scientific workflow categories (i.e., Montage, CyberShake,
Epigenomics, Inspiral and Sipht) and contain patterns derived from diverse scientific
application domains such as astronomy, biology, gravitational physics and earthquake
science. They include massively parallel workflows that process large amounts of data,
pipelined applications that split up input datasets and operate on different chunks in
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Figure 15: Workflow optimization times for Montage and Epigenomics graphs, using
various number of engines and ranging the workflow size.

parallel as well as workflows that have a relatively fixed structure and perform identical
analyses on multiple input datasets.

Figure 14 depicts the time required by our planner to optimize all five Pegasus
workflow categories. In this experiment we range both the number of the workflow
nodes and the number of alternative execution engines (denoted as m in our eval-
uation of the planner’s complexity). The first graph of Figure 14 plots the planner’s
execution time for 4 engines, while the second for 8 engines, i.e., the IReS operator
library contains 4 and 8 alternative implementations of each of the abstract workflow
operators respectively. While most of the Pegasus graphs show similar behaviour, the
Montage workflow graph is more connected, having multiple nodes with high in- and
out-degrees. This results in a 2× increase in planning times, which is theoretically
confirmed by our planner’s algorithmic complexity (O(op ·m2 ·k)). Indeed, performance
is linearly affected only by the number of inputs k of each operator. We also note
that our planner demonstrates almost linear complexity when ranging the number of
workflow nodes between 30 and 1000. In the extreme case of 1000-node workflows
the time required to produce the optimal execution plan is less than 10 seconds in all
runs. This allows us to expect that the IReS planner can handle even the most com-
plex multi-engine workflow scenarios with an almost negligible overhead compared to
the total execution time of the analytics workflow itself.

To further test the impact of the number of available engines on the workflow plan-
ning performance, we measure the time required to optimize and plan the Montage
and Epigenomics workflows, which we consider the most representative ones based
on the previous experiment, while ranging the number of alternative execution engines
for each workflow operator between 2 and 8 (Figure 15).

As expected, the existence of multiple operator implementations affects the perfor-
mance of the planning process. However, the IReS planner manages to handle even
the extreme cases of 100-node workflows with up to 8 engines within a couple of sec-
onds. The majority of real-life workflows though are far from being that abundant, as
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Figure 16: Relative execution time estimation error w.r.t. the number of executions (a)
in normal IReS operation (b) when an infrastructure change occurs after 100 execu-
tions.

our experience in the ASAP project also suggests. An average 10-node workflow, even
under the immoderate assumption of 8 alternative operator implementations, can be
optimized and scheduled for execution with IReS in the sub-second time-scale. This
also holds for all of the real-life workflows utilized throughout this section, which require
planning times in the order of milliseconds.

4.3 Operator Modeling

In this section, we test the ability of IReS to accurately estimate the cost and perfor-
mance of various operators as well as its adaptability to changes in operator charac-
teristics due to temporal degradation or infrastructural modifications. In this set of
experiments we run single-operator workflows, for the sake of simplicity. Apart from
the Pagerank operator, we introduce, from the field of text analytics, an operator that
counts distinct words in a corpus of documents - Wordcount. Figure 16.a depicts the
relative performance estimation error achieved for Wordcount over MapReduce and
Pagerank using a centralized Java implementation. We iteratively execute the opera-
tors with different input sizes, number of resources (i.e., CPUs, RAM) and application
specific parameters (i.e., number of iterations), uniformly selecting from a set of possi-
ble setups. The models are refined with each operator execution. In the beginning of
the experiment there is no knowledge of the operator performance and therefore the
models present high estimation errors. However, in both cases the relative execution
time estimation error drops bellow 30% after only 50 runs. The accuracy of IReS keeps
on improving smoothly after that, as more sample execution points are gathered.

The adaptability and reusability of our machine learning models is tested by en-
forcing a sudden infrastructure change. Figure 16.b plots the relative execution time
estimation error for the Wordcount MapReduce operator when after 100 runs the clus-
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Figure 17: Execution time and cost vs. input size.

ter undergoes an upgrade, where all the HDDs that form the HDFS substrate that
stores the data are substituted by SSDs. This affects the execution time estimations
of the Wordcount operator (assuming that no I/O information has been modeled and
used for estimating the operator performance). As depicted in Figure 16.b there is a
temporal degradation of the relative error due to the fact that IReS still uses the same
models, which capture the characteristics of the previous infrastructure. Although the
relative error increases from 30% to 50% right after the change, it is still more beneficial
to use the existing models than to discard them and start from scratch, as the relative
error of assuming no knowledge would be almost 100%. Besides, as more execution
measurement are acquired the relative error decreases again and the models regain
their accuracy, adapting seamlessly to the new cluster state.

4.4 Resource provisioning

In this last set of experiments we demonstrate the effectiveness of our resource provi-
sioning mechanism by letting IReS decide on the amount of resources to be allocated
in a cluster of 32 cores and 54GB RAM in total when executing the Spark (MLlib) im-
plementation of the tf-idf operator. We assume an optimization policy of minimizing
the workflow (i.e., operator) execution time. In Figure 17 we plot the time needed to
execute the workflow as well as the cost of the allocated resources for various input
sizes and 3 different strategies: a) static selection of the maximum available cluster
resources (denoted as max resources), b) static allocation of the minimum resources
required (denoted as min resources) and c) dynamic resource allocation through IReS.
The execution cost can be considered as the amount of money spent on renting Ama-
zon VMs or simply a function of the utilized resources. To express the execution cost
we adopt a simplified version of [40], namely #VM · cores/VM ·MM/VM · t, where
#VM is the number of VM instances, cores/VM is the number of cores per VM,
MM/VM is the main memory per VM (in GB) and t is the execution time. This is the
metric we plot in the second graph of Figure 17.
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Figure 18: Abstract workflow used in the fault-tolerance evaluation experiment.

Table 1: Operators and available implementations.
Operator Engines
HelloWorld Python
HelloWorld1 Spark, Python
HelloWorld2 Spark, MLLib, PostgreSQL, Hive
HelloWorld3 Spark, Python

Intuitively, when running a task in a distributed environment the execution time
decreases as more resources are utilized - yet, more resources result in a higher ex-
ecution cost. Contrarily, settling with the minimum resources necessary to execute an
operator cuts corners at the cost of performance. IReS manages to achieve work-
flow execution times as low as the max resources strategy, yet incurring an execution
cost that lies in-between the two static strategies, provisioning just the right amount of
resources according to the size of the input data: As the input dataset scales, more
resources are provisioned by IReS in order to sustain low execution times, thus the
execution cost approaches the one incurred by max resources.

4.5 Fault-tolerance mechanism

In order to validate the effectiveness of the replanning mechanism of IReS, denoted as
IResReplan hereafter, we compare it to a trivial replanning strategy, where intermedi-
ate results are not materialized and the whole workflow is re-scheduled for execution
(denoted as TrivialReplan). Furthermore, we compare IResReplan to the hypothetic
case where no failure happens but one engine, that is normally chosen by the opti-
mal plan, is not available since the beginning of the workflow execution (denoted as
SubOptPlan). This is equivalent of comparing the execution time of a sub-optimal
plan under the absence of failures with the optimal one but when failures occur and
IResReplan is used.

We present the following scenario: We consider a workflow of four operators, where
each of them can be executed in a set of candidate engines. Figure 18 shows the work-
flow topology and Table 1 presents the alternative engine options for each operator.

Each of these operators is profiled by the IReS system and a cost model for its
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Figure 19: Materialized workflow used in the fault-tolerance evaluation experiment.

planning time (ms)
IResReplan 410
TrivialReplan 141

Figure 20: Execution time and planning time when HelloWorld1 fails.

execution has been created. According to this cost model, the planner creates the op-
timal plan for execution. Figure 19 shows the optimal plan annotated with green color
and all the alternatives with red. The black-dashed lines are used to separate different
operators. Between two consecutive dashed lines, we can see all the alternatives for
the execution of a specific operator.

We measure performance in terms of execution and planning time in three different
failure cases. In each case, we kill the engine of a different operator. As IResReplan
takes advantage of the intermediate results, the more are the tasks that have been
successfully executed, the higher the gains we expect.

In the above Figures 20–22, we observe that the IResReplan consistently outper-
forms the TrivialReplan strategy. Contrarily to IResReplan, the trivial strategy gets
worse when many operators have been completed successfully before the failure hap-
pens. However, the numbers Tables 20–22 indicate that the replanning process is
more expensive in the case of IResReplan. IResReplan makes extra computations in
order to identify the successful intermediate results and match the completed part of
the workflow with the new graph that the IReS planner provided. Nevertheless, as the
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planning time (ms)
IResReplan 311
TrivialReplan 131

Figure 21: Execution time and planning time when HelloWorld2 fails.

planning time (ms)
IResReplan 216
TrivialReplan 109

Figure 22: Execution time and planning time when HelloWorld3 fails.

planning time is in the order of milliseconds, the overhead of IResReplan is negligible.
It is also interesting that even under the existence of failures, IReS can be more ef-

ficient than another system which makes sub-optimal choices. From the above Figures
we can deduce that the further in the execution path the failure happens, the greater
the gains of IResReplan are compared to SubOptPlan. That happens because of two
reasons:

• When many tasks have been completed successfully, there is a higher probability
for IResReplan to have made more optimal choices compared to SubOptPlan.
Therefore, the cumulative benefit is maximized.

• Furthermore, in that case, the size of the re-scheduled workflow is smaller and
so is the probability to launch a new container. Thus, the overhead of launching
new containers is minimized.
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5 Side System for SQL Optimizations

SQL emerges as the de facto language for big data due to its extensibility, its ability to
naturally represent queries that can be optimized. Thus new platforms constantly seek
its support ([19, 6, 17, 27, 37]). These points highly suggest a multi-engine approach
that allows SQL analytics over multiple data formats and uses the most appropriate
engines. IReS, however, is agnostic of the operator internals and implementation lan-
guage: An SQL query would be treated as a black-box operator that would be profiled,
modeled and handled as a whole, missing out on the opportunity to perform a more
fine-grained optimization. Moreover, it frequently proves suboptimal to define a single,
global optimization layer, and disregard the capabilities of the underlying engines to
locally optimize.

To that end, we have developed an open-source side-system to IRes, MuSQLE 10,
for high-performance SQL-based analytics over different data sources and execution
engines. MuSQLE is able to overcome the aforementioned deficiencies and optimize
simple or complex SQL queries. Our solution adopts a novel API-based strategy for
integrating runtimes: Instead of manual integration, MuSQLE utilizes standardized,
API-based cost-model and execution endpoints from the participating engines. It is
able to optimally disseminate parts of the initial query (including the appropriate data
movements between stores) using state-of-the-art planning and letting individual opti-
mizers handle the respective sub-queries. MuSQLE utilizes Spark [19] as an executor
and orchestrator layer, extending its current functionality as well as providing it with a
native cost-model.

In summary, our work makes the following contributions:

• We propose a generic SQL engine API that can facilitate multi-engine query
optimization. The API is based on well-documented SQL functionality and can
be implemented using generic, engine-agnostic interfaces like JDBC and ODBC.

• We integrate this API into a state-of-the-art query optimizer, allowing for external,
multi-engine cost-based query optimization. Our optimizer runs on the logical
level, allowing the connected engines to have full control of physical optimization
and join execution. This approach avoids the detailed enumeration of all physical
operators on the external optimizer and thus further facilitates the integration of
a new SQL engine.

