
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D4.2
Execution Engine v.1

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 20 Feb 2015 P. Pratikakis

S. Papagiannaki,
P. Katsogridakis

Initial Version

0.2 24 Feb 2015 P. Pratikakis,
P. Katsogridakis

First Revision

1.0 Final Version

Acknowledgement This project has received funding from the European Union’s 7th Framework
Programme for research, technological development and demonstration under grant agreement
number 619706.



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Executive Summary
This document presents the current design and implementation of the execution engine for recur-
sive analytics queries, as developed in WP4 of project ASAP. The execution engine design is an
extension of the Spark analytics engine. We extend the Spark scheduling algorithm to allow for
ongoing analytics queries to issue sub-queries recursively, by modifying the scheduling actors of
Spark to forward query initializiation and completion messages to the scheduler node. We avoid
centralizing the scheduling algorithm by optimizing for direct communication between worker
nodes whenever possible, to avoid congesion at the scheduler node. Moreover, we add support-
ing primitives for the recursive, hierarchical decomposition of data using parallel (not iterative)
analytics queries, and present the design and early implementation of a distributed scheduler im-
plementation that can parallelize scheduling overheads to allow for finer-grain computations or
scale to larger numbers of worker nodes. This deliverable extends D4.1 with additional sections
regarding the design and implementations of support for hierarchical data decomposition and dis-
tributed scheduling in Spark. Minor changes have also been included in the engine specification
section, reflecting any additional information or design decisions taken during the implementation
effort in the second year of the project.

2



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Contents
1 Introduction 4

1.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Dependency-aware query execution engine 4
2.1 Dependence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Queries with hierarchical data decomposition 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Hierarchical RDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Scalable distributed scheduling 17
4.1 DAGScheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 TaskSchedulerImpl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 SchedulerBackend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Motivation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Distributed Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1 Introduction
The main objective of this Work Package is the design and an development of a dependency-aware
query execution engine which incorporates the following functionalities:

• the division of query computations into computation tasks and the representation of them in
the system;

• the analysis of tasks to discover data dependencies;

• the data placement constraints posed by each data store and data schema, and their represen-
tation in the runtime system;

• the scheduler of computation tasks to computation nodes, while taking into account the data
location and data dependencies.

1.1 Task Description
Tasks T4.2 and T4.3, which aim at producing Deliverable D4.2, describe the detailed design, im-
plementation, and early testing results of the dependence analysis, the distributed scheduler and
the execution engine, as well as the language primitives developed to express hierarchical and
recursive computations.

The remainder of this deliverable is organized as follows: The following section repeats and
extends the corresponding section in deliverable D4.1 to reflect the current implementation of the
nesting query extensions to the Spark scheduler; the subsequent two sections describe the design
and implementation of two additional Spark extensions, namely primitives for recursive/hierarchi-
cal decomposition of data, as well as the algorithm for distributing the scheduling load to more
than one schedulers.

2 Dependency-aware query execution engine
As a base for the dependency-aware query execution engine we employed the Spark [2] execu-
tion engine. Spark uses an abstraction for describing general purpose calculations on datasets by
keeping track of lineage dependencies between the required dataset transformations. Moreover, it
contains a scheduling mechanism for decomposing the calculations in pipelined tasks that can be
executed independently in a cluster by taking into account locality and resource constraints. Our
design extends the Spark execution in order to enable the execution of nested calculations like the
one in Figure 1.

4



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1 val file1 = sc.textFile("hdfs://file1")
2 val file2 = sc.textFile("hdfs://file2")
3 file1.map(word1 =>
4 file2.filter(word2 =>
5 (word1.length > word2.length))
6 .collect())
7 .collect()

Figure 1: Example of nested RDD operations

2.1 Dependence analysis
The fundamental abstraction in Spark are RDDs (Resilient Distributed Dataset) which are im-
mutable partitioned collections, stored in an external storage system, such as a file in HDFS, or
derived by applying operators to other RDDs.

RDDs support two types of operations: transformations which create a new dataset from an
existing one, and actions which return a value to the driver program after running a computation
on the dataset.

All transformations are lazy, therefore each RDD keeps track of all the transformations applied
to the base dataset and they are only materialized when an action requires a result to be returned to
the driver program.

