
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D4.3

Execution Engine v.2

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 05 Feb 2017 P. Pratikakis,

P. Katsogridakis
Initial Version

0.2 09 Feb 2017 P. Pratikakis First Revision
0.3 15 Feb 2017 P. Pratikakis Second Revision
1.0 28 Feb 2017 P. Pratikakis Final Version, review by

H. Vandierendonck

Acknowledgement This project has received funding from the European Union’s 7th Frame-
work Programme for research, technological development and demonstration under grant
agreement number 619706.

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Executive Summary

This deliverable describes work done in WP4 during the third year of the ASAP project and
presents evaluation results. WP4 has successfully produced an adaptation of the Spark an-
alytics execution engine that allows programmers to express previously impossible queries,
by allowing full recursion in the User Defined Functions. Moreover, we have produced an
alternative scheduler for Spark that outperforms the standard scheduler by up to a factor of
2.5×. The deliverable describes the overall design and implementation of the Spark exten-
sions, the evaluation methodology, and evaluation results for a wide set of benchmarks that
include generic representative benchmarks, microbenchmarks designed to stress certain
aspects of the system, as well as benchmarks taken from the ASAP industrial applications.

2

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Contents

1 Introduction 4
1.1 Task Description . 4
1.2 Execution Engines Limitations . 4
1.3 Spark programming model . 5
1.4 Third year of the ASAP Project . 6

2 Extending the Spark engine to support nested operations 8
2.1 Use case . 8
2.2 RDD internals . 8
2.3 Design to support nested RDD operations . 8
2.4 Nested Task Result forwarding . 9
2.5 Nested operators packaging . 10

3 Queries with hierarchical data decomposition 11
3.1 Introduction . 11
3.2 Hierarchical RDDs . 11

4 Scheduling 14
4.1 Motivating example . 14

4.1.1 Scheduling Policy . 15
4.1.2 Distributed Scheduling Algorithm . 15
4.1.3 Scheduler state . 16
4.1.4 StatusUpdates . 16
4.1.5 Load Balancing . 17

5 Evaluation 19
5.1 Scheduler Evaluation . 19
5.2 Nesting Evaluation . 24

6 Hierarchical RDD Evaluation 26
6.1 Evaluation on ASAP applications . 30

7 Related Work 31
7.1 Recursive Parallelism . 31
7.2 Distributed Parallelism . 31
7.3 Nested Queries . 31
7.4 Scheduling . 31
7.5 Straggler Mitigation . 32
7.6 Scheduling Under Constraints . 32

3

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 Introduction

1.1 Task Description

This deliverable describes work performed in tasks T4.2 Engine dependence analysis, and
T4.3 Engine scheduler, by FORTH and QUB. The tasks aim to produce a parallel and
scalable scheduler for analytics computations, that allows “worker” nodes to also perform
scheduling and reduce scheduling overheads. The scheduler developed maintains all task
dependencies and does not relax fault-tolerance and elasticity of the previous Spark sched-
uler. During Y3 of the ASAP project, the scheduler produced during the second year was
optimized and performance was improved from being several times slower than the default
scheduler (cost caused by supporting recusive computations) to a speedup of 7x in some
cases (corner cases of jobs with many small tasks where the scheduler becomes a bottle-
neck).

1.2 Execution Engines Limitations

Modern analytics queries consist of complex computations operated on massive amounts
of data. Those queries are impossible to execute on a single node, due to limitations in the
cpu frequency and the memory capacity. Thus, the data have to be distributed across a
cluster of nodes and processed in parallel. Conventional execution engines are not aware of
cluster parallelism, and message passing runtimes like MPI offer precise control and great
performance benefits, but the API they provide is very primitive to express complex applica-
tions. By restricting the programming model to only map and reduce, or equivalent operators,
MapReduce [13] clusters scale out because they do not need to track task dependencies,
have simpler communication patterns, and are tolerant to executor and even master node
failures. However, this simplified programming model cannot easily express some appli-
cations, including applications with nested parallelism or hierarchical decomposition of the
data. When faced with such algorithms, programmers often develop iterative versions that
translate recursion into worklist algorithms. This may be inefficient as it introduces unnec-
essary barriers from one iteration to the next, and can be unintuitive and complicated to
code.

An example of such an application with nested parallelism that cannot be easily ex-
pressed using flat map-reduce operators is the Barnes-Hut algorithm. The Barnes-Hut simu-
lation [7] is an approximation algorithm for particle simulation. In its simple two-dimensional
version, the simulation first recursively splits the space into four quads and computes the
center of mass for each, resulting in a tree structure that represents the whole space. In
its second phase, it uses the tree of all the centers of mass to compute the forces applied
to each body in the space. That reduces the N-Body problem complexity from O(n2) to
O(nlogn), by grouping all objects in distant quads into one force.

1 def calcForces(particle, tree) = {

2 if(isFar(particle, tree, THETA))

3 Array(force(particle, tree))

4 else

5 tree.map(child => {

6 calcForces(particle, child)

7 }).flatten

8 }

Figure 1: N-Body recursive query

Figure 1 shows a simplified ver-
sion of the recurvise query that im-
plements the second phase of the
algorithm. Function calcForces

traverses the tree computed dur-
ing the first phase, to calculate
all the forces applied to a single
particle. If the particle is far
enough from all particles in the

4

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 val f = spark.textFile("hdfs://file")

2 val wc = f.flatMap(line=> line.split(" "))

3 .map(word => (word, 1))

4 .reduceByKey(_ + _).collect()

Figure 2: Word count in Spark

tree, then the total force can be
computed using the center of mass
of the whole space represented by
the tree (lines 2–3). If the particle is near the space represented by the tree, then the func-
tion recurses to compute all forces applied to the input particle by each sub-tree (lines 5–7).
The above computation cannot be executed using the classic MapReduce abstraction, be-
cause MapReduce allows only flat map-reduce operations on the dataset. Assuming the
tree argument is a distributed dataset, the map function would need to recursively apply a
map-reduction to directly code the above algorithm.

In WP4 we extended the Apache Spark MapReduce engine [35] to directly support such
nested and recursive computations. Spark is an implementation of the MapReduce model
that outperforms Hadoop [6] by packing multiple operations into single tasks, and by utilizing
the RAM memory for caching intermediate data. We target Apache Spark because it is a
widely used, efficient, state-of-the-art platform for data analytics, and currently the fastest-
growing such open-source platform [12, 28].

1.3 Spark programming model

Spark expresses and executes in-memory fault-tolerant computations on large clusters using
the RDD abstraction. RDD stands for Resilient Distributed Dataset and RDD instances are
immutable partitioned collections that can be either stored in an external storage system,
such as a file in HDFS, or derived by applying operators to other RDDs. RDDs support
two types of operations: (i) transformations, which create a new dataset from an existing
one, and (ii) actions which return a value to the driver program after running a computation
on the dataset. Examples of RDD transformations are map and filter operations, whereas
reduce and count operations are typical actions. All transformations in Spark are lazy, which
means that the result is not computed right away. Instead, Spark keeps track of all the
transformations applied to the base dataset and they are only materialized when an action
requires a result to be returned to the driver program.