• We compile and utilize a cost model for the SparkSQL operators. This model is
used within our query planner to achieve query optimization for SparkSQL.

• We present a fully functional system that integrates three popular engines: Spark-
SQL [19], PostgreSQL [16] and MemSQL [14]. We describe our system archi-
tecture and components in detail, as well as extensively evaluate the utility and
efficiency of our scheme.

10https://github.com/gsvic/MuSQLE
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• Our detailed experimental evaluation showcases that MuSQLE can accurately
decide on the most suitable execution engine and provides speedups of up to 1
order of magnitude for TPCH queries, leveraging different engines for the execu-
tion of individual query parts.

More information about the MuSQLE side-system can be found in [30], which has been
added to Appendix B for convenience.
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6 Conclusions

In this deliverable we presented the final version of the IReS platform, a sophisticated
meta-scheduler for multi-engine environments. IReS optimizes and plans complex
analytics workflows by performing a mix ’n’ match of diverse runtimes and data stores
and by deciding on the exact amount or resources to be allocated in order to conform
as much as possible to the user-defined optimization criteria, be it execution time,
resource consumption or any custom function of measurable execution metrics. This
functionality relies on the cost and performance estimations of the available operators
over the deployed engines.

Such estimations are obtained from models, initially trained offline through intelli-
gent profiling and refined on-the-fly, as the system operates. This “black box” approach
in combination with a generic operator and data description framework proposed, en-
sures the extensibility of IReS, facilitating the addition of new engines and operators.

Apart from mapping specific nodes and/or subgraphs of the user-provided analytics
workflow to the most beneficial compute and data engines, IReS decides on the exact
amount or resources to be allocated according to the optimization objectives, thus
adding elasticity to the system. The robustness and reliability of IReS is ensured
through the constant monitoring of the underlying infrastructure and the partial re-
planning of the failed workflow.

The IReS prototype already supports a number of compute and data engines and
has been extensively evaluated in optimizing and scheduling a variety of diverse,
business-driven workflows that fall into the fields of text, graph and relational analytics.
The experiments showcase (a) the performance gains of the IReS mix ’n’ match strat-
egy, which reach 30% with respect to statically scheduled, single-engine workflows,
(b) the efficiency of the optimizer, which designates the optimal execution plan in the
sub-second time scale for realistic, medium-sized workflows, (c) the effectiveness of
the resource provisioning strategy, which perfectly matches any user-provided policy
and (d) the adaptability of the system, which manages to ameliorate its accuracy with
every execution and recover from unexpected changes within a few tens of extra runs.
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Abstract—Current platforms fail to efficiently cope with the
data and task heterogeneity of modern analytics workflows due
to their adhesion to a single data and/or compute model. As
a remedy, we present IReS, the Intelligent Resource Scheduler
for complex analytics workflows executed over multi-engine
environments. IReS is able to optimize a workflow with respect
to a user-defined policy relying on cost and performance
models of the required tasks over the available platforms. This
optimization consists in allocating distinct workflow parts to the
most advantageous execution and/or storage engine among the
available ones and deciding on the exact amount of resources
provisioned. Our current prototype supports 5 compute and 3
data engines, yet new ones can effortlessly be added to IReS
by virtue of its engine-agnostic mechanisms. Our extensive
experimental evaluation confirms that IReS speeds up diverse
and realistic workflows by up to 30% compared to their optimal
single-engine plan by automatically scattering parts of them
to different execution engines and datastores. Its optimizer
incurs only marginal overhead to the workflow execution
performance, managing to discover the optimal execution plan
within a few seconds, even for large-scale workflow instances.

I. INTRODUCTION
Big Data analytics have become indispensable to organi-

zations worldwide as a means of extracting significant value
out of the enormous amounts of data that stream into their
businesses. That, in turn, offers organizations an unprece-
dented competitive advantage: The ability to identify new
opportunities, take educated decisions based on historical
facts, render their operations faster and more cost efficient
and keep customers satisfied [1]. The volume, velocity
and variety of Big Data pose new challenges to analytics,
entailing a high degree of parallelism in both storage and
computation: Modern datacenters host huge volumes of data
over large numbers of nodes with multiple storage devices
and process them using thousands or millions of cores.

In the landscape of Big Data analytics, multiple and
diverse execution engines and datastores have emerged as
platforms of choice for specific computation types and data
formats (e.g., [2], [3], [4], etc.). To alleviate the burden of
building and maintaining such systems, many of them are
currently either offered as-a-service by the most prevalent
Cloud providers (e.g., [5], [6], [7]) or packaged in pre-
cooked VM or container images for ease of deployment [8].
Still, although many approaches in the relevant literature
manage to optimize the performance of single engines by
automatically tuning a number of configuration parameters
[9], [10], they bind their efficacy to specific data formats
and query/analytics task types.

However, one size does not fit all: No single execution
model is suitable for all types of tasks and no single data
model is suitable for all types of data. Indeed, modern
workflows have evolved into increasingly long and complex
series of diverse operators, ranging from simple Select-
Project-Join (SPJ) and data movement to complex NLP-,
graph- or custom business-related tasks, with varying data
formats (e.g., relational, key-value, graph, etc.) and shrinking
delivery deadlines [11]. Time constraints aside, analysts may
be equally interested in other execution aspects, such as
cost, resource utilization, fault-tolerance, etc., and thus need
to be able to impose various – and often multi-objective –
optimization policies, adding another degree of complexity
to an already convoluted problem.

Multi-engine analytics have recently been proposed as a
promising solution that can optimize for this complexity [12]
and are gaining ground ever since. Cloud vendors currently
offer software solutions that incorporate a multitude of
processing frameworks, data stores and libraries to facilitate
the management of multiple installations and configurations
[13], [14], [15]. One of the most compelling, yet daunting
challenges in such a multi-engine environment is the design
and creation of a meta-scheduler that automatically allocates
tasks to the right engine(s) according to multiple criteria,
deploys and runs them without manual intervention.

Recent works along this line are either proprietary tools
with limited applicability and extension possibilities for the
community (e.g., [16]) or focus more on the translation
of scripts from one engine to another, being thus tied to
specific programming languages and engines (e.g., [17],
[18]). Contrarily, we would ideally opt for an open-source,
engine-agnostic solution that could easily be extended to
new engines and implementation languages.

To that end, we present IReS, an open-source Intelligent
Multi-Engine Resource Scheduler that integrates multiple
execution engines and datastores into the optimizing, plan-
ning and execution of complex analytics workflows1. IReS
adops a black-box approach on the analytics operators. This
facilitates the handling of any kind of task, ranging from
low- (e.g., join, sort, etc.) to higher-level operators (e.g.,
machine learning, graph processing, etc.) that run on any
state-of-the-art, centralized or distributed system (e.g., Map-
Reduce, BSP, RDBMSs, NoSQL, distributed file-systems,

1https://github.com/project-asap/IReS-Platform



etc.). Moreover, the engine-agnostic approach allows for
easy addition of new operators and engines. All that IReS
requires is a description of the analytics tasks and data
via an extensible meta-data framework, as well as a model
of the cost and performance characteristics of the required
tasks over the available platforms. Consequently, utilizing
a DP-based, state-of-the-art planner, the platform is able to
map distinct parts of a workflow to the most advantageous
store, indexing and execution pattern and decide on the exact
amount of resources provisioned in order to optimize any
user-defined policy. The resulting optimization is orthogonal
to (and in fact enhanced by) any optimization effort within
an engine. In this paper we thoroughly describe the architec-
ture of IReS and delve into the design and implementation
details of its inner modules. Our key contributions are:
IA multi-engine planner that selects the most prominent
workflow execution plan among existing engines, datastores
and operators and elastically provisions the correct amount
of resources, consulting the cost and performance models of
the various operators.
IA modeling methodology that provides performance and
cost metrics of the available analytics operators for different
engine configurations. These metrics are collected from
actual executions of the operators both offline (training
phase) and online (refinement phase). The resulting models
are utilized in multi-engine workflow optimization.
IAn extensible meta-data description framework for opera-
tors and data, which allows IReS to automatically discover
all alternative execution paths of an abstractly described
workflow by matching operators that perform similar tasks.
IAn extensive evaluation of our open-source prototype op-
erating over various real-life and synthetic workflows chosen
to include diverse datasets and computation types under
realistic conditions. The results attest the ability of IReS
to efficiently decide on the optimal execution plan based on
the optimization policy and the available engines within a
few seconds, even for large-scale workflow graphs, adapt
to changes in the underlying infrastructure and temporal
degradations with minimal overhead and, most importantly,
speed-up the fastest single-engine workflow executions up
to 30% by exploiting multiple engines.

II. IRES ARCHITECTURE

IReS focuses on the highly efficient and user-customizable
execution of analytics workflows. This is made possible
through the transparent modeling, monitoring and schedul-
ing that involves different execution engines and storage
technologies. Our system is able to handle all types of ana-
lytics workflows by adaptively choosing to execute each sub-
part in a (possibly different) deployed engine. IReS assigns
sub-tasks to the most advantageous technology available and
ensures resource and dataflow scheduling in order to enhance
performance: If a single engine is used, enhancement will be
achieved through optimized and elastic resource allocation
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Figure 1: Architecture of the IReS platform

(e.g., execute on the right cluster size, etc.); if multiple ones
are required, enhancements will relate both to single-engine
optimization and to workflow management that decides on
the best execution plan and data placement (e.g., first execute
subtask A in Spark, store intermediate results in a NoSQL
engine and then run subtasks B and C in parallel, having the
final results written in HDFS).

The central notion behind IReS is to utilize detailed mod-
els of the costs and performance characteristics of analytics
operators over multiple execution engines. The models are
stored and updated in an IReS library. Whenever a new
workflow is run atop IReS, these models are used in order
to intelligently assign and orchestrate workflow parts to the
underlying engines according to the user optimization policy.
The architecture of the IReS platform is depicted in Figure 1.
IReS comprises of three layers, the interface, the optimizer
and the executor layer. In the following, we describe in more
detail the role, functionality and internals of these layers,
delving into the specifics of the most important modules.

A. Interface Layer

The interface layer is responsible for handling the inter-
action between IReS and its users. A user should be able to
accurately define execution artefacts such as operators, data,
workflows, etc., along with their inter-dependencies, proper-
ties and restrictions using a common meta-data description
framework. Based on this framework, the parser module is
parses the user-provided workflow as a dependency graph
and validates the user-defined policy.

The main challenges of defining such a framework are
extensibility and abstraction. Users should be granted the
ability to define custom meta-data for fine-grained operator
and dataset description. This freedom supports the effortless
addition of new engines and operators, as opposed to the
rigidity of having a predefined set of meta-data fields. More-
over, users should be able to specify the data and operators
that compose their workflow at any desired abstraction



(a) (b)

Figure 2: Meta-data descriptions of (a) a dataset of crawled
web pages and (b) an abstract tf-idf operator.

level on its various steps, ranging from the fine-grained
definition of specific implementations/engines to the coarse-
grained description of the general functionality regardless
of the platform. It is IReS that will remove this abstraction,
examine alternative execution paths of the same conceptual
workflow and select the most beneficial one, according to
the user-defined policy.

The main entities of our framework are data and opera-
tors, which need to be accompanied by a set of meta-data,
i.e., properties that describe them. Data and operators can
be either abstract or materialized. Abstract operators and
datasets are defined and used when composing a workflow,
whereas materialized ones refer to specific implementations
and existing datasets and are usually provided by the opera-
tor developer or the dataset owner respectively. Materialized
operators along with their descriptions are stored in the
operator library, as depicted in Figure 1.