Once an action on a RDD is triggered on the driver side, a job is submitted to the scheduler.
Each job is decomposed in smaller sets of tasks called stages that depend on each other (similar
to the map and reduce stages in MapReduce). The decomposition into stages is achieved by clas-
sifying RDD dependencies into narrow and wide. In case of a narrow dependency, each partition
of the child RDD is derived by at most one partition of the parent RDD. In case of a wide depen-
dency, each partition of the child RDD is derived by several parent partitions. Hence, each stage
contains as many pipelined transformations with narrow dependencies as possible. The boundaries
of the stages are the shuffle operations required for wide dependencies (or any already computed
partitions).

Moreover, the RDD abstraction also enables the data analyst to provide hints how the data
should be partitioned and calculated by providing

• partitioners that define how the elements in a key-value pair RDD are partitioned by key and

• a list of preferred locations to compute each partition on (e.g. block locations for an HDFS
file)

5



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

2.2 Scheduler
The Spark scheduler first examines the RDDs lineage graph to build a DAG of stages. Then, it will
try to submit the final stage. However, if the parent stages are not yet available it will recursively
force them to be calculated. Whenever a stage’s parents are available, the scheduler will launch
the necessary tasks in order to compute the missing partitions.

The task scheduler running in the driver side decides which tasks should run in which node
based on resource and locality constraints. For instance, if a task needs to process a partition that
is available in memory on a node, it will be sent to that node. Otherwise, if a task processes a
partition for which the containing RDD provides preferred locations, it will be send it to those
locations.

Finally, the SchedulerBackend module, which resides also in the driver program, generates a
message containing the serialized task for each task and sends it to the scheduled executor.

2.3 Execution Engine
The executor once receives the task, deserializes it and runs it. Tasks are divided into ResultTasks
and ShuffleMapTasks. The final stage consists of various ResultTasks while the intermediate stages
consists of ShuffleMapTasks. The output of ResultTasks is sent back to the driver while the out-
put data of the ShuffleMapTasks are written to the local file system waiting for subsequent tasks
(reducers) to download them.

Whenever a task requires intermediate data from parent stages will make remote pull requests
to download them.

Finally, upon the end of the execution, the executor notifies the driver program about the task
execution result status.

2.4 Implementation Details
The Spark engine is implemented in Scala, a functional, object oriented language that is compiled
to JVM bytecode.

The Scala concurrency model relies on the Akka library, which implements the actor model.
Each Akka actor is a lightweight task that can send or receive messages.

The overview of the scheduling mechanism is depicted in Figure 2. Each bubble represents an
Akka actor. The main cluster messages for Spark scheduler-executor communication are:

1. RegisterExecutor : When an executor is initiated, it sends a message to master to register
itself

2. LaunchTask : Master sends a serialized task

3. StatusUpdate : The executor updates master with the task state(RUNNING,FAILED,FINISHED)

6



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Figure 2: Spark runtime design overview

4. KillTask : Master orders an executor to stop executing a task

However, Spark would fail to execute the nested calculation in Figure 1. The reason is that
some RDD metadata are known only by the driver program while such a calculation requires such
an information to be shared also with the executors.

An execution attempt would be the following: The outer collect method forces the computation
in the driver program to start. Since no shuffle operations are involved, the DAG graph will consist
of only one stage. This stage will contain one transformation of the RDD representing the file1 in
the Hadoop to an RDD derived by appliying the map function. The scheduler will try to submit this
stage and since there are not waiting parent stages it will proceed with creating and submitting the
missing tasks. Then the TaskScheduler will create tasks which literally will force the nested code
to be executed for each word of the file1. Each task will be serialized and sent to an idle executor.
As soon as the executor will receive the task, it will try to apply the computation on its partitions of
the RDD. At this point the computation in the spark engine would fail since the executor is missing
information in order to perform the computation.

Therefore, we introduce some extra control messages to the Scheduler-Executor protocol.
When the executor tries to invoke the nested map operation, it figures out that it is on executor
mode, thus cannot create RDDs, so it sends a CreateRDD message to SchedulerBackend with (rd-
did,”map”,function) as arguments. Then the scheduler, looks up the RDD with the specified id,
and using reflection, invokes the ”map” method, creating the desired RDD. Then the Scheduler
sends back to the executor the id of the created RDD (SendRDD msg). Now the worker creates
promise of the RDD based on the id received. When the nested collect is called the executor sends
the CollectRDD message, asking the Scheduler to collect the file2 RDD, and send back the result.

7



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Figure 3: Executor asks the master to perform an RDD operation

Figure 3 shows the sequence of messages that have to be sent.