Figure 2 shows how one can express the word count algorithm in Spark using the RDD
abstraction. Variable f is the initial RDD representing data to-be-read from a file (line 1).
Three consecutive operations are applied to f, namely (i) flatMap splits all lines into words,
producing an intermediate RDD, on which map initializes each word to a count of 1, produc-
ing a second intermediate RDD, on which reduceByKey sums all ones for the same word to
count how many times that word was found. These computations are coalesced by Spark
and occur lazily when collect is finally called to read the end result. The flatMap, map and
reduceByKey operations are transformations whereas collect is an action. Spark sched-
ules all these computations on-demand, using the graph of RDDs created by the program.
Figure 3 shows the graph of RDDs created by the program in Figure 2.

Every RDD operator uses a User Defined Function (UDF) that manipulates the data. By
default, this UDF is not itself allowed to operate on RDDs in Spark, as RDD objects and
their dependency graph are allocated in the master node containing the Spark scheduler

5

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

and driver, where the main program is executed, whereas UDFs are executed by the worker
nodes containing the Spark executors. This restriction does not affect a large set of programs
that do not use recursive computations. Moreover, even recursive computations can almost
always be transformed to use a worklist and iteratively fixpoint, to bypass this restriction.
That is, however, often ineffective in time and space, for example when not all recursive
computations need to go to the same recursive depth, or when the created tasks are few
and not load-balanced. Finally, refactoring a simple recursive computation into a worklist
algorithm often introduces complexity and, with it, the possibility of errors. The Barnes-Hut
algorithm is an example of such a recursive application that cannot directly be expressed
using the “vanilla” RDD abstraction, because it needs nested RDD operators to express the
recursive function shown in Figure 1.

HadoopRDD

 MapRDD

 MapRDD

 ShuffleRDD

 result

textFile(“hdfs://somefile”)

flatMap(line => line.split(“ ”))

map(word => (word,1))

reduceByKey(_+_)

collect

Figure 3: The dependency graph for the word
count example

This deliverable presents work per-
formed in WP4 that extends the Spark pro-
gramming model and scheduler to support
nested RDD operations, to facilitate ex-
pressing recursive and hierarchical compu-
tations. We implemented this extension by
modifying the RDD scheduling mechanism
in Spark and measured its performance. We
found that recursive RDD operations can
greatly simplify the code for algorithms of a
recursive nature, although careless use of
job nesting can result in many very small
jobs that can greatly increase the overhead
cost of scheduling.

The default Spark scheduling mecha-
nism is quite efficient at scheduling coarse-
medium grained tasks that may be heavy-
tailed, or executed at heterogenous archi-
tectures. However, a non-negligible propor-
tion of jobs in almost every analytics appli-
cation consist of tiny tasks that need to be
scheduled as soon as possible. The cur-
rent Spark driver does not optimally sched-
ule such fine-grain tasks as it introduces
comparatively large latency from the time
one task finishes to the time another task is
scheduled to execute on that executor node.
To address this issue, we designed and im-
plemented an extension to the Spark sched-

uler that supports parallel, lightweight scheduling better suited for jobs with fine-grain tasks.

1.4 Third year of the ASAP Project

In short, the main achievements of the work done during the third year of project ASAP are:

• We continued and finished work that adds support for nested RDD queries in the Spark
scheduler. We performed an extensive evaluation of the resulting Spark engine on 3
different cluster environments and compare our extensions against built-in operators
implemented without nesting. We adapt operators from the WIND application to use

6

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

our Spark and show measurable benefits to performance and scalability. To demon-
strate the generic usability of the programming model extension beyond ASAP applica-
tions, we implement an N-Body particle simulation using the nested RDD mechanism.

• We optimized the RDD module —developed during Y2— that enhances the expression
of applications with hierarhical parallelism. We use a hierarhical K-means operator we
implemented to measured its performance in a Spark cluster and find considerable
performance improvement compared to existing open-source hierarchical k-means im-
plementations.

• We modified the default Spark task-scheduling mechanism so that it can support many
parallel light schedulers. We measured its performance against the default Spark
scheduler, and found a speedup of up to 2.1× for computations using fine-grain tasks.

Overall, during the third year of the project we were able to overcome the limitations in
performance reported in deliverable D4.2 and achieve better or equivalent performance to
the existing Spark engine, while offering superior expressibility to its query language.

7

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

2 Extending the Spark engine to support nested opera-
tions

2.1 Use case

1 val file1 = sc.textFile("hdfs://file1")

2 val file2 = sc.textFile("hdfs://file2")

3 file1.map(word1 =>

4 file2.filter(word2 =>

5 (word1.startsWith(word2))

6 .collect())

7 .collect()

Figure 4: example of nested RDD operations

By default, Spark does not sup-
port nested RDD operations, be-
cause some of the RDD metadata
are known only by the master. As-
sume that we want to execute the
code in Figure 4, that for each word
word1 in file1, computes the set
of words in file2 that have word1

as prefix. In this computation, the
outer map function called by the
file1 RDD, contains a filter opera-
tion on the file2 RDD. This is an example of one level nesting operator. This section dis-
cusses the modifications in the Spark runtime to enable nested RDD operations.

2.2 RDD internals

Internally, each RDD is characterized by five main properties:

• a set of partitions (e.g HDFS blocks)

• a dependency list on parent RDDs (the RDDs lineage graph)

• a user defined function that computes each partition in the dataset from its parents

• (optionally) a Partitioner that defines how the elements in a key-value pair RDD are
partitioned by key

• (optionally) a list of preferred locations to compute each partition on (e.g. block loca-
tions for an HDFS file)

All of the scheduling and execution in Spark is done based on these methods, allowing
each RDD to implement its own way of computing itself.

Additionally, each RDD is accompanied with:

• a unique ID

• a reference to the spark context that instruments the execution of the calculation on
the cluster

2.3 Design to support nested RDD operations

Handling nested RDD operators inside the executors means that the executor will also have
to schedule the job created by that RDD. This wound be harsh to design and implement(but
not impossible), and would result in very complex architectures and network communication,
contradicting the simplicity of the MapReduce model. Thus we chose to forward the nested

8

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

SchedulerBackend ExecutorBackend

CollectResult

CollectRDD

SendRDD

CreateRDD

LaunchTask
Nested map
 execution

Scheduler creates
new RDD

Ask scheduler to
collect the RDD

Collect the RDD
and send back the

results

Figure 5: Executor asks the master to perform an RDD operation

operators back to the master, in order to avoid a distributed scheduler setup. To accomplish
the forwarding of nested tasks, we added a few extra Driver-Executor messages, that allow
the executor to ask the driver to create new RDDs and run nested jobs. For example, Fig-
ure 4 shows code that contains a nested RDD operation. The outer collect method forces the
runtime to schedule the outer RDD computation. Since no shuffle operations are involved,
the DAG graph will consist of only one stage. This stage will contain one transformation of
the HadoopRDD (corresponding to the file1) to a MappedRDD as defined in the map. The
scheduler will try to submit this stage and since there are not waiting parent stages it will
proceed with creating and submitting the missing tasks. Then the driver will create tasks
which literally will force the nested code to be executed for each word of the file1. Each
task will be serialized and sent to an idle executor. As soon as the executor will receive the
task, it will try to apply the computation on its partitions of the RDD. When the executor tries
to invoke the nested map operation, it figures out that it is on executor mode, thus cannot
create RDDs, so it sends a CreateRDD message to scheduler with (rddid,”map”,function) as
arguments. Spark is implemented in Scala, a functional language that supports anonymous
functions, thus it is straightforward to send functions as arguments from the executor to the
driver. Then the scheduler, looks up the RDD with the specified id, and using JVM reflection,
invokes the “map” method, creating the desired RDD. Then the scheduler sends back to the
executor the id of the created RDD (SendRDD msg). Now the worker creates promise of
the RDD based on the id received. When the nested collect is called the executor sends
the CollectRDD message, asking the scheduler to collect the file2 RDD, and send back the
result. Figure 5 shows the sequence of messages that have to be sent.