The meta-data accompanying operators (e.g., input types,
execution parameters, invocation scripts, etc.) and data (e.g.,
schemata, location of objects, etc.) are organized in a generic
tree format. To avoid restricting the user and allow for
flexibility, only the first levels of the meta-data tree are pre-
defined. Users can add their ad-hoc subtrees to define custom
data or operator properties. Moreover, some fields (mostly
the ones related to the operator and data requirements)
are compulsory while the rest (e.g., known cost models,
statistics, etc.) are optional and user-defined. Materialized
data and operators need to have all their compulsory fields
filled in with information. Abstract data and operators do not
adhere to this rule. Apart from having empty fields, they can
also support regular expressions (e.g., the ∗ symbol under
a field means that the abstract object matches materialized
ones with any value of that field). In general, we pre-define
the following the meta-data fields:
Constraints: This sub-tree contains all the information
that is required to match (a) abstract operators to
materialized ones and (b) data to operators. Mandatory
fields include specifications of operator inputs/outputs,
algorithms, engines and anything considered necessary in
the abstract/materialized matching of operators.
Execution: This sub-tree provides the execution parameters
of a materialized operator, such as the path of a dataset or
the execution arguments of an operator script.

Figure 3: Meta-data description of a materialized tf-idf
operator, implemented in mahout/Hadoop

Optimization: This optional part of the meta-data holds
additional information that assists in the optimization of the
workflow. This information could include, for instance, a
cost function provided by the developer of the operator or
instructions on how to create one by profiling over specific
metrics (e.g., execution time, required RAM, etc.).

As an example, let us assume an analyst wants to per-
form tf-idf over a corpus of documents crawled from the
Internet. First, she needs to describe the input dataset,
crawlDocuments, as depicted in Figure 2.a: It is a
sequence file stored in HDFS, following the path spec-
ified by the Execution field. The information under
Optimization notifies the system of the number of
documents contained in the dataset. Then, she needs to
specify the operation to be performed. In its abstract form,
the TF_IDF operator (see Figure 2.b) needs only define
one input parameter, the implemented algorithm (under
opSpecification.Algorithm) and an output param-
eter. In short, TF_IDF defines a format that any tf-idf
implementation of the specific functionality needs to follow.

Additionally, a materialized tf-idf operator includes all
information required in order to perform the operation on
an execution engine. In TF_IDF_mahout (see Figure 3),
the operator calculates tf-idf over Mahout/Hadoop; it thus
includes Hadoop-specific information about the input, output
and the engine. The input and output in this case have
specific types and an engine specification (under Engine).
The operator itself also has an EngineSpecification,
indicating its execution location.

To discover the actual implementations that comply with
the description of both the abstract operator and the dataset
provided by the user, we employ a tree matching algorithm
to ensure that all meta-data constraints are met, i.e., all
compulsory fields are consistent. This is performed during
the planning and optimization phase, described subsequently.
In our example, TF_IDF_mahout matches TF_IDF in



the fields designated by the red rectangles. Moreover,
the crawlDocuments dataset can be used as input to
TF_IDF_mahout as is, as the matched greed rectangles
suggest. Thus, TF_IDF_mahout is considered when con-
structing the optimized execution plan.

B. Optimizer Layer

The optimizer layer is responsible for optimizing the
execution of an analytics workflow with respect to the policy
provided by the user. The core component of this layer is
the planner, which determines the optimal execution plan
in real-time. This entails deciding on where each subtask
is to be run, under what amount of resources provisioned
and whether data need to be moved to/from their current
locations and between runtimes (if more than one is chosen).

Such a decision must rely on the characteristics of the
analytics task in hand which are modeled and stored within
IReS. The initial model of an operator results from the
offline profiling of it using a profiler that directly interacts
with the pool of physical resources and the monitoring layer
in-between. Moreover, while the workflow is being executed,
the initial models are refined in an online manner by the
model refinement module, using monitoring information of
the actual run. This mechanism allows for dynamic adjust-
ments of the models and enables the planner to base its
decisions on the most up-to-date knowledge.
IProfiler/Modeler: While accurate models exist for SQL
operations over an RDBMS, which includes its own cost-
based optimizer, this is not the case for other analytics
operators (e.g., machine learning, graph processing, etc.)
and modern runtimes (be it distributed or centralized): Only
a very limited number of operators and engines has been
studied, while most of the proposed models entail knowledge
of the code to be executed [19], [20], [21]. Moreover, there
is no trivial way to compare or correlate cost estimations
derived from different engines at a meta-level.

To that end, we adopt an engine-agnostic approach that
treats materialized operators as “black boxes”, assuming no
prior knowledge of their internals, and models them using
profiling in an offline mode, as well as machine learning
over actual runs.

The profiling mechanism adopted builds on prior work
[22]. Its input parameters fall into three categories: (a) data
specific, which describe the data to be used for the operator
profiling (e.g., the type of data and its size), (b) operator
specific, which relate to the algorithm of the operator (e.g.,
the number of output clusters in k-means), and (c) resource
specific, which define the resources to be tweaked during
profiling (e.g., cluster size, main memory, etc.)

The output of each run is the profiled operator’s per-
formance and cost (e.g., completion time, I/O operations,
average memory, CPU consumption, etc.) under each com-
bination of the input parameter values for specific user-
defined optimization metrics, such as cost in $ or I/O,

latency, throughput, etc. Both the input parameters as well as
the output metrics are specified by the user/developer. The
collected metrics are then used to create estimation models
[23], making use of neural networks, SVM, interpolation
and curve fitting techniques for each operator running on a
specific engine. The cross validation technique [24] is used
to maintain the model that best fits the available data.
IModel Refinement Upon execution of a workflow, the
currently monitored execution metrics provide feedback to
the existing models in order to refine them and capture pos-
sible changes in the underlying infrastructure (e.g., hardware
upgrades) or temporal degradations (e.g., due to unbalanced
use of engines, collocation of competing tasks, surges in
load etc.). This mechanism contributes to the adaptability
of IReS, ameliorating the accuracy of the models while the
platform is in operation.
IPlanner This module, in analogy to traditional query
planners, intelligently explores all the available execution
plans and discovers the optimal one with respect to the user-
defined optimization objectives. Algorithm 1 describes the
optimization process, which relies on dynamic programming
(DP) to select the optimal execution plan.

The algorithm receives as input the abstract workflow
graph, expressed as a DAG of operator and dataset nodes
G(Datasets,Operators). It maintains a dpTable structure,
responsible for storing the best execution plan for each
different format of a dataset node (e.g., csv, json, etc.).
The planner processes all abstract operators of the workflow
following a DAG topological order, using a depth-first search
(line 11). This ordering ensures that when an operator is be-
ing processed, all its predecessors in the DAG have already
been processed and thus the dpTable always contains the
optimal plans per input.

For each abstract operator, the IReS library is explored
to find all matching materialized operators, i.e., operators
that share the same meta-data (line 12). To speedup this
procedure we use string labelled and lexicographically or-
dered meta-data trees. This data structure allows for efficient,
one pass tree matching. The complexity of matching two
meta-data trees with up to t nodes is O(t). We further
improve the matching procedure by indexing the IReS
library operators using a set of highly selective meta-data
attributes (e.g., algorithm name). Only operators that contain
the correct attributes are considered as candidate matches
and are further examined by the above algorithm.

When all operator matches have been discovered, the
process consults the input and output specifications of the
materialized operators and adds the required move/transform
operators (lines 22-25). Those operators are needed in order
to connect operators of different engines and input/output
configurations. Here, we make the assumption that oper-
ator alternatives have a 1-1 relationship (we do not yet
consider the possibility of one operator being equivalent
to a combination of 2 or more operators) and that only



ALGORITHM 1: Optimizer

1 //G(Datasets,Operators) : abstract workflow graph
2 //Datasets : set of datasets
3 //Operators : set of abstract operators
4 //target : target dataset
5 for d ∈ Datasets do
6 //initialize dpTable
7 if d.isMaterialized() then
8 if d == target then
9 return 0;

10 dpTable[d].insert(d, 0);
11 for o ∈ Operators following DAG topological ordering do
12 MOperators = findMaterializedOperators(o);
13 for mo ∈ MOperators do
14 inputCost = 0;
15 for in ∈ mo.getInputs() do
16 minCost = ∞;
17 for tin ∈ dpTable[in] do
18 if tin.matchWithOperatorInput(mo)

then
19 if tin.getCost < minCost then
20 minCost = tin.getCost;
21 else
22 if tin.checkMove(mo) then
23 moveCost = tin.getCost+

tin.moveCost(mo);
24 if moveCost < minCost then
25 minCost = moveCost;
26 inputCost+ = minCost;
27 operatorCost = estimateCost(mo);
28 cost = inputCost+ operatorCost;
29 for out ∈ o.getOutputs() do
30 tout = outputFor(mo, out);
31 dpTable[out].insert(tout, cost);
32 return dpTable[target].getMinCost();

one move/transform operator is used to match consecutive
operators with different output/input formats.

Consequently, to estimate operator performance metrics
(e.g., cost, execution time) our planner consults the estimator
models for each one of the materialized operators (line 27).
In our current implementation, the planner is configured to
optimize one metric or a function of multiple performance
metrics that the user is interested in. We are currently
investigating methods for optimizing multiple dimensions
of performance metrics, such as finding Pareto frontier
execution plans. After estimating the operator cost, we add
all its output datasets in the dpTable. When all abstract
operators have been processed, the optimal cost of the target
dataset is returned using the respective dpTable record.

To study the complexity of the Optimizer algorithm, let
us assume that a workflow contains op number of abstract
operators, with at most m materialized operators matching
an abstract one. Moreover, let us assume that each operator
has k inputs at maximum. For each intermediate dataset,
our dpTable will contain at most m records, each generated
from one of the m materialized operators that match the
abstract one that produces it. Therefore, the inner loop of

Figure 4: Abstract tf-idf, k-means workflow.

Figure 5: Materialized workflow and optimal plan.

Algorithm 1 (line 17 onwards) will run at most m times.
Thus, the worst case complexity of our optimizer is:

O(op ·m2 · k)

Figure 4 depicts an abstract workflow which performs
tf-idf feature-extraction over a corpus of documents and
clusters the output using the k-means clustering algorithm.
Assuming each operator has 2 implementations, using either
the mahout or WEKA libraries (running in Hadoop and
Java respectively) we have the possible alternative execution
plans of Figure 5. The planner automatically adds the
necessary move/transform operators in order to transfer
intermediate results between the two engines (i.e., match the
output of an operator to the input of the subsequent one).

Let us assume an optimization policy that targets execu-
tion time minimization. Intuitively, small datasets run faster
in a centralized manner while distributed implementations
outperform the centralized ones for bigger datasets. Indeed,
the WEKA implementation is estimated to be the fastest for
both steps, due to the small input size and is thus included
in the selected execution path, marked in green.
IResource Provisioning Apart from deciding on the spe-
cific implementation/engine of each workflow operator, the
planner of IReS provisions the correct amount of resources
to execute the workflow conforming as much as possible to
the user-defined optimization policy. This policy may involve
the execution time or any user-defined cost function. The re-
source provisioning process builds on the MOEA framework
[25] and relies on the NSGA-II genetic algorithm [26] to
supply resource-related parameters (e.g., #cores, memory)
from the local minima of the trained models. NSGA-II is
the most prevalent evolutionary algorithm that has become
the standard approach to generating Pareto optimal solutions
to a multi-objective optimization problem. The estimated
parameter values are passed as arguments to the workflow
execution during run-time.