2.5 Benchmarks
To test our early prototype of dependence analysis and scheduler extensions for recursively nested
queries, we have used the current implementation of the Peak Detection application, as presented
in the Telecommunication Analytics application deliverable D9.2. We have re-implemented the
application twice to run on Spark execution engine and also to use our extension of Spark using
nested queries. We have run both applications on data sets of various sizes using two clusters of
two and five nodes, respectively. Table 1 presents the results of running the original Peak Detection
on a single node using SQLite, the “flat” distributed implementation using Spark, and the “nested”
distributed implementation.

Note that the nested implementation is the slowest of the three; that is to be expected as it is
an early prototype execution engine running a benchmark not designed for it nor requiring nesting
to express. It is always the case that if a query can be expressed as a “flat” computation then that
is the best way to schedule it. However, the results satisfy project Milestone MS6, since this early
implementation of the nested scheduler satisfies dependencies and runs the application successfuly
on both clusters, without any bottlenecks of scalability.

8



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Data Size Original Spark Spark Nested Spark Spark Nested
SQLite 5 nodes 5 nodes 2 nodes 2 nodes

(bytes) (sec) (sec) (sec) (sec) (sec)
1.2k 0 16 16 11 11
12k 0 16 15 11 11
108k 0 16 16 11 12
1.1M 0 19 21 13 15
11M 1 22 80 15 144
107M 10 35 4120 23 9169

Table 1: Performance results

3 Queries with hierarchical data decomposition
This section describes an extension of the Spark analytics engine that facilitates the hierarchical
decomposition of data. A representative example of hierarchical decomposition computation is
clustering, particularly hierarchical classification. Clustering has become an essential application
for modern data analytics, with K-means being the algorithm most commonly used. Hierarchical
clustering offers a tree-structured representation of data, useful for building a hierarchy of clusters.
However implementing a scalable version of the hierarchical K-means can be very challenging.
Apache Spark is the most commonly used open source engine for big data processing originat-
ing from the Map-Reduce programming model, that provides a user friendly mechanism for data
transformations, called RDDs. We present an extension of the Spark RDD mechanism in order to
express hierarchical structures. We implemented and measured the bisecting KMeans algorithm
this way in a Spark cluster, and show preliminary results with up to 40% performance gain with
respect to the vanilla implementation.

3.1 Introduction
K-means [4] is the most common algorithm used in cluster analysis, which aims to partition the
elememts into k clusters, such that each elemenent belongs to the nearest cluster. K-means is an
approximation algorithm, that iterates through the data till the error is minimized. In each iteration,
first all elements are assinged to the closest centroid using Euclidean or some other distance metric,
and then for each cluster the new centroid is calculated.

Hierarchical K-means is an interesting variation of K-means clustering, that builds a dendro-
gram on the clustered data, often used in bioinformatics, document clustering and machine learn-
ing. The most common algorithms for hierarchical clustering are bisecting K-means, and agglom-
erative clustering [3]. We focus on the bisecting variation, that splits the elements in a top-down
way. The basic steps are:

9



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1. Select a cluster to split

2. Split the selected cluster into 2 sub-clusters using default K-means

3. Repeat step 2 for some iterations and select the best (minimizing error) clusters

4. Repeat the above steps until the requested number of clusters or granularity has been reached

In short, the algorithm uses the output of classification to split data and recursively classify and
split these sets, down to a threshold size.

Describing hierarchical clustering in massive datasets is challenging, as one necessarily de-
scribes the computation as iterative analytics queries. We propose a high level abstraction to ex-
press hierarchical structures. Specifically, we present a higher level way of expressing hierarchical
algorithms (while still using the MapReduce abstraction), that can assist the execution engine to
more efficiently schedule such computations.

MapReduce [1] is the most popular programming model for large scale cluster computing.
A MapReduce cluster is organized in a master-slave architecture. The master is responsible for
maintaining the task metadata and scheduling data parallel tasks, using the locality of the data to
help with scheduling and load balancing. The worker nodes simply execute the map reduce steps.
The MapReduce execution consists of two phases. At the map phase the workers process all the
elements of a dataset partition and emit tuples of (key,value). Then, they sort those tuples based on
the keys and distribute them over the network, as input to the reduce phase. At the reduce phase
the worker takes as input a key and a list of values and generates the final result.

Apache Spark [6] is an extension of the MapReduce programming model that provides the
programmer with a rich set of operations on immutable data, called RDDs [5]. Spark is much
faster than its predecessor Hadoop(cite) because it can pack multiple operations into a single task,
and uses the main memory more efficiently insead of reading and writting the intermediate data to
the disc.

Contributions

• We provide a new RDD extension, that helps the user express hierarchical structures.