2.4 Nested Task Result forwarding

In the naı̈ve driver-executor protocol described above the master after receiving the Collec-
tRDD message, schedules the nested job. After the nested job is done it receives the result
from the executors the job was scheduled and sends the result to the executor that issued
the nested operation. This implies an unnecessary transfer of data to the driver, because
the data are needed by the executor that issued the nested job. Thus we modified the ex-
ecutor code to send the task result directly to the executor that issued the nested job, and

9

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Executor 1 Executor 2 Scheduler

nested
operator

Schedule
nested task

execute
task

TaskResult

LaunchTask

NestedJob

LaunchNestedTask

Figure 6: Forwarding the nested task result to the executor that issued the query

also send an ack to the driver that the nested task finished, in order to free the executor re-
sources. Figure 6 shows the message flow between the driver and two executors executing
a nested query.

2.5 Nested operators packaging

The RDD mechanism is lazy, which means that the transformations are not computed di-
rectly. Instead they form a computational graph. Every operator applied to an RDD triggers
an addition of an edge to the corresponding graph. The graph nodes(operators) are grouped
into stages, that are later packed into tasks sent to the workers. Following the protocol de-
scribed in Section 2.3 the executor sends a CreateRDD message to the driver. The driver
applies the message, adds a new node to the RDD graph, and sends back the new RDD.
This means that if a nested RDD query contains lots of operators, then many CreateRDD-
SendRDD messages will be exchanged to the driver from each executor. Those messages
increase the latency and network communication. This extra communication is unnecessary,
since those messages do not prompt any job creation. We solved this problem by grouping
all the nested operators into a single message. The RDD laziness permits us to pack the
rdd operator arguments in a per executor global data structure. When the nested collect is
triggered, the executor sends all the RDD transformation list to the driver; then the driver,
using JVM reflection, reconstructs the RDD transformations and schedules the nested RDD.

10

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

3 Queries with hierarchical data decomposition

The existing RDD representation and operators work well with a wide set of problems and
algorithms, operating on “flat” data collections, such as map-reduce programs. There are,
however, algorithms and computations that require structuring the data set in different ways.
For example, the data decomposition in a divide-and-conquer algorithm or the hierarchical
back-tracking of a dynamic programming algorithm require the programmer to create com-
plex structures of RDDs that capture the “non-flat” structure of the data.

3.1 Introduction

K-means [18] is the most common algorithm used in cluster analysis, which aims to partition
the elememts into k clusters, such that each element belongs to the nearest cluster. K-
means is an approximation algorithm, that iterates through the data till the error is minimized.
In each iteration, first all elements are assigned to the closest centroid using Euclidean or
some other distance metric, and then for each cluster the new centroid is calculated.

Hierarchical K-means is an interesting variation of K-means clustering, that builds a den-
drogram on the clustered data, often used in bioinformatics, document clustering and ma-
chine learning. The most common algorithms for hierarchical clustering are bisecting K-
means, and agglomerative clustering [30]. We focus on the bisecting variation, that splits
the elements in a top-down way. The basic steps are:

1. Select a cluster to split

2. Split the selected cluster into 2 sub-clusters using default K-means

3. Repeat step 2 for some iterations and select the best (minimizing error) clusters

4. Repeat the above steps until the requested number of clusters or granularity has been
reached

In short, the algorithm uses the output of classification to split data and recursively classify
and split these sets, down to a threshold size.

Describing hierarchical clustering in massive datasets is challenging, as one necessarily
describes the computation as iterative analytics queries. We propose a high level abstraction
to express hierarchical structures. Specifically, we present a higher level way of expressing
hierarchical algorithms (while still using the MapReduce abstraction), that can assist the
execution engine to more efficiently schedule such computations.

For example, consider the divide-and-conquer algorithm for computing hierarchical K-
Means clustering presented above. Note that the data is initially “flat”, but the algorithm
discovers and maintains structure during the computation.

Expressing such a hierarchical algorithm with the existing RDD operators can be quite
challenging for the users. The splitting of the data in many levels results in a tree of RDDs,
that are quite difficult to handle and maintain. Also nodes in the same level of the tree
represent disjoint tasks, that can be issued in parallel.

3.2 Hierarchical RDDs

We present a new RDD abstraction that helps the programmer create a tree collection of
RDDs and issue independent jobs in parallel. To make the Spark RDDs more expressive for

11

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 trait Splittable[A] {

2 def id: Int

3 def contains(a:A): Boolean

4 def splitPar(l:Int): ParArray[_<:Splittable[A]]

5 def split(l:Int): Array[_<:Splittable[A]]

6 }

Figure 7: API for creating hierarchical RDDs

1 class Cluster(id: Int, iter:Int)

2 extends Splittable[Vector]{

3

4 def id() = id

5 var data:RDD[Vector]

6

7 var m = KMeans.train(data, k=2)

8

9 def contains(point: Vector) = {

10 m.predict(point)==id

11 }

12

13 def split(level:Int) = {

14 m.clusterCenters.map{

15 case(c,idx) =>

16 new Cluster(idx, iter)

17 }.toArray

18 }

19

20 def splitPar(level:Int) = {

21 split(level).par

22 }

23 }

Figure 8: Splittable subclass for the Bisecting K-means benchmark

hierarchical structures, we created an RDD extension, called hierRDD, and use hierRDD to
encode bisecting k-means in a much more forward and intuitive way, while also improving
execution performance.

In order to create hierarchical RDDs the user should first provide an object that imple-
ments the Splittable interface described in Figure 7. The Splittable object represents a hier-
archical structure that can be splitted into smaller sub regions. Thus the user should imple-
ment the function contains that specifies whether an element is contained into the Splittable
object, and the Split function that returns an array of the subregions the object is splitted.
The SplitPar method is identical to the Split method, except that it returns a Parrallel Array,
so that the Spark scheduler can issue the jobs concurrently.

An example of implementing the Splittable trait is the Cluster class shown in Figure 8.
We use this trait to code the bisecting K-means algorithm, discussed below. The constructor
takes as arguments the identity of the cluster, and the number of iterations (k-means spe-
cific). To split the initial data we use the KMeansModel from the Spark MLlib library. The
m variable represents the clustering model, used to define to which subcluster each point
belongs. The split method iterates through the cluster center and for each one it creates a

12

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 val initcluster = Cluster(id=0, data)

2 val hierrdd = data.hier(initcluster)

3

4 var split = hierrdd

5 for(i <- 1 until maxdepth){

6 split = split.flatMap(

7 subrdd => subrdd.splitPar()

8)

9 }

Figure 9: Bisecting K-means implementation with hierarchical RDDs

new Cluster instance with the id of the cluster.
Figure 9 describes the main loop in the bisecting K-means application. Line 1 creates

the initial cluster that contains all the data elements(that implements the Splittable interface),
and then in line 2 we create a hierarchical RDD from the data. The while loop in lines 5–
8 continiously splits the cluster into smaller subclusters until we reach the desired number.
The splitPar operator returns a ParArray(scala.collection) so the splitting is issued in parallel,
resulting in reduced total time compared to the sequential one.