C. Executor Layer

The executor layer is the layer that enforces the optimal
plan over the physical infrastructure. Its main responsibilities



include the execution of the ensuing plan, a task undertaken
by the enforcer, and the assurance of the platform’s robust-
ness, carried out by the execution monitor.

The enforcer adopts methods and tools that translate high
level “start runtime under x amount of resources”, “move
data from site Y to Z” type of commands to primitives
as understood by the specific runtimes and storage engines.
Such actions might entail code and/or data shipment.

Our current working prototype relies on YARN [27], a
cluster management tool that enables fine-grained, container-
level resource allocation and scheduling over various pro-
cessing frameworks. Apart from requesting from YARN the
necessary container resources for each workflow operator,
the enforcer needs to pay special attention to the workflow
execution orchestration. To that end, IReS extends Cloudera
Kitten [28], a set of tools for configuring and launching
YARN containers as well as running applications inside
them, in order to add support for the execution of a DAG
of operators instead of just one.

The execution monitor captures faults and failures occur-
ring on-the-fly through real-time monitoring. Thus, it ensures
the robustness and availability of the system by employing
two mechanisms:
• A mechanism that monitors the health status of the

underlying infrastructure by periodically executing cus-
tomizable and parametrized health scripts in all cluster
nodes. The health status (HEALTHY/UNHEALTHY state
per cluster node) is reported back to the IReS server.

• A mechanism that checks the availability of all services
(i.e., engines and datastores) needed for the enforcement
of an execution plan (ON/OFF status).
This information is used during the phases of both plan-

ning and execution of a workflow. During planning, unavail-
able engines are excluded when constructing the optimal
execution plan and resources are provisioned exclusively
taking into account the currently available ones. During the
execution of a workflow, failures are detected in real-time.
The remaining workflow is re-planned and the new plan is
enforced. We should note here that our system does not
discard results of tasks that have been successfully executed.
Contrarily, it takes advantage of any intermediate material-
ized data, effectively reducing the part of the workflow that
needs to be re-scheduled.

III. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate IReS to show-
case its ability to optimize the execution of an analytics
workflow with respect to a user-defined policy by mapping
parts of it to the most beneficial compute or data engines.
Apart from the gains in workflow performance, which con-
stitute the intuition that inspired IReS, the experiments aim
to prove that the overhead of the IReS decision making pro-
cess is affordable, the resource provisioning strategy caters
for the user needs and the system improves its accuracy as it

operates, being adaptable to any short- or long term change
in the characteristics of the supported engines.

Our system prototype has been implemented in Java
and is open-source. In our experiments, IReS controls a
cloud-based deployment of several runtime engines and data
stores2 over 16 virtual machines of an Openstack cluster
hosted in our lab. All the supported engines have been tuned
according to best practices.

Throughout the experiments we make use of three work-
flows, one of each of the three categories which we consider
as the most representative of modern, real-life workflows,
namely text analytics, graph analytics and relational ana-
lytics. Two of them are driven by real business needs and
have been specified in the context of the eu-funded ASAP
project3. These cover complex data manipulations in the
areas of business analytics on telecommunication data and
web data analytics, provided by a large telecommunications
company and a well-known web archiving organization
respectively. The input datasets for these workflows consist
of anonymized telecommunication traces and web content
data (WARC files). More precisely:
Graph analytics: The workflow involves the processing of
anonymized call detail records (CDR), residing in HDFS, to
calculate the influence score of a subscriber on a telecom-
munications network. This is achieved by treating CDR
data as a graph, where each customer (i.e., phone number)
represents a vertex and each call corresponds to an edge,
and applying Pagerank over them. Pagerank has been im-
plemented in Spark, Hama and Java.
Text analytics: The workflow starts by performing tf-idf
on web content that resides in HDFS; the outputs are
then clustered using k-means. Both operators are chosen
between scikit and MLlib running centrally or over Spark
respectively.
Relational analytics: The workflow contains 3 synthetic
SQL queries (Figure 6.d) which join tables residing in
different stores. For this workflow, we use data produced
by the popular TPC-H [29] benchmark generator. We make
the assumption that the small tables containing legacy data
(customer, nation, region) are stored in PostgreSQL, the
medium ones (part, partsupp) in MemSQL, taking advantage
of the collective memory of the cluster and the large ones
(lineitem, orders) in HDFS, since their size can not be
accommodated by any of the former.

A. Efficiency of Workflow Execution Plan

In this set of experiments, assuming the optimization
objective of minimizing execution time, we plan and execute
all three test workflows in a multi-engine environment using
IReS and plot the execution time of the chosen plan for

2Hadoop 2.7.0, Spark 1.6.0, Hama 0.7.1, scikit-learn 0.17.1, MemSQL
5.0, Postgres 9.5.3

3ASAP (Adaptive, highly Scalable Analytics Platform) envisions a uni-
fied execution framework for scalable data analytics. www.asap-fp7.eu/
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Figure 6: Execution times for the (a) graph, (b) text and (c) relational analytics workflows vs. various input sizes when
running on single- and multi-engine (through IReS) environments. (d) The sql query of the relational analytics workflow.

various sizes of the input dataset. These measurements are
compared against the time required to run each workflow in
its entirety using exclusively a single engine. The goal is to
confirm that the execution plan chosen by IReS is at least
as efficient as the fastest single-engine choice (with some
small overhead) and can in fact speed up the single-engine
execution combining different engines in the same plan.

Figure 6.a depicts the execution times of the graph an-
alytics workflow (which consists of a single operator, i.e.,
pagerank) when run in Java, Hama and Spark as well as
the execution times of the plan adaptively selected by IReS
for each input size. As expected, a centralized, Java-based,
implementation outperforms its alternatives for small-scale
graphs. However, this approach fails as the input size grows
larger than the available main-memory of a single node. In
contrast, a distributed, Spark-based implementation incurs
overheads for small graphs but proves scalable when han-
dling larger input sizes. The Hama-based implementation,
which relies on a distributed main-memory execution model,
proves better for medium scale datasets that can fit in the
aggregate cluster memory but also fails for larger graph
sizes. We observe that IReS successfully chooses the most
efficient operator implementation for each input dataset size.
Furthermore, the IReS workflow optimization and YARN-
based execution incur a small overhead of a couple of
seconds. This overhead is visible for small input sizes but
is alleviated for longer running operators.

Figure 6.b refers to the text analytics workflow, proving
that the centralized scikit implementation achieves better
performance than Spark only for small datasets (less than
10K documents in our case). Using trained cost estimators,
IReS selects the proper engines for executing the workflow,
depending on the input data size. We also note that IReS
performs hybrid executions by combining operators of dif-
ferent engines for a range of input sizes. Indeed, from 10k
to about 40k documents IReS maps tf-idf to scikit and k-
means to Spark and manages to outperform even the fastest
single-engine execution by up to 30%. In these cases, IReS
automatically inserts the required move/transform operators.

Figure 6.c depicts the execution performance of the rela-
tional analytics workflow. While PostgreSQL can provably
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Figure 7: Workflow optimization times for 4 and 8 engines,
using various workflow types of ranging size.
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Figure 8: Workflow optimization times for Montage and
Epigenomics graphs, using various number of engines and
ranging the workflow size.

perform well for small datasets, the cost of data transfer from
other engines is prohibitive. MemSQL fails to execute the
workflow for sizes larger than 2GB due to intermediate re-
sults exceeding the available cluster memory. IReS executes
each workflow query in the engine where its tables reside (q1
in PostgreSQL, q2 in MemSQL and q3 in Spark), minimizing
the required data movements and thus achieving a constantly
good performance, regardless of the data size. In fact, the
workflow execution starts to accelerate as the dataset scales
to larger sizes (50G), for which the planning and movement
overhead is amortized by the pure task execution speed-up.
B. Workflow Planner Performance

In this section we experimentally evaluate the perfor-
mance of our multi-engine workflow planner with respect
to the workflow complexity and the number of alternative
implementations of a workflow operator. To provide a repro-
ducible experimental set-up and comparable results we use
the Pegasus workflow generator [30]. The produced work-
flow graphs fall into five scientific workflow categories (i.e.,



Montage, CyberShake, Epigenomics, Inspiral and Sipht) and
contain patterns derived from diverse scientific application
domains such as astronomy, biology, gravitational physics
and earthquake science. They include massively parallel
workflows that process large amounts of data, pipelined
applications that split up input datasets and operate on
different chunks in parallel as well as workflows that have a
relatively fixed structure and perform identical analyses on
multiple input datasets.

Figure 7 depicts the time required by our planner to opti-
mize all five Pegasus workflow categories. In this experiment
we range both the number of the workflow nodes and the
number of alternative execution engines (denoted as m in
our evaluation of the planner’s complexity). The first graph
of Figure 7 plots the planner’s execution time for 4 engines,
while the second for 8 engines, i.e., the IReS operator library
contains 4 and 8 alternative implementations of each of
the abstract workflow operators respectively. While most of
the Pegasus graphs show similar behaviour, the Montage
workflow graph is more connected, having multiple nodes
with high in- and out-degrees. This results in a 2× increase
in planning times, which is theoretically confirmed by our
planner’s algorithmic complexity (O(op · m2 · k)). Indeed,
performance is linearly affected only by the number of
inputs k of each operator. We also note that our planner
demonstrates almost linear complexity when ranging the
number of workflow nodes between 30 and 1000. In the
extreme case of 1000-node workflows the time required to
produce the optimal execution plan is less than 10 seconds
in all runs. This allows us to expect that the IReS planner
can handle even the most complex multi-engine workflow
scenarios with an almost negligible overhead compared to
the total execution time of the analytics workflow itself.

To further test the impact of the number of available
engines on the workflow planning performance, we mea-
sure the time required to optimize and plan the Montage
and Epigenomics workflows, which we consider the most
representative ones based on the previous experiment, while
ranging the number of alternative execution engines for each
workflow operator between 2 and 8 (Figure 8).

As expected, the existence of multiple operator imple-
mentations affects the performance of the planning process.
However, the IReS planner manages to handle even the
extreme cases of 100-node workflows with up to 8 en-
gines within a couple of seconds. The majority of real-life
workflows though are far from being that abundant, as our
experience in the ASAP project also suggests. An average
10-node workflow, even under the immoderate assumption
of 8 alternative operator implementations, can be optimized
and scheduled for execution with IReS in the sub-second
time-scale. This also holds for all of the real-life workflows
utilized throughout this section, which require planning
times in the order of milliseconds.
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Figure 9: Relative execution time estimation error w.r.t. the
number of executions (a) in normal IReS operation (b) when
an infrastructure change occurs after 100 executions.

C. Operator Modeling

In this section, we test the ability of IReS to accurately
estimate the cost and performance of various operators
as well as its adaptability to changes in operator char-
acteristics due to temporal degradation or infrastructural
modifications. In this set of experiments we run single-
operator workflows, for the sake of simplicity. Apart from
the Pagerank operator, we introduce, from the field of text
analytics, an operator that counts distinct words in a corpus
of documents - Wordcount. Figure 9.a depicts the relative
performance estimation error achieved for Wordcount
over MapReduce and Pagerank using a centralized Java
implementation. We iteratively execute the operators with
different input sizes, number of resources (i.e., CPUs, RAM)
and application specific parameters (i.e., number of itera-
tions), uniformly selecting from a set of possible setups.
The models are refined with each operator execution. In
the beginning of the experiment there is no knowledge of
the operator performance and therefore the models present
high estimation errors. However, in both cases the relative
execution time estimation error drops bellow 30% after only
50 runs. The accuracy of IReS keeps on improving smoothly
after that, as more sample execution points are gathered.