• We evalutate that RDD extension using the cluster with 5 nodes provided by WIND.

We run experiments with synthetic datasets consisting of millions of points, and found that
using the hierarchical RDD with Scala parallel collections, total processing time can be reduced
by up to 40%.

10



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

3.2 Design
The main data abstraction in Spark is Resilient Distributed Datasets (RDDs). RDDs represent
an immutable collection of data, partitioned and distributed across the cluster. That data can be
processed in parallel according to the number of the dataset partitions. The RDD API gives a
collection of operators on the dataset (including map, filter, groupByKey, cache, persist), enough
to express a wide variety of applications. Note that the RDD operators are lazy, meaning that they
do not compute the results right away. Instead, Spark creates a pipeline of transformations and
evaluates it explicitly when the collect operator is invoked.

The existing RDD representation and operators work well with a wide set of problems and
algorithms, operating on “flat” data collections, such as map-reduce programs. There are, however,
algorithms and computations that require structuring the data set in different ways. For example,
the data decomposition in a divide-and-conquer algorithm or the hierarchical back-tracking of a
dynamic programming algorithm require the programmer to create complex structures of RDDs
that capture the “non-flat” structure of the data.

For example, consider the divide-and-conquer algorithm for computing hierarchical K-Means
clustering presented above. Note that the data is initially “flat”, but the algorithm discovers and
maintains structure during the computation.

Expressing such a hierarchical algorithm with the existing RDD operators can be quite chal-
lenging for the users. The splitting of the data in many levels results in a tree of RDDs, that are
quite difficult to handle and maintain. Also nodes in the same level of the tree represent disjoint
tasks, that can be issued in parallel.

3.3 Hierarchical RDDs
We present a new RDD abstraction that helps the programmer create a tree collection of RDDs
and issue independent jobs in parallel. To make the Spark RDDs more expressive for hierarchical
structures, we created an RDD extension, called hierRDD, and use hierRDD to encode bisecting
k-means in a much more forward and intuitive way, while also improving execution performance.

In order to create hierarchical RDDs the user should first provide an object that implements the
Splittable interface described in Figure 4. The Splittable object repserents a hierarchical structure
that can be splitted into smaller sub regions. Thus the user should implement the function contains
that specifies whether an element is contained into the Splittable object, and the Split function that
returns an array of the subregions the object is splitted. The SplitPar method is identical to the
Split method, except that it returns a Parrallel Array, so that the Spark driver can issue the jobs
concurrently.

An example of implementing the Splittable trait is the Cluster class shown in figure 5, that
is later used to code the bisecting K-means algorithm. The constructor takes as arguments the
identity of the cluster, and the number of iterations (k-means specific). To split the initial data
we use the KMeansModel from the Spark MLlib library. The m variable represents the clustering

11



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1 def hierarchical[A:ClassTag](s:Splittable[T]) = {
2 new HierRDD(this,s)
3 }
4 trait Splittable[A] {
5 def id : Int
6 def contains(a:A) : Boolean
7 def splitPar(level:Int) : ParArray[_ <: Splittable[A]]
8 def split(level:Int) : Array[_ <: Splittable[A]]
9 }

Figure 4: API for creating hierarchical RDDs

model, used to define to which subcluster each point belongs. The split method iterates through
the cluster center and for each one it creates a new Cluster instance with the id of the cluster.

Figure 6 describes the main loop in the bisecting K-means application. Line 1 creates the initial
cluster that contains all the data elements(that implements the Splittable interface), and then in line
2 we create a hierarchical RDD from the data. The while loop in lines 5–8 continiously splits the
cluster into smaller subclusters until we reach the desired number. The splitPar operator returns
a ParArray(scala.collection) so the splitting is issued in parallel, resulting in reduced total time
compared to the sequential one.

3.4 Evaluation
To evaluate the performance of hierRDD, we use the cluster with 5 machines provided for ASAP in
the WIND data center. Each machine has 4 i5-3470S cores, 16G RAM memory, and 2.4TB SSD,
running Debian linux. The Spark architecture includes one master and 4 slaves. Each slave creates
2 worker instances, and assigns 2 cores to each one. Totally the workers are 8. The dataset is some
randomly generated points of 20 dimensions, that are stored in a HDFS file system. After we call
the textFile method, we cache the points RDD in order to achieve better locality. We evaluated our
design comparing the hierRDD, hierRDD with parallel splitting, and the default implementation
using simple RDDs and MLlib. We run the experiments with 2, 4, 6, and 8 slaves to measure
scalability.