13

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

4 Scheduling

4.1 Motivating example

1 val array = (0 until N)

2 //make an rdd with P partitions

3 val rdd = sc.parallelize(array,P)

4 val sum = rdd.reduce(_+_)

Figure 10: Many tiny tasks micro benchmark

Consider the code shown in Fig-
ure 10, a Spark application that
creates an RDD of N integers and
P partitions and computes the sum
of the RDD elements. When P
is large enough, the job will com-
prise a huge set on tiny tasks. Al-
though computations like this ex-
ample rarely constitute the whole of a Spark program, they are often found within larger
computations as, for instance, a stage in an analytics pipeline, or “inner” jobs in a Spark-
nested program as described in the previous section. The default Spark scheduling algo-
rithm underperforms for jobs like that, because:

1. The scheduling path is sequential, which means that if a job consists of many tiny
tasks, scheduling itself will take a lot of time in the critical path of the computation,
while the processing time will be negligible.

2. After a worker has finished a task, it has to send a request message to the scheduler,
so that the driver sends a new task to the worker. That increases the total time by
at least one RTT for every task and every worker, since the scheduler receives and
handles these messages sequentially.

To solve these issues, which may be further exacerbated in cases where a large number
of executors cannot be properly managed by a single, centralized Spark scheduler, we de-
signed and implemented a parallel and distributed version of the Spark scheduler.

We aim to decrease the time between when a worker finishes a task and sends a mes-
sage to the scheduler and when the scheduler answers with the next task to run. To ac-
complish this, we modified the Spark scheduler to send multiple tasks to each executor and
amortize the idle time between tasks over many requests. Specifically, we inserted a local
task queue per executor, and modified the centralized scheduler to keep track of these co-
alesced task sets. Every time a worker core finishes a task, it first tries scheduling one of
the tasks in the local task queue, and only generates network traffic and a request to the
centralized scheduler if the local queue is empty.

In addition to task-set coalescing, we parallelized the central Spark scheduler to schedule
task-sets in parallel. Specifically, instead of using a single scheduler-master, we deploy a set
of schedulers organized hierarchically as a set of ProxySceduler actors under the standard
Spark master node. The standard Spark scheduler then creates a few large task-sets per
job and sends them to the proxy schedulers; each proxy scheduler is then responsible for
sending smaller task-sets or individual tasks to the executors. This reduces the congestion
at the Spark scheduler occuring either because tasks are too small or because there is a
large number of pending executor messages. We do not assign specific executor groups to
the proxy schedulers, and instead allow all proxy schedulers to send work to all available
executors. This works well in practice when the available work is much more than the ex-
ecutors, which is almost always the case in Spark analytics applications. Figure 11 shows
the new parallel scheduler architecture.

14

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Master

Task Creation

 Worker

 Threads

 Worker

 Threads

 Worker

 Threads

 Proxy
Scheduler

 Proxy
Scheduler

Task Assign Task Assign

Send Task
Send Task

Task Queue Task Queue Task Queue

Figure 11: Scheduling Architecture

4.1.1 Scheduling Policy

The scheduling of a single task by each scheduler is simple; if the task has no locality
preferences the scheduler picks a random worker and sends the task, alternatively the task
is sent to one of the prefered locations. Also, multiple tasks can be sent at once under load,
so that the worker queues are full.

4.1.2 Distributed Scheduling Algorithm

The main function of submitting a stage is done by the master. The stage is a part of the
DAG that is ready to execute, and contains a list of RDD functions that are executed for
each partition, and some metadata. First the task is serialized so that it can be transfered
trough the network to the executors. Then the task binary is broadcasted to all workers. The
stage is split into individual tasks that, that share the same binary code, each one referring
to a different partition, indluded in the TaskSet class. The above scheduling process is
necessarily done sequentially. Then in the default Spark scheduling mechanism, the taskset
is added to the queue of active tasks, and the scheduler decides which task to schedule
next based on fairness and locality factors. Our approach was to make this procedure more
parallel and lightweight. First we split the tasksset into chunks of tasks, each one sent to
a random proxy scheduler. Each scheduler that receives a tasks chunk, picks an executor
following a scheduling policy, and sends the task. As a scheduling policy, currently we check
if the task has any preferred workers (if it is cached). If it has, we send the task to that
specific worker. Else we select an executor at random.

Each worker maintains a global variable that denotes how many cores are available,
hence how many tasks are executed at that moment. When the executor receives the task,
it checks the number of free cores. If the available cores is positive, then the task is executed
immediately. Else, it is pushed to the task queue for later. Similarly, when the worker finishes

15

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 def Executor:executeTask(task){

2 if(availableCores>0){

3 --availableCores

4 threadPool.execute(task)

5 } else {

6 taskQueue.enqueue(task)

7 }

8 }

9

10 def Scheduler:ProxyLaunchTasks(taskset){

11 taskset.foreach(task =>

12 rid = selectExecutor(task)

13 executors(rid).send(LaunchTask(task))

14)

15 }

16

17 def Scheduler:LaunchTasks(taskset){

18 val splits = taskSet.split(nschedulers)

19 par foreach (proxy,subtasks) in splits =>

20 proxy.send(ProxyLaunchTasks(subtasks))

21)

22 }

the execution of a task, if the available cores is positive, he tries to execute another task from
the queue. We chose the above algorithm for scheduling because it is the most lightweight,
and won’t add much overhead to the scheduling path.

4.1.3 Scheduler state

To schedule and track tasks to executors, each proxy scheduler keeps a copy of all the
executor metadata that the default Spark master normally maintains. This creates a con-
sistency issue, as not all of these copies may be updated at the same time. We solve this
by maintaining all the “heartbeat” messages Spark uses for tracking executor availability at
the Spark master, and we only forward information about executors from the master to the
proxy schedulers. This means that at any given time the latest metadata about the state of
one given executor’s availability are at the master, and the metadata about all tasks in that
executor’s queue are distributed among all proxy schedulers that may have sent tasks to that
executor. To handle the case of executor state changes, the Spark master sends a message
to all proxy schedulers when the heartbeat process discovers that an executor has changed
state. For example, when an executor is started, it sends a message to the master to in-
form that the executor is registered, as in the standard Spark scheduler. Then, the master
broadcasts to all proxy schedulers the state of the newly registered worker. Eventually, all
the schedulers will have the same view of the cluster state.

4.1.4 StatusUpdates

A similar problem of distributing copies of metadata occurs in tracking task completions.
Specifically, the standard Spark scheduler uses StatusUpdate messages that contain infor-
mation about whether a task has started, is executing, has finished, or has failed. In our
distributed scheduler, these messages are sent from the workers to the proxy schedulers.