The adaptability and reusability of our machine learning
models is tested by enforcing a sudden infrastructure change.
Figure 9.b plots the relative execution time estimation error
for the Wordcount MapReduce operator when after 100 runs
the cluster undergoes an upgrade, where all the HDDs that
form the HDFS substrate that stores the data are substituted
by SSDs. This affects the execution time estimations of
the Wordcount operator (assuming that no I/O information
has been modeled and used for estimating the operator
performance). As depicted in Figure 9.b there is a temporal
degradation of the relative error due to the fact that IReS
still uses the same models, which capture the characteristics
of the previous infrastructure. Although the relative error
increases from 30% to 50% right after the change, it is
still more beneficial to use the existing models than to
discard them and start from scratch, as the relative error
of assuming no knowledge would be almost 100%. Besides,
as more execution measurement are acquired the relative
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Figure 10: Execution time and cost vs. input size.

error decreases again and the models regain their accuracy,
adapting seamlessly to the new cluster state.
D. Resource provisioning

In this last set of experiments we demonstrate the effec-
tiveness of our resource provisioning mechanism by letting
IReS decide on the amount of resources to be allocated
in a cluster of 32 cores and 54GB RAM in total when
executing the Spark (MLlib) implementation of the tf-idf
operator. We assume an optimization policy of minimizing
the workflow (i.e., operator) execution time. In Figure 10 we
plot the time needed to execute the workflow as well as the
cost of the allocated resources for various input sizes and
3 different strategies: a) static selection of the maximum
available cluster resources (denoted as max resources), b)
static allocation of the minimum resources required (de-
noted as min resources) and c) dynamic resource allocation
through IReS. The execution cost can be considered as
the amount of money spent on renting Amazon VMs or
simply a function of the utilized resources. To express the
execution cost we adopt a simplified version of [31], namely
#VM · cores/VM · MM/VM · t, where #VM is the
number of VM instances, cores/VM is the number of cores
per VM, MM/VM is the main memory per VM (in GB)
and t is the execution time. This is the metric we plot in the
second graph of Figure 10.

Intuitively, when running a task in a distributed environ-
ment the execution time decreases as more resources are
utilized - yet, more resources result in a higher execution
cost. Contrarily, settling with the minimum resources nec-
essary to execute an operator cuts corners at the cost of
performance. IReS manages to achieve workflow execution
times as low as the max resources strategy, yet incurring an
execution cost that lies in-between the two static strategies,
provisioning just the right amount of resources according to
the size of the input data: As the input dataset scales, more
resources are provisioned by IReS in order to sustain low
execution times, thus the execution cost approaches the one
incurred by max resources.

IV. RELATED WORK
In the ever evolving Big Data landscape, the reconcili-

ation and/or combination of the different data models and
programming paradigms open up new and promising fields
of research. The first attempts along this line lie in the
field of data management and aim to provide a unified

query language or API over various datastores. SparkSQL
[32], part of the Apache Spark project [3], and PrestoDB
[33], powered by Facebook, are two production systems that
provide a query execution engine with connectors to various
external systems (e.g., PostgreSQL, MemSQL, Hive, etc.).
However, to perform any operation on external data they
both need to fetch and distribute them internally, missing
out on many engine-specific optimizations.

Other approaches, like SQL++ [34] and Apache Drill
[35], focus more on providing extended SQL querying
capabilities over different, possibly schema-less data stores,
without assuming any planning or optimization mechanisms.
QUEPA [36], the most recent effort on data integration
over polystores, offers advanced exploration capabilities
through record linkage. However, it too lacks mechanisms
that optimize query execution.

Recent research works like the Cascading Lingual project
[37], CloudMdsQL [38] and BigDAWG [39] try to op-
timize query resolution over heterogeneous environments
by pushing query processing to the datastores that manage
the data as much as possible. They mostly provide rule-
based optimizations while considerable effort is devoted to
the translation between the involved storage engines’ native
query languages. All of the above approaches, unlike IReS,
focus solely on storing and querying Big Data, rather than
performing any complex analytics workflow on them.

In the field of workflow management, HFMS [16] aims
to create a planner for multi-engine workflows, but focuses
more on lower-level database operators, emphasizing on
their automatic translation from/to specific engines via an
XML-based language. Yet, this is a proprietary tool with
limited applicability and extension possibilities for the com-
munity. Contrarily, IReS, an early prototype of which has
been demonstrated in [40] and [41], is a fully open-source
platform that targets both low and high level operators.

Musketeer [17] and Rheem [18] also address multi-engine
workflow execution, acting as mediators between an engine’s
front- and back-end. They first map a user’s workflow to
an internal representation and then apply a set of rule-
based optimizations before sending it for execution. They
focus more on the translation of scripts from one engine to
another, being thus tied to specific programming languages
and engines. Contrarily, IReS is engine agnostic, treating
operators as black boxes. This allows for extensibility to
new engines and easy addition of new operators regardless
of their implementation language.

V. CONCLUSIONS
In this paper we presented IReS, a sophisticated meta-

scheduler for multi-engine environments. IReS optimizes
and plans complex analytics workflows by performing a
mix ’n’ match of diverse runtimes and data stores and by
deciding on the exact amount or resources to be allocated
in order to conform as much as possible to the user-
defined optimization criteria, be it execution time, resource



consumption or any custom function of measurable exe-
cution metrics. This functionality relies on the cost and
performance estimations of the available operators over the
deployed engines.

The IReS prototype already supports a number of compute
and data engines and has been extensively evaluated in
optimizing and scheduling a variety of diverse, business-
driven workflows that fall into the fields of text, graph
and relational analytics. The experiments showcase (a) the
performance gains of the IReS mix ’n’ match strategy,
which reach 30% with respect to statically scheduled, single-
engine workflows, (b) the efficiency of the optimizer, which
designates the optimal execution plan in the sub-second
time scale for realistic, medium-sized workflows, (c) the
effectiveness of the resource provisioning strategy, which
perfectly matches any user-provided policy and (d) the
adaptability of the system, which manages to ameliorate its
accuracy with every execution and recover from unexpected
changes within a few tens of extra runs.
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Abstract—Multi-engine analytics has been gaining an in-
creasing amount of attention from both the academic and
the industrial community as it can successfully cope with the
heterogeneity and complexity that the plethora of frameworks,
technologies and requirements have brought forth. It is now
common for a data analyst to combine data that resides on
multiple and totally independent engines and perform complex
analytics queries. Multi-engine solutions based on SQL can
facilitate such efforts, as SQL is a popular standard that
the majority of data-scientists understands. Existing solutions
propose a middleware that centrally optimizes query execution
for multiple engines. Yet, this approach requires manual
integration of every primitive engine operator along with its
cost model, rendering the process of adding new operators or
engines highly inextensible. To address this issue we present
MuSQLE, a system for SQL-based analytics over multi-engine
environments. MuSQLE can efficiently utilize external SQL
engines allowing for both intra and inter engine optimizations.
Our framework adopts a novel API-based strategy. Instead
of manual integration, MuSQLE specifies a generic API, used
for the cost estimation and query execution, that needs to be
implemented for each SQL engine endpoint. Our engine API
is integrated with a state-of-the-art query optimizer, adding
support for location-based, multi-engine query optimization
and letting individual runtimes perform sub-query physical
optimization. The derived multi-engine plans are executed
using the Spark distributed execution framework. Our detailed
experimental evaluation, integrating PostgreSQL, MemSQL
and SparkSQL under MuSQLE, demonstrates its ability to ac-
curately decide on the most suitable execution engine. MuSQLE
can provide speedups of up to 1 order of magnitude for
TPCH queries, leveraging different engines for the execution
of individual query parts.

Keywords-Polystore, Multi-Engine Optimization, SQL, Cost-
models, Big Data

I. INTRODUCTION

Big Data analytics constitutes a large fraction of modern
datacenter workloads with numerous applications in most
aspects of business and everyday life. Current methods and
tools for Big Data analysis are quite diverse, being dictated
by the heterogeneity of use cases that operate over different
data formats, computational and functional requirements.
This reality has brought forth an abundance of: i) compu-
tation languages and models (e.g., SQL, MapReduce, BSP,
etc), ii) data store technologies (e.g., NoSQL stores [1], [2],
columnstores [3], distributed FSs [4], etc), and iii) execution
engines (e.g. [5], [6], [7], [8], etc).

While all these systems have been successful, they still
showcase their advantages on a subset of analytics applica-
tions. Their striking limitation is that they require specific
data formats and query inputs, being able to utilize only
their custom execution engine. The need for a multi-engine
approach, that splits and coordinates workflow execution
among multiple engines has been recently recognized and
is gaining increasing attention ([9], [10], [11], [12], [13]).

Regarding a standardized querying language, SQL, the
mainstay query language for RDBMSs, is generally ac-
knowledged as a top in-demand skill for this new era, with
new platforms constantly seeking its support ([14], [15],
[16], [13], [17]). SQL emerges as the de facto language
for big data due to its extensibility, its ability to naturally
represent queries that can be optimized, and the vast number
of products and developers that already support it. These
points highly suggest a multi-engine approach that allows
SQL analytics over multiple data formats and uses the most
appropriate engines.

Recent attempts along this line ([9], [18], [11]) tackle the
issue by producing federated systems: There exists a custom
subsystem where the different engines’ operators and cost
models are integrated and optimized planning is performed.
While this is achieved for the already included systems and
operators, this setup lacks extensibility as it requires a lot of
manual work in order for one to incorporate a new analytics
engine or support new operators on already integrated ones.
Moreover, it frequently proves suboptimal to define a single,
global optimization layer, and disregard the capabilities of
the underlying engines to locally optimize.

In this work we present MuSQLE, an open-source frame-
work1 for high-performance SQL-based analytics over dif-
ferent data sources and execution engines. MuSQLE is able
to overcome the aforementioned deficiencies and optimize
simple or complex SQL queries. Our solution adopts a
novel API-based strategy for integrating runtimes: Instead
of manual integration, MuSQLE utilizes standardized, API-
based cost-model and execution endpoints from the partici-
pating engines. Our system is able to optimally disseminate
parts of the initial query (including the appropriate data
movements between stores) using state-of-the-art planning

1https://github.com/gsvic/MuSQLE



and letting individual optimizers handle the respective sub-
queries. MuSQLE utilizes Spark [14] as an executor and
orchestrator layer, extending its current functionality as well
as providing it with a native cost-model.

In summary, our work makes the following contributions:
• We propose a generic SQL engine API that can facil-

itate multi-engine query optimization. The API is based
on well-documented SQL functionality and can be im-
plemented using generic, engine-agnostic interfaces like
JDBC and ODBC.
• We integrate this API into a state-of-the-art query op-

timizer, allowing for external, multi-engine cost-based
query optimization. Our optimizer runs on the logical
level, allowing the connected engines to have full control
of physical optimization and join execution. This approach
avoids the detailed enumeration of all physical operators
on the external optimizer and thus further facilitates the
integration of a new SQL engine.
• We compile and utilize a cost model for the SparkSQL

operators. This model is used within our query planner to
achieve query optimization for SparkSQL.
• We present a fully functional system that integrates three

popular engines: SparkSQL [14], PostgreSQL [19] and
MemSQL [20]. We describe our system architecture and
components in detail, as well as extensively evaluate the
utility and efficiency of our scheme.
• Our detailed experimental evaluation showcases that

MuSQLE can accurately decide on the most suitable ex-
ecution engine and provides speedups of up to 1 order of
magnitude for TPCH queries, leveraging different engines
for the execution of individual query parts.