The fitst data-set contains 1 million points, of 20 dimensions each. Table 3 shows the time in
seconds for each K-means variation, for different number of slaves. The last column measures the
speed up gained from hierRDDpar compared to hierRDD. For the maximum number of workers
the speedup is 40%. The second data-set has 2 million data points. Table 2 shows the time scale
and the speed up. For 2 workers hierRDDpar gains speedup 10% compared to hierRDD and 37%
for 8 workers.

Parallel hierRDD gains speedup over sequential hierRDD because the cluster utilization is
higher and the load imblance between different tasks is mitigated.

12



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1 class Cluster(id: Int, iter:Int)
2 extends Splittable[Vector] with Serializable{
3
4 def id() = id
5 var data:RDD[Vector]
6
7 var m : KMeansModel = KMeans.train(data, k=2, iter)
8
9 def contains(point: Vector) = (m.predict(point) == id)

10
11 def split(level:Int) : Array[Cluster] = {
12 m.clusterCenters.zipWithIndex.map{ case (c, idx) =>
13 new Cluster(idx, iter)
14 }.toArray
15 }
16
17 def splitPar(level:Int) : ParArray[Cluster] = {
18 split(level).par
19 }
20 }

Figure 5: Splittable subclass implemented for the Bisecting K-means benchmark

1 val initcluster = new Cluster(id=0, data, subIterations=3)
2 val hierrdd = data.hierarchical(initcluster)
3
4 var split = hierrdd
5 for(i <- 1 until maxdepth){
6 split = split.flatMap( subrdd => subrdd.splitPar())
7 }

Figure 6: Bisecting K-means implementation with hierarchical RDDs

workers hierRDD hierRDDpar mllib speedup
2 2475 2248 2542 1.10
4 1418 1156 1394 1.22
6 1124 877 1101 1.28
8 872 636 858 1.37

Table 2: Time table(seconds) for 2 million data points

13



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

workers

2 4 6 8

0

500

1000

1500

2000

se
co
n
d
s

Figure 7: Strong scaling graph for 1 million data points

workers

2 4 6 8

hierRDD
hierRDDpar
mllib

Application

0

500

1000

1500

2000

2500

se
co
n
d
s

Figure 8: Strong scaling graph for 2 million data points

14



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

workers

3000 6000 12000 24000 48000 96000

hierRDD
hierRDDpar
mllib

Application

0

100

200

300

400

500

se
co
n
d
s

Figure 9: Weak scaling graph

data points

750 1500 3000 6000

HierarchicalKMeans
bisecting

Application

0

500

1000

1500

2000

se
co

n
d

s

Figure 10: Naı̈ve version versus hierarchical RDDs

15



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

workers hierRDD hierRDDpar mllib speedup
2 1406 1153 1354 1.21
4 846 618 835 1.36
6 829 602 788 1.37
8 558 379 542 1.42

Table 3: Time table(seconds) for 2 million data points

npoints hierrdd bisecting speedup
750 106 256 2.42

1500 114 306 2.68
3000 121 384 3.17
6000 138 519 3.76

Table 4: Time table(seconds) comparing hierRDD with naive solution

To expose the expressiveness of our hierRDD implementation we compared our hierarchical
K-means variation with one using the default RDDs found in https://gist.github.com/
freeman-lab/5947e7c53b368fe90371. Figure 10 shows the time elapsed for both appli-
cations for various data points. The figure shows that for 750 points our implementation is 2.4×
faster, and that increases to 3.7× for 6000 points.

Figure 9 is a time plot for various data points, from 3000 to 96000, which means the lower
value the better, for depth 8 (the leaves have 256 nodes), utilizing 5 slaves (10 executors). Three
versions of the bisecting k-means are compared, the default algorithm without the hierarchical
RDDs, while the other two use the hierarchical RDD abstraction, one with sequential job issue and
one with parallel job issue. The results show that the hierarchical RDDs implementation incurs
zero overhead when done sequentially.

4 Scalable distributed scheduling
In cluster mode, Apache Spark is deployed as a master-slave architecture. The main software
components of the Spark scheduler are SparkContext, DAGScheduler, TaskSchedulerImpl, and
CoarseGrainedSchedulerBackend. SparkContext is created by the user application, and is respon-
sible for creating RDDs from files or local structures, and submitting the jobs to master. Figure 12
shows a general map of the scheduling path.