16

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 //sc is the Spark Context

2 val rdd = sc.parallelize(ran_array,npar)

3 .cache()

4 rdd.count() //some warmup

5 val result = rdd.filter(_%33 == 0)

6 .collect()

7

Figure 12: Scala benchmark that checks if a number is multiple of 33

1 val rdd = sc.parallelize(array,npar)

2 .cache()

3 rdd.count() //some warmup

4 val result = rdd.collect()

Figure 13: Scala code that gathers all the dataset to the driver

Currently, the proxy schedulers eventually forward all StatusUpdate messages to the cen-
tral Spark scheduler. We have not yet managed to recreate any cases where this creates
a bottleneck; in that case we expect it would be straightforward to reduce the strain on the
Spark scheduler by handling task completions and failures in the proxy schedulers without
any forwarding of that information.

4.1.5 Load Balancing

The standard Spark scheduler balances loads among executors by sending tasks only to
the executors that have free cores. In avoiding the update messages by coalescing sets of
tasks per executor and in allowing all proxy schedulers to send tasks to all executors, we
have removed the load balancing guarantees of the standard Spark scheduler. However,
we found that by tranferring some of the master functionality to the executors suffices in
practice to give load-balanced executions. Specifically, we use a best-effort approach for
balancing task loads, where each executor locally schedules tasks from a queue to cores as
they become available. The per executor local queue we inserted is visible by all executor
threads. This means that in a case where an executor is loaded with some heavy and
some light tasks, the threads executing the light tasks that will finish earlier, will dequeue
and execute more tasks. Thus, when a job consists of some heavy tasks, even if they are
scheduled on the same executor it is highly improbable that they will be executed by the
same core.

Note however that this solution is best effort. In most cases given enough executor CPUs
the load will be equally balanced. In an bad scenario where too many straggler tasks are
scheduled into the same executor while the other executor takes all the lightweight tasks,
the runtime will be highly affected. We tried to stress our best-effort solution by constructing
benchmarks with highly-imbalanced tasks (Section 5), but were unable to create such a
scenario in practice.

Figures 12,13,14, 15,16 show the main code for the benchmarks we chose to compare
the vanilla Spark scheduler with our alternative scheduling. We chose those benchmarks
because they consist of non computationally demanding tasks, so that the scheduling pro-
cess becomes the bottleneck. However many of those computations are used in analytics
applications.

17

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 val rdd = sc.parallelize(array,npar)

2 .cache()

3 rdd.count() //some warmup

4 val result = rdd.reduce(_+_)

Figure 14: Scala benchmark that adds all the elements jin a dataset

1 val rdd = sc.parallelize(array,npar)

2 .cache()

3 rdd.count() //some warmup

4 //foreach task wait 50ms with 10% prob,

5 //and 100ns with 90% probability

6 val result = rdd.mapPartitions(p =>

7 {delay(samplep()); 1}

8).collect()

Figure 15: Each tasks sleeps some time according to long tail distribution

1 val rdd = sc.parallelize(array,npar)

2 .cache()

3 rdd.count() //some warmup

4 val result = rdd.flatMap(_.split(" "))

5 .map(e =>(e,1))

6 .reduceByKey(_+_)

7 .collect

Figure 16: Word count benchmark

18

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

5 Evaluation

5.1 Scheduler Evaluation

We evaluated the performance of our scheduler using a set of micro-benchmarks. The
datasets contain integers or words, split into a defined number of partitions, and intentionally
cached so that the tasks do not take extra time loading the data. We first invoke a count
operation in all benchmarks, without counting it in the total run time, so that we ensure that
the dataset is stored in memory. We ran each benchmark is 15 times and measure the last
10 runs, so that the runtime is not affected by the JVM class loading, JIT compiling or other
optimization techniques [15].

We used the following benchmarks:

• The filter benchmark generates a dataset of random numbers and returns those that
are products of a defined number

• The sum benchmark adds the values of all the elements using the reduce operator

• The collect benchmark simply brings all the elements to the master node

• The longtail benchmark simulates a taskset whose runtime follows a long tail distribu-
tion

• The word count benchmark counts the references of each word

We chose those benchmarks because they consist of non computationally demanding
tasks, so that the scheduling overhead becomes a bottleneck. However, many of those
computations are used in analytics applications. In fact, we have encountered very small
tasks in map or filter operations that operate on fine-grain partitions in actual analytics appli-
cations; in most cases the programmer did not try to create larger tasks, as the overhead of
repartitioning is comparable to the scheduling overhead of fine-grain tasks.

We implemented our scheduler in Apache Spark 1.6.0. We ran all experiments on a
cluster of 5 nodes, where each node has 4 Intel i5-3470 cores, 16GB memory, and is running
Debian Linux and OpenJDK7. We compare our scheduling algorithm with the default Spark
scheduling. To have a valid comparison, we tried to use equal resources for scheduling
and for task execution; the runs with default Spark use one node as a Spark master and 4
nodes as executors, while the runs with our distributed scheduler deploy all proxy schedulers
together with the Spark master on one node, and use 4 nodes as executors. This way, both
schedulers have exactly the same resources devoted to scheduling and to task execution.

Variable number of tasks We ran the aformentioned benchmarks with a fixed number of
elements (5M), and a variable number of partitions (64 to 8192) to measure how the number
and granularity of tasks affects the runtime difference between the two schedulers.

Table 17 presents average running time of a simple filter operation on 5 million elements.
The first column shows the number of partitions of the input RDD, which is equal to the
number of tasks. The second column shows the average running time of the query using
our distributed scheduler, in milliseconds. The third column shows the average running time
using the default Spark scheduler. The final column presents the speedup of our scheduler
over the Spark default scheduler. Our scheduler consistently outperforms the default Spark
scheduler by at least 1.11× and up to 1.86×. Much of that difference seems to be a constant
factor, which we believe is due to the reduction of worker idle time while waiting for the next

19

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

tasks parallel default speedup
32 126.00 143.00 1.13
64 164.50 206.50 1.26
128 203.50 282.50 1.39
256 264.50 451.50 1.71
512 348.50 649.00 1.86

1024 568.50 678.50 1.19
2048 828.50 960.50 1.16
4096 1570.50 1852.00 1.18
8192 3382.00 3742.50 1.11

Figure 17: Filter on 5M elements

task. Note that as task granularity becomes smaller, both schedulers perform worse. We did
not manage to explain the performance “knee” that the default Spark scheduler consistently
reproduced for 512 tasks, as it was not correlated with idle time in the worker cores nor
network traffic measured. We conjecture, however, that it may be an artifact of waiting to
move fine-grain partitions between executors.

20

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

32 64 128 256 512 1024 2048 4096 8192
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

R
u
n
ti

m
e
 (

m
ill

is
e
co

n
d
s)

parallel
default

Figure 18: Reduce 5M elements

Similarly, Figure 18 compares the default Spark scheduler to our distributed scheduler on
a reduction that sums 5M random integers. The horizontal axis is the number of partitions
that the dataset is distributed into. Again, we note that reducing the number of messages
and parallelization of scheduling gains a constant factor over the default Spark scheduler,
resulting from 1.12× to 1.87× better performance.

Figure 19 compares the two schedulers on simply collecting all the elements of a par-
titioned RDD to the master node. We observe the same behavior even when the task ex-
ecution time is zero in this case, again due to the reduction in scheduling overhead and
message latencies.