II. RELATED WORK

We now present some of the most relevant approaches
in multi engine analytics focusing on SQL-based solutions.
We emphasize on the pros and cons of each approach,
distinguishing between two categories: Research works and
Production-level systems.

Production Systems: SparkSQL [21] provides a com-
plete in-memory query execution engine using Resilient
Distributed Datasets (RDDs), allowing remote data manipu-
lation via DataFrames. For example, it is possible to query
tables stored in an RDBMS or a main memory store (e.g.,
MemSQL [20]) as well as Parquet files in a HDFS cluster.
The user can query these tables using traditional SQL via
the SQLContext or by using methods of the DataFrame
interface. However, in such a case, SparkSQL needs to fetch
and distribute every external table into its worker nodes in
order to perform data operations. As a result, optimization
and processing capabilities of the external stores are ignored
(e.g., index scans in case of filters).

PrestoDB [16] is a popular system for distributed, analyti-
cal query execution over heterogeneous datastores developed
at Facebook. It provides a distributed execution model

using similar algorithms with SparkSQL for querying data
across multiple datastores by providing an engine-specific
connector for each external system (e.g., Kafka, Cassandra,
Hive, etc.) in order to be integrated to the core system.
PrestoDB also needs to fetch each table involved in the query
without pushing any operation to the underlying runtimes.

Apache Drill [22] enables SQL-based querying over un-
structured, schema-free datastores (e.g., HDFS, MongoDB,
Azure). However, Drill does not utilize individual cost
models, statistics and estimates in the planning phase. This
prevents it from executing one or more subqueries locally
even if the local execution would be faster.

Research Works: BigDAWG [13] addresses the problem
of query resolution over heterogeneous environments by
executing queries using islands of information, where each
island refers to a data model, a query language and a set
of data management systems. In BigDAWG, a query is
optimized using either Single- or Multi-Island Planning.
While the system supports native subquery execution inside
the underlying engines, it treats each engine as a black-box.
As a result, local optimizers are ignored.

A different approach is followed by CloudMdsQL [23]
which provides a functional SQL-like language for querying
data stored in heterogeneous datastores within a single query,
focusing on the ad-hoc usage of each datastore’s native
query language and engine. CloudMdsQL supports the local
execution of a subquery and shipping of intermediate re-
sults. As it focuses on integration, it requires custom-made
wrappers that translate from source to target language and
provide cost models for the optimizer to use. Furthermore,
the optimization is more rule-based, using selection and
join condition pushdowns. The MuSQLE optimizer is more
refined: Statistics injection, when moving an intermediate
result into another store, is utilized for increased accuracy.

A different data integration approach is followed by
QUEPA [24], which focuses on data integration over poly-
stores. QUEPA introduces two new query methods: Aug-
mented search and augmented exploration. In summary, this
approach enables the user to query the polystore without
knowing the exact structure of each individual database.
Using record linkage, QUEPA will return records enriched
with relevant (similar) tuples of other databases of the
polystore. In exploratory mode, the user is prompted to select
the relevant information retrieved that she wishes to explore.
However, QUEPA only focuses on integration and does not
provide any optimization for the execution phase.

SQL++ [17] provides a semi-structured data model, which
combines the traditional SQL language with JSON exten-
sions making it easy to query NoSQL databases by em-
bedding JSON queries inside SQL code. However, SQL++
focuses only on the proposed language without providing
query planning optimizations.

MISO [11] focuses on the tuning of the physical design
of polystores in order to minimize data movements of



intermediate results between the underlying stores. MISO
aims at optimizing the performance of ad-hoc, big data query
processing by deciding where data is best to reside in. Yet,
MISO also needs to maintain and calibrate its own cost
functions for estimating the cost of operations. As a result,
for every new engine to be added there is an integration
overhead to generate the appropriate cost estimators.

III. ARCHITECTURE

Figure 1 depicts MuSQLE’s architecture. Our system is
designed to facilitate the execution of multi-engine SQL
queries. Such queries can be executed over tables that reside
in multiple engines. The Metastore module is responsible for
storing the schema and location information for each table.
Our SQL Parser communicates with the Metastore in order
to validate a user query and create the query graph. After
parsing the query, our Multi-engine Optimizer, discussed
in Section V, finds the optimal execution plan taking into
account logical operator ordering, engine selection for query
subgraphs as well as the required intermediate result move-
ments. The generated execution plan is a tree of SQL and
move operators. Each SQL operator is bound to a specific
engine and refers to a subgraph of the initial query. The
move operators handle the transfers of intermediate results
between different SQL engines.

SQL Parser

Engine API

SQL 

Multi-Engine query
Metastore

Multi-engine Optimizer

Query graph

Validate

Execution Plan

Estimate
Cost/Statistics

Locations

Figure 1: MuSQLE system architecture

In order for our optimizer to interact with the various
engines, we introduce an Engine API, presented in Sec-
tion IV. The API contains methods for the estimation of
execution cost and intermediate result statistics which are
used by our optimizer. It also contains SQL query execution
methods as well as methods for retrieving and loading
intermediate tables. We opt for utilizing Spark’s engine as
an execution framework for our multi-engine plans. Using
Spark, MuSQLE provides scalable, main-memory based
interaction between the connected SQL engines as well as
primitives for fault-tolerance. Spark also provides a SQL
interface allowing us to also utilize it as an alternative
execution engine. We implement our engine API for three
state-of-the-art engines: i) PostgreSQL, ii) MemSQL and

iii) SparkSQL. The selected engines provide a diverse set,
ranging from centralized to distributed execution, row- and
column-oriented storage and disk-based to main-memory
data indexing and join execution.

IV. ENGINE API

In this section, we describe in detail our Engine API
that undertakes the integration between MuSQLE and the
execution engine stack. To make our API generic and easy
to implement, we devise five basic functions. Our functions
are, in most cases, an extension of the already provided SQL
functionality and require limited work to be implemented
for a new engine. Our API functions are categorized in two
groups: Execution and Estimation.
Execution functions: The following functions are used for
executing our multi-engine query plans using Spark:
• def execute(sqlQuery: String): DataFrame:

This method sends a SQL query for execution to the
specific engine. This is the most basic operation and can be
implemented by extending well-known and massively used
interfaces like JDBC and ODBC. The result of the query
is loaded in a Spark DataFrame and can be subsequently
moved to another engine for the execution of a query plan.
• def loadTable(table: String, df:

DataFrame): Unit:

This method takes as argument a Spark DataFrame, which
is an intermediate result table, and loads it in the specific
engine. Again, this interface requires limited implementation
overhead for most SQL engines.
Estimation functions: These functions are used inside our
optimizer to estimate the execution cost and statistics of
query subgraphs. In detail, the methods are:
• def getStats(sql: String): Stats:

This method is used to obtain an estimation of: i) the
execution time of a specific SQL query and ii) the statistics
of the result table. This functionality is already provided
by many SQL engines in the context of the EXPLAIN
statement. However, the results returned by different engines
do not have a standard format. In most cases, they return the
selected execution plan, the number of result rows as well
as an execution cost measured in disk or cpu operations.
To foster the integration of SQL engines in a multi-engine
environment, we believe that such methods should follow
a standard output format and return values that are compa-
rable. Especially in the case of engines that use cost-based
query optimization, such functionality already exists but is
sometimes not exposed by the EXPLAIN output. To tackle
this problem, we parse the output provided by the EXPLAIN
statements of both PostgreSQL and MemSQL and use it
to implement our API function. For Spark SQL, currently
not utilizing a cost-based optimizer, we developed custom
cost models for each operation as well as custom statistics,
described in Section VI. Details on how we combine the



returned values in order to achieve unbiased query planning
are presented in Section V-B.
• def getLoadCost(stats: Stats): Double:

This method returns an estimation of the time required to
load a table from a Spark DataFrame to the specific engine.
The statistics of the table, which contain its number of
rows and columns are provided in the Statistics object. Cost
functions similar to the following equation can be used for
this task: Cmove = Bt · Teng , where Bt is the size of the
input table and Teng is the transfer rate for the engine eng.
• def injectStats(table: String, stats:

Stats): Unit:

This function is required when trying to obtain execution
statistics for SQL queries that utilize intermediate results,
not present in a specific engine. In a what-if optimization
style, our optimizer injects all intermediate result statistics
in the required engines, before calling the getStats
method for queries that contain them. We analyze in detail
how this is achieved by our optimizer in Section V. In
brief, the injectStats method creates a “fake” table
using the name and the statistics provided as argument. We
have created custom code for doing this operation in all
the integrated engines. However, assuming the multi-engine
execution scenario is beneficial, such APIs can be easily
implemented by the engine developers.

V. MULTI-ENGINE QUERY OPTIMIZATION

A. Optimization Algorithm

Finding the optimal join plan for complex queries has al-
ways been a major research challenge in optimizing database
systems. One of the oldest and most efficient dynamic
programming algorithms for join planning is DPsize [25],
widely used in commercial databases like IBM’s DB2. DP-
size limits the search space to left-deep trees and generates
plans in increasing order of size. A more recent approach,
DPccp [26] and its variant DPhyp [27] are considered to
be the most efficient, state-of-the-art dynamic programming
algorithms for query optimization. They reduce the search
space by examining connected subgraphs of the query in a
bottom-up fashion. DPccp bases its enumeration procedure
on finding all csg-cmp-pairs in the SQL join graph, where
each table is represented by a vertex and join conditions are
recorded using edges.

Definition 1: (csg-cmp-pair) Let G = (V,E) be a join
graph and S1, S2 two subsets of V such that S1 ⊆ V and
S2 ⊆ (V \ S1) are a connected subgraph and a connected
complement respectively. If there further exists an edge (u,
v)∈E such that u∈S1 and v∈S2, we call (S1, S2) a csg-cmp-
pair.

In essence, csg-cmp-pairs are pairs that contain a con-
nected subgraph (csg) of the query graph and one of its
connected complement subgraphs (cmp). Each csg-cmp-pair
corresponds to a 2-way join between the csg and the cmp

ALGORITHM 1: emitCsgCmp(S1, S2)

1 plans1 = dpTable[S1];
2 plans2 = dpTable[S2];
3 S = S1 ∪ S2;
4 p =

∧
(u1,u2)∈E,ui⊂Si

P(u1, u2) ;
5 for (e1, plan1) ∈ plans1 do
6 for (e2, plan2) ∈ plans2 do
7 for e ∈ engines do
8 //execute query in engine e
9 c1 = 0; c2 = 0;

10 newPlan1 = plan1; newPlan2 = plan2;
11 if e1! = e then
12 table1 = newTempTable();
13 c1 = e.getLoadCost(plan1.stats);
14 e.injectStats(table1, plan1.stats);
15 newPlan1 = move(newPlan1, e, table1);
16 if e2! = e then
17 table2 = newTempTable();
18 c2 = e.getLoadCost(plan2.stats);
19 e.injectStats(table2, plan2.stats);
20 newPlan2 = move(newPlan2, e, table2);
21 newPlan = newPlan1 ./p newPlan2;
22 sql = toSQL(newPlan, e);
23 stats = e.getStats(sql);
24 stats.cost = stats.cost+ c1 + c2;
25 if dpTable[S][e] = ∅ ∨

stats.cost < dpTable[S][e].cost then
26 dpTable[S][e] = newPlan;

graphs. This property ensures that the enumeration of all
csg-cmp-pairs checks all possible 2-way join plans, ensuring
the optimality of the selected plan. We extend the DPhyp
algorithm in order to find the optimal join plan of a multi-
engine SQL query. Our main extensions are:
Location-based optimization: One of the major differences
of our algorithm compared to DPhyp is the structure of the
dpTable used. To leverage the strengths of multiple engines,
the optimizer needs to take into account the location of
each intermediate result. A result with a certain location,
while more expensive to generate than another, can be more
efficiently used in a subsequent join leading to a better
join plan for the query. To cover this case, we change
the structure of our dynamic programming table: While in
DPhyp only one plan is kept for each query subgraph, our
dpTable maintains, for each query subgraph, a list of plans
that contains the best join plan for each possible location
(i.e., integrated SQL engine).
Multi-engine execution cost and statistics estimation:
We integrate our generic SQL engine API with the DPhyp
optimizer, allowing for the discovery of the optimal plan
without depending on hand-coded or statically-integrated
cost models. This approach separates the task of plan enu-
meration from the task of cost estimation, facilitating ‘out of
the box’ integration and optimal utilization of new engines.