16

https://gist.github.com/freeman-lab/5947e7c53b368fe90371
https://gist.github.com/freeman-lab/5947e7c53b368fe90371


ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

 

 

Figure 11: Spark Cluster Mode Architecture

 

Figure 12: Parallel Scheduling Architecture

17



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

1 val array = Array.tabulate(100000)(i=>i)
2 val rdd = sc.parallelize(array).repartition(10000)
3 val sum = rdd.map(rdd => rdd.reduce(_+_))

Figure 13: Many tiny tasks micro benchmark

4.1 DAGScheduler
Jobs are submitted to the DAGScheduler actor. Those jobs are broken into stages, organized as a
graph, that are submitted as TaskSets for execution. Each job creates as many tasks as the number
of partitions of the dataset it operates on. DAGScheduler serializes and broadcasts the job to
every worker. Additionaly, it holds the task metadata, regarding the number of attempts, preferred
locations, and stage dependencies.

4.2 TaskSchedulerImpl
TaskSchedulerImpl is responsible for monitoring the workers. It receives the heartbeats from each
worker, and handles the StatusUpdates messages, that refer to either the success or the failure of
a task. During the submission of a TaskSet, TaskSchedulerImpl maps the tasks into the resources,
according to the task localith preferences.

4.3 SchedulerBackend
SchedulerBackend maintains the necessary information for the workers in a data structure, that
contains the address, the number of cpus, and the current load of the worker. The main job of the
SchedulerBackend is the launchTasks function, that sends the task to the locacion specified.

4.4 Motivation example
Figure 13 shows a case where spark’s default scheduling mechanism lacks effiency, because

1. The scheduling path is sequential, which means that if the job consists of many tiny tasks
the scheduling process will take a lot of time while the processing time will be negligible.

2. After the worker has finished a task, it has to send a StatusUpdate message to the scheduler,
so that the worker invokes again a makeOffers call to send a new task to the worker. That
increases the total time by at least one RTT.

To solve such cases, as well as cases where a large number of executors cannot be properly
managed by a single scheduler, we design and implement a distributed version of the Spark sched-
uler.

18



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

Figure 14: Preliminary results of the distributed scheduler performance

4.5 Distributed Scheduling
Our first goal is to lower the gap that is created by the time the worker finishes the task the the
time he receives the next one to run. To accomplish this, we inserted a local task queue per worker.
Every time a worker finishes a task, he looks up the task queue if there are more tasks. This look
up is much cheaper than getting a task from the driver, because no network traffic is generated.

Second, we parallelized the sending of the tasks to the workers within a single TaskSet. A
TaskSet contains a sequence of tasks, all referring to the same job. Instead of using a single
SchedulerBackend, we have a set of schedulers, namely SecondLevelSceduler actors. The TaskSet
is partitioned into smaller sets, each one sent to a scheduler that is then responsible for sending the
individual tasks to the workers. The scheduling of a single task by each scheduler is simple; the
scheduler picks a random worker and sends the task, no locality considered. Also, multiple tasks
can be sent at once under load, so that the worker queues are full.

4.6 Benchmarks
We are currently implementing the above design for distributed scalable scheduling in Spark. We
have evaluated the current early implementation using a set of microbenchmarks with very small
tasks designed to stress the Spark scheduler. Figure 14 presents a comparison on microbenchmarks

19



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

between the existing Spark scheduler and the distributed scheduler described above. Although
preliminary results do not show a measurable difference, note that this experiment was run on a
5-node cluster on which one scheduler node suffices almost always to keep the remaining 4 worker
nodes busy. We present the preliminary results for completeness here and expect more meaningful
results on larger clusters in the future.

20



ASAP FP7 Project
ASAP D4.2

Execution Engine v.1

References
[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, January 2008.

[2] Apache Incubator. Spark: Lightning-fast cluster computing, 2013.

[3] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering
techniques. In In KDD Workshop on Text Mining, 2000.

[4] Wikipedia. Latex — wikipedia, the free encyclopedia, 2015. [Online; accessed 23-October-
2015].

[5] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15–
28, San Jose, CA, 2012. USENIX.

[6] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

21



FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D4.2
Execution Engine v.1

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public


	Introduction
	Task Description

	Dependency-aware query execution engine
	Dependence analysis
	Scheduler
	Execution Engine
	Implementation Details
	Benchmarks

	Queries with hierarchical data decomposition
	Introduction
	Design
	Hierarchical RDDs
	Evaluation

	Scalable distributed scheduling
	DAGScheduler
	TaskSchedulerImpl
	SchedulerBackend
	Motivation example
	Distributed Scheduling
	Benchmarks