To evaluate how well our best effort load balancing heuristic performs compared to the
load balancing guarantees provided by the default Spark scheduler, we ran a microbench-
mark that simulates tasks with highly different running times, following a long-tailed distri-
bution. Figure 20 presents a comparison of the two schedulers on the long-tail benchmark.
Again, the distributed scheduler achieves a speedup between 1.13× and 1.77× over the
default Spark scheduler. This result is consistent accross executions with negligible vari-
ance, hence we conjecture that for executors with more than 4 cores it is highly unlikely that
straggler tasks will cause imbalance and large latency in the total job execution time.

Finally, Figure 21 presents the comparison on a standard word count benchmark. Again,
the distributed scheduler outperforms the default Spark scheduler by up to 2.15×.

Variable number of elements To measure the effect of the task granularity on perfor-
mance, we ran the reduce benchmark with a fixed number of partitions (512). Table 1 shows
the speedup of the distributed scheduling versus the vanilla Spark scheduler. Note that the

21

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

32 64 128 256 512 1024 2048 4096 8192
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

R
u
n
ti

m
e
 (

m
ill

is
e
co

n
d
s)

parallel
default

Figure 19: Collect all data at the master

16 32 64 128 256 512 1024 2048 4096 8192
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

R
u
n
ti

m
e
 (

m
ill

is
e
co

n
d
s)

parallel
default

Figure 20: Long-tail distribution of task runtimes

22

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

32 64 128 256 512 1024 2048 4096 8192
Number of Tasks

0

2000

4000

6000

8000

10000

12000

14000

R
u
n
ti

m
e
 (

m
ill

is
e
co

n
d
s)

parallel
default

Figure 21: Word count

elements distributed default speedup
250K 331.30 798.80 2.41
1M 328.70 826.70 2.52
4M 333.10 854.00 2.56

16M 333.90 951.50 2.85
64M 382.60 1117.70 2.92

Table 1: Comparing runtime(ms) of default and parallel scheduling in reduce benchmark,
512 partitions

23

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 val file1 = sc.textFile("hdfs://file1")

2 val file2 = sc.textFile("hdfs://file2")

3 val cartesian = file1.map(e1 =>

4 file2.map(e2 =>

5 (e1,e2)

6).collect().flatten).collect()

Figure 22: Cartesian product written in nested RDD query

500 1000 2000 4000 8000 16000
Number Of Elements

0

20

40

60

80

100

120

140

160

R
u
n
ti

m
e

(s

e
co

n
d
s)

nested
flat

Figure 23: Comparison between flat and nested operators in cartesian product

distributed scheduler is almost insensitive to the number of data elements, whereas the de-
fault Spark scheduler slows down for more data. We believe this is due to the fact that the
default Spark scheduler puts computation, scheduling overhead, and communication in the
critical path, whereas by parallelizing the handling of scheduling messages the distributed
scheduler overlaps them.

5.2 Nesting Evaluation

We used the cartesian product as a benchmark to compare the performance of nested
queries versus flat queries. A simplified version of the code for cartesian product using
nested operators is shown in Figure 22. For the flat, non-nested version we used the carte-
sian RDD operator.

Figure 23 compares the total running times between the two schedulers. We found that
writing a cartesian product as a two-level nested RDD operation parallelizes it into smaller

24

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

500 1000 2000
0

10

20

30

40

50

60

70

80
R

u
n
ti

m
e

(s

e
co

n
d
s)

Nof Points

Figure 24: Barnes-Hut measurements

but parallel jobs and achieves a total speedup of up to 8×, mainly due to the parallel schedul-
ing of the work.

To demonstrate the programming expressiveness of using nested RDD operations we
implemented the Barnes-Hut n-body gravity simulation algorithm using nested operators,
and evaluated it for various numbers of data points, up to 2000 bodies. Note that there is
no comparison against the default Spark scheduler as Barnes-Hut is recursive and thus not
directly portable to flat MapReduce, without completely restructuring the algorithm to use
explicit iterations and simulate a stack. Figure 24 presents the results.

25

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 2 3 4
Number of workers

200

400

600

800

1000

1200

1400

1600

R
u
n
ti

m
e
 (

se
co

n
d
s)

HierarchicalKMeans
HierarchicalKMeansPar
BisectingMLlib

Figure 25: HierRDD: Strong scaling graph for 1 million data points

6 Hierarchical RDD Evaluation

We evaluated our design comparing the hierRDD, hierRDD with parallel splitting, and the
default implementation using simple RDDs and MLlib. We run the experiments with 1, 2, 3,
and 4 slaves to measure scalability.

The fitst data-set contains 1 million points, of 20 dimensions each. Table 3 shows the
time in seconds for each K-means variation, for different number of slaves. The last column
measures the speed up gained from hierRDDpar compared to hierRDD. For the maximum
number of workers the speedup is 40%. The second data-set has 2 million data points.
Table 2 shows the time scale and the speed up. For 1 workers hierRDDpar gains speedup
10% compared to hierRDD and 37% for 4 workers.

Parallel hierRDD gains speedup over sequential hierRDD because the cluster utilization
is higher and the load imblance between different tasks is mitigated.

To expose the expressiveness of our hierRDD implementation we compared our hierar-
chical K-means variation with one using the default RDDs found in https://gist.github.

com/freeman-lab/5947e7c53b368fe90371. Figure 28 shows the time elapsed for both appli-
cations for various data points. For 750 points, our implementation is 2.4× faster, and that
increases to 3.7× for 6000 points.

Figure 27 is a time plot for various data points, from 3000 to 96000, which means the
lower value the better, for depth 8 (the leaves have 256 nodes), utilizing 5 slaves (10 execu-

26

https://gist.github.com/freeman-lab/5947e7c53b368fe90371
https://gist.github.com/freeman-lab/5947e7c53b368fe90371

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

1 2 3 4
Number of workers

500

1000

1500

2000

2500

R
u
n
ti

m
e
 (

se
co

n
d
s)

HierarchicalKMeans
HierarchicalKMeansPar
BisectingMLlib

Figure 26: HierRDD: Strong scaling graph for 2 million data points

workers hierRDD hierRDDpar mllib speedup
1 2475 2248 2542 1.10
2 1418 1156 1394 1.22
3 1124 877 1101 1.28
4 872 636 858 1.37

Table 2: Comparing the runtime(secs) between flat RDD and hierRDD for 2 million data
points

workers hierRDD hierRDDpar mllib speedup
1 1406 1153 1354 1.21
2 846 618 835 1.36
3 829 602 788 1.37
4 558 379 542 1.42

Table 3: Comparing the runtime(secs) between flat RDD and hierRDD for 1 million data
points

27

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

3000 6000 12000 24000 48000 96000
Number of data points

50

100

150

200

250

300

350

400

450

R
u
n
ti

m
e
 (

se
co

n
d
s)

HierarchicalKMeans
HierarchicalKMeansPar
BisectingMLlib

Figure 27: HierRDD: Weak scaling graph

npoints hierRDD bisecting speedup
750 106 256 2.42

1500 114 306 2.68
3000 121 384 3.17
6000 138 519 3.76

Table 4: Comparing the runtime(secs) between hierRDD and naı̈ve solution

28

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

750 1500 3000 6000
Number of data points

100

150

200

250

300

350

400

450

500

550

R
u
n
ti

m
e
 (

se
co

n
d
s)

HierRDD
Bisecting

Figure 28: Naı̈ve version versus hierarchical RDDs

29

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Dataset Size Nested Flat
1 hour 46.45K 33s 39s
1 day 450MB 4m 4.4m
1 month 12.6G 57m OOM
1 month 17.3G 1.5h OOM
2 months 30G 3.8h OOM

Figure 29: Flat vs Nested query

tors). Three versions of the bisecting k-means are compared, the default algorithm without
the hierarchical RDDs, while the other two use the hierarchical RDD abstraction, one with
sequential job issue and one with parallel job issue. The results show that the hierarchical
RDDs implementation incurs zero overhead when done sequentially.