Algorithm 1 presents the pseudocode of our extended
emitCsgCmp(S1, S2) function. We maintain the same no-
tation as used in [27], allowing interested readers to easily
point to this paper for the details of the baseline algorithm.
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Figure 2: Join graph for Qe

Postgres: inter2
SELECT c_custkey, c_name
FROM customer, nation
WHERE c_nationkey = 
n_nationkey
and n_name = ‘GERMANY’

Exec Time = 82 ms
Rows = 30182

Spark SQL
SELECT c_name, o_orderdate
FROM inter1, inter2, orders, 
lineitem
WHERE
l_partkey = p_partkey
And o_custkey = c_custkey
And o_orderkey = l_orderkey

Exec Time = 33.2 sec
Rows = 824

Cost: 72 m
s
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: 2
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MemSQL: inter1
SELECT p_partkey
FROM part, partsupp
WHERE p_partkey = 
ps_partkey
and p_retailprice > 2090

Exec Time = 14.58 sec
Rows = 900

M
ov

e

M
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Figure 3: Multi-engine execution plan for Qe

The emitCsgCmp(S1, S2) function is called for each csg-
cmp-pair and is responsible for checking the cost of the
specific join using the optimal plans for S1 and S2 as well
as the cost model.

As mentioned above, our dpTable is a two-dimensional
array having one more dimension corresponding to the
engine location of each intermediate result. Therefore, the
emitCsgCmp(S1, S2) function needs to evaluate the uti-
lization of multiple plans, retrieved in lines 1-2, for both
input query subgraphs. Additionally, we must check the cost
of using these results in all the connected engines. Even
if both intermediate results are not in a specific engine,
loading them and continuing the query execution in that
engine might be beneficial. To check all possible execution
plans, we consider all combinations of left plans, right plans
and execution engines (lines 5-26). For each of them, we
check the locations of the left and the right plan, applying
move operations if required. To apply move operators, we
call the getLoadCost method for engine e in order to estimate
the required time (lines 13 and 18). We also inject an
intermediate temporary table, in engine e, using the API
method injectStatistics (lines 14 and 19). This table will be
used later on for query estimation.

After checking for move operations, we compose the
result plan (line 21) and transform it to a SQL query string
(line 22). The method to produce this string recursively
iterates through the plan nodes stopping at move operators.
This allows us to create a query string that refers to in-
termediate moved tables with their temporary names. The
generated SQL query contains only the join information
assigned for execution in engine e and is sent for estimation
to the respective engine through the getExecutionStats API
method. The dpTable record for S = S1 ∪ S2, i.e., the
resulting subgraph of the query, is updated only if the
estimated cost is lower than the one contained in the dpTable
for the specific combination of (S, e) (line 26).

To facilitate the understanding of our algorithm, we
present a detailed query optimization example for the fol-
lowing query Qe:
SELECT c_name, o_orderdate

FROM part, partsupp, lineitem, orders,

customer, nation WHERE

p_partkey = ps_partkey AND

c_nationkey = n_nationkey AND

l_partkey = p_partkey AND

o_custkey = c_custkey AND

o_orderkey = l_orderkey AND

p_retailprice > 2090 AND

n_name = ‘GERMANY’

The above query is based on TPC-H data and returns
all customers from Germany that ordered a part with retail
price higher than 2090. For this example, we assume that the
tables lineitem and orders, due to their large size, are
stored in a Spark cluster, using HDFS files. Accordingly, the
customer and nation tables are stored in a PostgreSQL
server and the part and partsupp tables in a MemSQL
cluster. The join graph of Qe, along with the table location
information is depicted in Figure 2. Our optimizer uses the
DPhyp algorithm to enumerate all csg-cmp-pairs of the join
graph. One possible csg-cmp-pair (S1, S2) is the one with
S1 = {part, partsupp} and S2 = {lineitem, orders}.
When DPhyp calls the emitCsgCmp method for this pair, the
optimal plans for both S1 and S2 can be found in the dpT-
able. Algorithm 1 checks all combinations of plans for S1,
S2 and execution engines. This process results in selecting
SparkSQL as the execution engine while moving the result
of the optimal plan for S1 from MemSQL to SparkSQL.
In this case, the toSQL method (line 22 of Algorithm 1)
refers to the intermediate result table coming from MemSQL
with its temporary name “inter1” and therefore the remaining
SQL query is:
SELECT o_custkey, o_orderdate

FROM inter1, lineitem, orders WHERE

l_partkey = p_partkey AND

o_orderkey = l_orderkey

This query is sent for estimation to the SparkSQL
API. Its estimated cost is added to the move cost
of “inter1” and the resulting plan is inserted in the
dpTable for S = {part, partsupp, lineitem, orders}.
Later on, the csg-cmp-pair (S′1, S

′
2) with S′1 =

{part, partsupp, lineitem, orders} and S′2 = {customer,
nation} is considered. This time emitCsgCmp selects Spark-
SQL as the execution engine while moving the plan of
S′2 from PostgreSQL to SparkSQL. The toSQL method



generates the following query, referring to both “inter1” and
“inter2” coming from MemSQL and PostgreSQL:
SELECT c_name, o_orderdate

FROM inter1,inter2,lineitem, orders WHERE

l_partkey = p_partkey AND

o_custkey = c_custkey AND

o_orderkey = l_orderkey

Again, the estimation API of SparkSQL is called and the
resulting plan is inserted to the dpTable, adding the required
move cost. After the enumeration of all possible csg-cmp-
pairs, the optimal plan of the query is discovered. The se-
lected multi-engine plan is depicted in Figure 3 and consists
of SQL and move operators. SQL operators are bound to
specific engines and their estimated cost and number of
results is depicted inside the respective boxes. The tree-based
multi-engine plan is executed in a bottom-up fashion, using
the Spark processing framework as well as our execution-
related, engine API methods.

B. Comparing query estimations of different engines

Query optimization and execution time estimation are
challenging tasks and are based on both cardinality estima-
tions and operator cost models. In principle, as long as the
cardinality estimations and the cost models of an engine
are accurate, a good estimation of the execution time can
be obtained for the query in hand. In reality, cardinality
estimates are usually computed based on simplifying as-
sumptions like uniformity and independence. Furthermore,
cost model functions are oversimplified and do not take
into account important parameters (e.g., the server load
during query execution). In most cases, cost is measured in
primitive operations like disk fetches or CPU cycles. While
these measurements are considered to have linear correlation
to the actual execution time, the correlation factors depend
on hardware-specific parameters like the disk throughput or
the CPU speed. A recent survey [28] illustrated that state-of-
the-art SQL engines can easily misestimate costs by a factor
of 1000 or more.

In this landscape, a major challenge for our system is
how to compare and utilize the estimations provided by our
user-implemented estimation APIs. To achieve an unbiased
optimization procedure, we use the Metastore to record all
query estimations, retrieved by the various APIs during
query optimization. We also maintain, for each executed
query, a detailed log of execution time for both the total
query as well as it subqueries executed on different engines.
This set of measurements is used to train machine learning
models for tweaking the accuracy of the provided APIs. Our
models target two challenges:

1) Transforming the costs measured using primitive op-
erations (e.g., disk fetches) to estimations for the execution
time. For example, the PostgreSQL EXPLAIN API returns
the cost of the query in page fetches. Assuming a linear
connection between the disk cost and the execution time, we

Symbol Description
Dr Cost of a single row read
Dw Cost of a single row write
th Cost of hashing a single value
tbr Cost of broadcasting a single row
Ccpu Cost of a single CPU comparison
cores The number of cores in the cluster

Part(s) The number of partitions of the relation s
R(s) The number of rows of the relation s
Sp spark.sql.shuffle.partitions

Table I: Cost Model Parameters

use the previously described set of measurements to train a
linear model that maps disk cost to execution time.

2) Due to inaccurate engine predictions or faulty API
implementations, an engine can consistently fail to reason-
ably predict query execution time. To handle this case, we
perform an accuracy analysis on top of all our query estima-
tion measurements. This analysis computes the correlation
between the estimated and the actual execution times for
each engine. The computed correlation is used to adjust our
confidence on a specific estimation API. Our optimizer uses
a probability, proportionate to the measured correlation, to
randomly discard the API estimation results. Therefore, in
the case of an API that fails to achieve sufficient correlation
to its actual execution times, the entire engine will be
discarded from the optimization process.

VI. SPARKSQL COST-BASED QUERY OPTIMIZATION

Our engine API requires the implementation of cost esti-
mations for each integrated SQL engine. While PostgreSQL
and MemSQL provide such functionality through their in-
ternal cost-based optimizers, SparkSQL opts for heuristic-
based optimization, without implementing cost models for
its various operators. In this section, we present a cost model
for SparkSQL which can be used to estimate the execution
time of a SparkSQL physical plan. We also add support
for injection of table statistics and utilize intermediate result
cardinalities in order to provide more accurate execution
time estimations.
Cost models: We have integrated a set of cost models into
SparkSQL, extending the logic and formulas described in
[29]. We present the cost models for three important oper-
ators: Sort-Merge Join, Broadcast-Hash Join and Exchange.
Detailed formulas exist for all operators, yet we omit them
due to space limitations. Table I presents the notation used
in our cost models. First, we define the number of rounds
required for an operation to run. The number of parallel tasks
depends on how many CPUs a task uses. This can be set
by modifying the spark.task.cpus parameter. For the
rest of our discussion we assume that this parameter is set
to 1. Thus, the number of tasks which can be run in parallel
is equal to the number of cores in the cluster. The number
of rounds required for a task of p partitions is thus:

Rounds(p) =

⌈
p

cores

⌉



Exchange: This operation performs a shuffle operation
on the data and partitions the results. The operation will be
executed into Part(s) tasks, where each task will process
R(s)/Part(s) rows. Each row will be hashed on the same
column and will be sent to the corresponding partition
according to the resulting hash value. The resulting cost is
thus:
Cexch(s) =

R(s)

Part(s)
· (Ccpu +Dw) ·Rounds(Part(s))

Broadcast-Hash Join: First, each row of the “small” table
is hashed on the join condition attribute. This process takes
place in the Spark driver node. Then, the hashed relation is
broadcasted to all the workers. The cost of this operation
equals: Cbroadcast(s) = R(s) · (th + tbr). After all nodes
receive the hashed relation, a local join is performed for
each partition of the large relation with the small relation.
Thus, the total cost of a broadcast-hash join equals:

Cbhj = Cbroadcast(s)+
R(s) ·R(l) · Ccpu

Part(l)
·Rounds(Part(l))

Sort-Merge Join: This is the SparkSQL distributed im-
plementation of the traditional Sort-Merge Join algorithm.
Before the actual join execution, each relation involved is
first shuffled and sorted. Thus, for relation s the sorting cost
equals: Csort(s) = R(s) · logR(s) · Ccpu ·Rounds(s)
After the two relations are sorted, they need to be merged.
The merge cost is:
Cmerge(s, t) = R(s) ·R(t) ·Rounds(Sp) · Ccpu

Summing up, the cost of a sort-merge join is defined as:
Csmj(s, t) = Cexch(s) + Csort(s)+

Cexch(t) + Csort(t) + Cmerge(s, t)

VII. STATISTICS INJECTION

PostgresSQL Statistics Injection: In PostgreSQL, the
reltuples and relpages columns of the pg class sys-
tem table represent the number of rows and pages
respectively. Even if relpages change manually, the
planner checks the actual number of pages using the
RelationGetNumberOfBlocks() method. Thus, in order to
modify the statistics, we used pg dbms stats2, an open
source framework which provides functionality for “freez-
ing” and modifying table statistics of PostgreSQL.

SparkSQL Statistics Injection: We extend SparkSQL,
adding support for statistics injection and cardinality estima-
tion. The existence of statistics lead to better cost estimations
as well as to more accurate physical operator selection. For
example, when planning queries that include tables stored
in external data sources (e.g., MemSQL, PostgreSQL, etc),
SparkSQL chooses explicitly the Sort-Merge Join algorithm
even though the external table may be small. We solve this
problem by injecting the input size of an external relation
using the MuSQLE optimizer. Therefore, when SparkSQL
is integrated with MuSQLE, it is able to adaptively select
the use of Broadcast Hash Join for small external tables.

2https://github.com/ossc-db/pg dbms stats

VIII. SPARK-BASED QUERY EXECUTION

After generating the multi-engine execution plan de-
scribed in Section V, we need to execute this plan over
a Spark cluster. SparkSQL uses Catalyst as its query op-
timizer. Thus, we need to transform our query plan into a
SparkSQL equivalent using Catalyst’s expressions. To do so,
we developed a method which takes as input a multi-engine
plan (i.e., see Figure 3) and transforms it into a SparkSQL
native execution plan. We achieve that by traversing our
plan in a bottom-up manner. At each leaf, using pattern
matching, we match each operator of our plan (move, SQL)
to the SparkSQL’s Catalyst equivalent one. Finally, this
method returns our execution plan represented in SparkSQL
operations.

IX. EXPERIMENTAL EVALUATION

In this section, we present a detailed evaluation of our
multi-engine SQL platform. We integrate MuSQLE with
a diverse set of engines, consisting of three state-of-the-
art systems: PostgreSQL, MemSQL and SparkSQL. The
selected engines excel on different and complementary data
and query use cases, allowing MuSQLE to adaptively pro-
vide a combination of their advantages.

A. Cluster Setup and Compared Systems

All our experiments use Virtual Machine resources de-
ployed on a private Openstack cluster, consisting of 8 VM
containers. Each VM container has a 26-core Intel Xeon R©
CPU at 2.67GHz, 48 GB of RAM and two 2TB disks setup
with RAID 0. Our experiments run on 13 Virtual Machines
each with 8G RAM, 4 VCPUs and 100G of disk storage.
The VMs are organized as follows:
• SparkSQL: We setup a Spark cluster consisting of 1

master and 5 worker VMs. The master VM runs the Spark
driver(master) and the HDFS namenode. Each of the
worker VMs runs a Spark worker and a HDFS datanode.
• PostgreSQL: One Virtual Machine is used for running a

PostgreSQL server.
• MemSQL: We use a cluster of 1 master and 5 worker

VMs. The master VM runs MemSQL’s Master Aggregator
while each worker runs a MemSQL leaf node.

There is currently limited work on the multi-engine SQL
optimization landscape as mentioned in the related work
section (code for the most relevant [11] and [13] was
not available till the time of publication). To showcase
the advantages of our system, we compare it against the
performance of the three underlying SQL engines, if they
functioned individually.

B. Datasets & Query Sets

Datasets: We evaluate MuSQLE using synthetic data
generated from the popular TPCH benchmark [30]. In order
to test the scalability of our system as well as its optimization
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Figure 6: Absolute estimation errors of execution time for (a) PostgreSQL, (b) MemSQL and (c) SparkSQL.

potential, we use three different TPCH scale sizes: 5GB,
20GB and 50GB.

Query sets: Our system focuses on SQL queries that
include multiple tables residing in different engines. To
present a detailed evaluation of such query scenarios, we
generate a custom query set3, extending the original TPCH
benchmark queries. Our set consists of 18 queries, each
one referenced as Qn, 0 ≤ n ≤ 17. We classify our
queries in two categories: i)join-only queries (Q0 - Q8)
and ii)join-filter queries (Q9 - Q17). Queries of the first
category contain multiple joins, producing large output sizes
as they combine all information of the primitive tables
without applying any filtering operation. In contrast, the
second category includes queries with ranging selectivity,
containing various filtering predicates. The selected cate-
gories can showcase the benefit of pushing the execution
of subqueries to the individual engines. In brief, queries
with large joins and small selectivity need to transfer large
intermediate results between the connected engines and thus
present small improvements. When queries have joins or
subqueries with high selectivities, it is far more beneficial
to push their execution to individual engines, transferring
only their small intermediate results.

C. Query Optimization

The time required for optimizing queries that contain a
variable number of tables, using our three integrated engines,
is presented in Figure 4. As mentioned in Section V, our
optimizer utilizes the engine APIs to estimate the cost
and statistics of the various intermediate execution plans.
External API calls can insert arbitrary large overheads on
the optimizer’s execution time. To measure this impact we

3https://github.com/gsvic/MuSQLE/blob/master/Queries.scala

break down the total optimization time into: 1) the plan enu-
meration time, 2) the time spent in external cost estimation
APIs (“EXPLAIN API”) and 3) the time spent on statistics
injection (“INJECT API”). As depicted in Figure 4, we are
able to find optimal plans for all our multi-engine queries
within 6 seconds. However, the majority of the optimization
time is spent on the external engine APIs. While the actual
plan enumeration cost, introduced by our optimizer, is less
than 1 sec for all queries, the total optimization time ranges
between 1 and 6 seconds. This is largely attributed to the
complexity of the external API implementations. For the
purposes of this paper, we provided basic implementations
for all engine APIs. However, the benefits of multi-engine
execution can push individual engine experts to fine-tune the
performance of the respective APIs.

To test the impact of adding a larger number of SQL en-
gines on the optimization time, we simulate multiple engine
API implementations. All methods of this API insert a delay,
randomly selected from the distribution of delays of the
actual engine API calls. Figure 5 presents the optimization
times required for various numbers of connected engines.
We note that the number of engines affects the performance
of our optimizer. However, as presented in the following
sections, this overhead is usually alleviated by the large
improvements on the query execution times.

D. Cost Model Accuracy

Figure 6 presents the estimation accuracy for our inte-
grated engines. We use a box plot in order to capture the
average, standard deviation, min and max values of the error.
As mentioned in Section V-B, we train regression models
in order to translate the cost estimations of MemSQL and
PostgreSQL into execution time estimations. As expected,
the query estimation error increases with the query size,
due to the propagation of erroneous cardinality and cost



10
-2

10
-1

10
0

10
1

10
2

10
3

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

E
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 7: TPCH 5GB, all tables are stored in all engines

10
-1

10
0

10
1

10
2

10
3

10
4

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

xx xx xx xx xx xx xx xx xx xx xx xx xx x xxE
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 8: TPCH 5GB, each table is stored in a specific engine
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Figure 9: TPCH 20GB, each table is stored in a specific engine.
(x: execution time > 20 minutes, o: out-of-memory)
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Figure 10: TPCH 50GB, each table is stored in a specific engine.
(x: execution time > 20 minutes, o: out-of-memory)

estimations. However, we note that our proposed SparkSQL
cost model, in conjunction with our proposed statistics,
achieves good estimation accuracy.

E. Performance Comparison

To showcase MuSQLE’s multi-engine benefits, we run the
experiments under the following scenarios:

All tables stored in all engines: In this case, we assume
that all tables are stored in all connected engines. Due
to the existence of data in all engines, MuSQLE cannot
achieve significant performance improvements with respect
to the best underlying engine. However, this scenario nicely
demonstrates the accuracy of our optimizer in such cases.
As presented in Figure 7, our optimizer manages to select
the best execution engine for most query cases. For Q9, Q13
and Q16 wrong cost estimates lead to sub-optimal execution
plans.

Different Table Locations: In most real-life multi-engine
query scenarios, tables will be stored in different engines
according to their characteristics. For example, a table with
high frequency of updates would be stored in an OLTP
database, while a large log table in a plain HDFS file. To test
this scenario, we select the following location for the TPCH
tables: PostgreSQL stores the small sized tables (customer,
nation, region). MemSQL stores the medium sized ones
(part, partsupp, supplier), while the larger tables (lineitem,
orders) are stored in HDFS.

TPCH 5GB: Figure 8 depicts the respective results for the
TPCH 5 GB dataset. The performance improvement for this
dataset is not significant due to the small amount of input
data. This suggests that, in most cases, the optimal execution
plan is to move the tables and execute the whole query in a
single engine in order to prevent the intermediate result data
movements. However, we note that our system, correctly



estimating the execution times for the different engines,
selects the most profitable. For example, the execution of
Q12 takes place in PostgreSQL while query Q17 runs in
MemSQL. Again, this experiment showcases our optimizer’s
decision accuracy.
TPCH (20, 50)GB: For larger dataset sizes, all individual
engines incur significant overheads when loading external
tables. In such cases, plans that perform local processing
inside the individual engines while moving small sized
intermediate results prove largely beneficial. Specifically,
Figures 9 and 10 illustrate that most of the queries could
not be completed in MemSQL due to the large intermediate
results which lead to an out-of-memory error. In the case
of PostgreSQL, it took more than 2000 sec to complete the
execution of several queries, requiring over twenty minutes
to fetch the external tables. SparkSQL, taking advantage of
its distributed execution engine, succeeds in handling all
the queries of this scale. However, MuSQLE not only man-
ages to select the most efficient execution engine, but also
achieves better response times than SparkSQL by pushing
local processing on the other engines. For example, Q14
contains one filter on lineitem table. MuSQLE’s execution
plan pushes a subquery containing the filter into SparkSQL.
The small sized intermediate results are then moved in
MemSQL, where they are joined with the smaller part and
partsupp tables. Similar improvements can be also observed
for queries Q13, Q15, Q16 and Q17, which represent the
cases that MuSQLE outperforms even the best individual
engine, resulting in up to one order of magnitude speedups.

X. CONCLUSIONS

In this paper we presented MuSQLE, a multi-engine SQL
executor. MuSQLE introduces a generic engine API that
needs to be implemented for each integrated engine. We
extend a state-of-the-art query optimizer, adding support
for location based optimization and individual engine cost
estimation. We have integrated MuSQLE with PostgreSQL,
MemSQL and SparkSQL. Our detailed experimental evalu-
ation proves that MuSQLE can accurately select the best
execution engine for a large set of queries and provides
speedups of up to 1 order of magnitude, leveraging different
engines for the execution of individual query parts.
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