6.1 Evaluation on ASAP applications

We evaluated the effect of the Spark-Nesting scheduler on parts of the ASAP applications
using the following process. Initially, we held two teleconferences with the WIND engineers
for code review, in which identified interesting operators in the WIND application that were
using iterative computation. We then identified points in the operator code that could be
refactored to take advantage of Spark-Nesting, and performed refactoring to modify iterative
queries to be recursive instead. Table 29 presents the effect on the Sociometer operator of
the WIND application. We used synthetic, anonymized datasets that match all distributions
of actual datasets, as provided by WIND, because this experiment was performed in the
installation of Spark-Nesting on the FORTH cluster, and actual customer data cannot be
allowed to leave the WIND data center. All reported running times are the average of 3
runs, on 5 PCs with 256GBs of main memory and 40 CPU cores. The first column shows
the size of the data set, in terms of the time of user traffic simulated in the corresponding
dataset. To analyze and classify users on data that amounts to 1 total hour of phonecall
traffic, both Spark and Spark-Nested perform similarly, with a small speedup for the second,
due to the better scheduling of small tasks produced by the parallel scheduler described
above. A notable difference appears for larger data sets, namely the two 1-month’s worth
of data and their aggregate, where the default Spark implementation does not fit in memory
and the computation terminates with an Out-of-Memory error. Being able to perform nested
queries allows large chunks of computation that would not fit in memory, to be split into
smaller jobs, allowing Spark-Nesting to run these operators in the available memory, without
need for repartitioning into smaller data sets.

30

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

7 Related Work

7.1 Recursive Parallelism

Several task-parallel programming models offer high-level abstractions for expressing re-
cursive and generic parallel computations. Most, like Cilk [8] and OpenMP [11], target
shared memory architectures and require manual synchronization. Others, like Sequoia [14],
support distributed computations but also require manual synchronization and focus on
HPC systems rather than analytics or other big-data computations where fault-tolerance
is key. Extensions of such runtimes with automatic dependence analysis and synchroniza-
tion [26, 23] abstract much of the synchronization burden, although these systems still re-
quire considerable effort of parallelization compared to Map-Reduce models.

7.2 Distributed Parallelism

Distibuted applications can be expressed like shared memory applications using abstrac-
tions like UPC [2]. In this document we focused on task based distributed programming
models. X10 [9] is an object-oriented language, that offers a bunch of primitives such as
async, future, and foreach to enhance distributed programmability. Ciel [22] was one of the
first distributed runtimes to support nested tasks, using a dynamic task graph that stores
the relations between tasks and objects. Naiad [21] is a distributed data analytics engine,
that executes a cyclic dataflow programs. Also Naiad introduces a new programming model,
called timely dataflow. Stratosphere [1], now called Flink, is a distributed data analytics
engine, whose programming model is similar to Spark. Flink targets micro-batching stream-
ing applications, achieving very low latencies. However, Flink, like Spark, does not support
recursive operators.

7.3 Nested Queries

Spark has support for the execution of SQL queries, along with a compiler (Catalyst) that
generates efficient bytecode. Such queries, however, cannot contain recursive calls, and
nested SQL statements amount to simply sequenced computations. Shkapsky [29] et al.,
implement the datalog query language that can express queries on recursive relations in
Spark. Their work relates to ours, as datalog relations can be recursively defined, and
may require a worklist or fixpoint computation. Recursively computed relations, however,
may not be able to express fully recursive computations such as, for instance, the N-Body
Simulation where the map and reduce functions are themselves recursive. Myria [32] is
a big-data management system that executes iterative datalog queries incrementally and
asynchronously. REX [20] introduces a new programming model similar to SQL, called RQL,
that uses the notion of deltas (or small updates). REX also supports recursive relations that
amount to iterative fixpoint computations.

7.4 Scheduling

Scheduling and resource management is a challenging problem that cannot be perfectly
solved. However, there exist many appximate solutions. The Spark default scheduler uses
Delay scheduling [34] to manage tasks. In HDFS clusters, tasks are usually scheduled
where data are stored. This way, however, a task can wait for a long time before being

31

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

launched, resulting in unfairness. To solve this, issue delay scheduling sets a small time
window to try and launch a task on local data, and if a timeout occurs, schedules the task
on the next free node.

Ousterhout et al. [25] propose Sparrow, an alternative scheduling algorithm. Sparrow is a
decentralized scheduling mechanism that uses a power-of-two-choices technique to improve
the load-balancing effiency. In Sparrow, there is a fixed number of workers and schedulers,
and every scheduler can send tasks to every worker. The scheduling of a job is assigned
to a random scheduler, that sends each task probe to 2 random workers. When the worker
dequeues a task probe, it asks for the task binary from the scheduler and the corresponding
scheduler sends the task to the worker that asks first. Sparrow was very influential for our
scheduler design; however, we found that treating load imbalance within the same node
instead of interacting with the scheduler performs similarly or better.

Malte Schwarzkopf et al. [27] present Omega, a distributed scheduling mechanism. In
Omega, each scheduler has full access to the cluster—thus the state is shared. Each sched-
uler is given a private, local, frequently-updated copy of the cluster state for making schedul-
ing decisions. In comparison, we chose to not replicate scheduling state between master
and proxy schedulers in order to avoid the complication of maintaining all copies coherent,
thus introducing additional fail points in the scheduling algorithm.

7.5 Straggler Mitigation

Ousterhout et al. [24] address straggler mitigation by increasing task granularity, resulting
in a lot of very small tasks; they measure a 5.2× improvement in response time to strag-
glers. SkewTune [19] is a Hadoop extension that tries to eliminte skew in map reduce jobs.
The approach SkewTune follows is that it first identifies using some heuristics. To mitigate
a straggler that occurs in either the map or the reduce phase SkewTune repartitions the
remaining data, in order to increase parallelism. Yadwadkar et al. [33] describe a way to
reduce straggler mitigation to multi-task learning. They use multi-task learning because sim-
ilar nodes or similar workloads may behave differently duting execution. The classifiers they
train can predict if a task will be a straggler, creating a separate model for each cluster node.
KMN [31] is a framework that optimizes jobs that use a subset of the data. In order to speed
up the execution they launch some extra tasks using combinatorial heuristics, and select the
output of the fastest ones. Dolly [3] is a system that proactively clones all the tasks in order
to avoid stragglers, considering only the result of first task clone that finishes. Dolly also in-
troduces a new technique, called delay assignment, used to avoid contention in intermediate
data.

7.6 Scheduling Under Constraints

Quincy [17] schedules concurrent distributed jobs that share common resources. It models
the tasks and computing nodes as a DAG, with the weights representing competing demands
for locality and fairness, and tries to solve the problem by finding the maximum flow in the
graph.

Tetris [16] uses an alternative way of task scheduling that also considers a task’s net-
work and disc utilization requirements, whereas most schedulers consider mainly CPU and
memory constraints. Tetris treats the multi-resource scheduling as a multi-dimensional bin
packing problem. To make scheduling more efficient, Tetris uses an heuristic that assigns a
task to the machine that maximizes the (task ,machine) product value.

32

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

Orchestra [10] is a global management architecture that focuses on optimizing the trans-
fer time for a set of communication patterns such as broadcasting and shuffling, both com-
monly used in MapReduce environments. Orchestra has an Inter-Transfer Controller that
implements scheduling policies and selects a mechanism for transfers based on the data
size, the number of nodes, their locations and other factors.

GRASS [4] focuses on approximation algorithms, where there is either a deadline in time,
or an error threshold. GRASS is a scheduling technique that combines two policies: (i) the
Greedy Speculative scheduling that selects the next task based on the approximation goal,
and (ii) the Resource Aware Speculative that schedules a task copy if it saves time. GRASS
was implemented in Hadoop and Spark, and achieved up to 47% speedups.

LATE [36] is a job scheduler for Hadoop that tackles the scheduling problem for hetero-
geneous clusters. The default Hadoop scheduler measures the progress of every task and
if a task seems to take longer than expected, the scheduler launches a copy of the first task
in another machine. In general, LATE aims at speculating the task that seems to have the
greatest expected time to finish. LATE monitors each task and computes the progress score,
from which it computes the task remaining time. It and also maintains a per node progress,
that measures the task throughput of each node, that is used to indicate not to schedule a
task to a node whose progress rate is below some threshold.

Mantri [5] mitigates stragglers caused by bad machines, data loss and crossrack traffic
in Bing clusters, while taking networking, IO and memory constraints into account.

33

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

References

[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix
Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter,
Mareike Höger, Kostas Tzoumas, and Daniel Warneke. The stratosphere platform for
big data analytics. The VLDB Journal, 23(6):939–964, December 2014.

[2] George Almsi, Paul Hargrove, Ilie Gabriel, and Tnase Yili Zheng. Upc collectives library
2.0. In Partitioned Global Address Space Programming Models, 2011.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective strag-
gler mitigation: Attack of the clones. In Networked Systems Design and Implementa-
tion, 2013.

[4] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica, Adam
Wierman, and Minlan Yu. Grass: Trimming stragglers in approximation analytics. In
Networked Systems Design and Implementation, April 2014.

[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce clusters using
mantri. In Operating Systems Design and Implementation, 2010.

[6] Apache Software Foundation. Hadoop.

[7] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature,
324:446–449, December 1986.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. SIG-
PLAN Not., 30(8):207–216, August 1995.

[9] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Object-oriented Programming, Systems,
Languages, and Applications, 2005.

[10] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
Managing data transfers in computer clusters with orchestra. In ACM Conference on
SIGCOMM, 2011.

[11] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for shared-
memory programming. IEEE Comput. Sci. Eng., 5, January 1998.

[12] Databricks. Spark survey results, 2015.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[14] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Hous-
ton, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan. Sequoia: Programming the memory hierarchy. In ACM/IEEE Conference on
Supercomputing, 2006.

34

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

[15] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java perfor-
mance evaluation. In Object-oriented Programming, Systems, Languages, and Appli-
cations, 2007.

[16] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. Multi-resource packing for cluster schedulers. In ACM Conference on SIG-
COMM, 2014.

[17] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew
Goldberg. Quincy: Fair scheduling for distributed computing clusters. In Symposium
on Operating Systems Principles, 2009.

[18] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[19] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skewtune: Miti-
gating skew in mapreduce applications. In ACM SIGMOD International Conference on
Management of Data, 2012.

[20] Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. Rex: Recursive, delta-based
data-centric computation. Proc. VLDB Endow., 5(11):1280–1291, July 2012.

[21] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martı́n Abadi. Naiad: A timely dataflow system. In Symposium on Operating Systems
Principles, 2013.

[22] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Mad-
havapeddy, and Steven Hand. Ciel: A universal execution engine for distributed data-
flow computing. In Networked Systems Design and Implementation, 2011.

[23] OmpSs. https://pm.bsc.es/ompss, Sep 2015.

[24] Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman, Reynold Xin,
Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. The case for tiny tasks in compute
clusters. In Hot Topics in Operating Systems, pages 14–14, 2013.

[25] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Distributed,
low latency scheduling. In Symposium on Operating Systems Principles, 2013.

[26] Nikolaos Papakonstantinou, Foivos S Zakkak, and Polyvios Pratikakis. Hierarchical
parallel dynamic dependence analysis for recursively task-parallel programs. In IEEE
International Parallel and Distributed Processing Symposium, 2016.

[27] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
flexible, scalable schedulers for large compute clusters. In SIGOPS European Confer-
ence on Computer Systems, 2013.

[28] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Rein-
wald, and Fatma Özcan. Clash of the titans: Mapreduce vs. spark for large scale data
analytics. Proc. VLDB Endow., 8(13):2110–2121, September 2015.

[29] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and
Carlo Zaniolo. Big data analytics with datalog queries on spark. In ACM SIGMOD
International Conference on Management of Data, 2016.

35

ASAP FP7 Project

ASAP D4.3

Execution Engine v.2

[30] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document
clustering techniques. In In KDD Workshop on Text Mining, 2000.

[31] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J.
Franklin, and Ion Stoica. The power of choice in data-aware cluster scheduling. In
Operating Systems Design and Implementation, October 2014.

[32] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and
Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines. PVLDB,
8(12):1542–1553, 2015.

[33] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph Gonzalez, and Randy H. Katz.
Faster jobs in distributed data processing using multi-task learning. In SDM, pages
532–540. SIAM, 2015.

[34] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: A simple technique for achieving local-
ity and fairness in cluster scheduling. In European Conference on Computer Systems,
2010.

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. Spark: Cluster computing with working sets. In Hot Topics in Cloud Computing,
2010.

[36] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Im-
proving mapreduce performance in heterogeneous environments. In Operating Sys-
tems Design and Implementation, 2008.

36

FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D4.3

Execution Engine v.2

WP 4 – Dependency-aware query execution engine

Nature: Report

Dissemination: Public

	Introduction
	Task Description
	Execution Engines Limitations
	Spark programming model
	Third year of the ASAP Project

	Extending the Spark engine to support nested operations
	Use case
	RDD internals
	Design to support nested RDD operations
	Nested Task Result forwarding
	Nested operators packaging

	Queries with hierarchical data decomposition
	Introduction
	Hierarchical RDDs

	Scheduling
	Motivating example
	Scheduling Policy
	Distributed Scheduling Algorithm
	Scheduler state
	StatusUpdates
	Load Balancing

	Evaluation
	Scheduler Evaluation
	Nesting Evaluation

	Hierarchical RDD Evaluation
	Evaluation on ASAP applications

	Related Work
	Recursive Parallelism
	Distributed Parallelism
	Nested Queries
	Scheduling
	Straggler Mitigation
	Scheduling Under Constraints

