
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D5.2
Workflow management tool

WP 5 – Adaptive Data Analytics

Nature: Report

Dissemination Level: Public

Version History

Version Date Author Comments
1.0 18 Aug 2015 V. Kantere, M. Filatov First Version
2.0 22 Aug 2015 V. Kantere, M. Filatov Final Version
3.0 19 Apr 2016 V. Kantere, M. Filatov Revised Version

Acknowledgement This project has received funding from the European Union’s 7th
Framework Programme for research, technological development and demonstration under
grant agreement number 619706.



ASAP FP7 Project
ASAP D5.2

Workflow management tool

Abstract This deliverable is a report on the first version of the Workflow Management
Tool (WMT). This version incorporates the prototypes of three core modules of the WMT
architecture, namely the Workflow Design, Analysis and Optimization modules. The report
first gives a quick overview of the WMT architecture and then delves into the implementation
details of each involved module.

Keywords Workflow model, analysis, optimization, design tool.

2



Contents

List of Figures 4

List of Tables 4

1 Introduction 5
1.1 Workflow management tool overview . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Purpose of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Workflow management 7
2.1 Workflow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Workflow representation . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Workflow analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Workflow optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Workflow manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Operator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Single-workflow optimization . . . . . . . . . . . . . . . . . . . . . . . 11

3 Workflow management tool architecture and implementation 13
3.1 WMT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Workflow management tool functionality 18
4.1 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Web content analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Telecommunications data . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Marketing analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3



ASAP FP7 Project
ASAP D5.2

Workflow management tool

5 Ongoing and future work 24
5.1 Performance objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Multi-workflow optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Related Work 28

7 Summary 30

4



List of Figures

2.1 Workflow metadata tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 The architecture of the WMT . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Technology stack used in WMT . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 WMT interaction with the rest components of ASAP . . . . . . . . . . . . . 16

4.1 GUI of WMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Library of abstract operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Steps of adding node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Workflow for NLP-classification . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Workflow for NLP-classification . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Workflow for the detection of peaks . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Analysed workflow for the detection of peaks . . . . . . . . . . . . . . . . . . 22
4.8 Workflow analysing a product in a marketing campaign . . . . . . . . . . . . 22
4.9 Analysed version of the workflow in Fig. 4.8 . . . . . . . . . . . . . . . . . . 23
4.10 Optimised version of the workflow in Fig. 4.9 . . . . . . . . . . . . . . . . . 23

5.1 Synchronisation of common parts of multiple workflows . . . . . . . . . . . . 25
5.2 Mutual arrangement of subgraphs A and B . . . . . . . . . . . . . . . . . . . 26
5.3 Cross-dependency of common-parts A and B in workflows W1 and W2 . . . . 27

List of Tables

2.1 Operator categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5



Chapter 1

Introduction

1.1 Workflow management tool overview
The Workflow Management Tool (WMT) is a component of the ASAP system architecture.
It is used for workflow creation, modification, analysis and optimisation.

WMT provides a GUI for workflow design. The model underlying WMT combines sim-
plicity of expression of application logic and adaptation of the level of description of execution
semantics. It enables the separation of task dependencies from task functionality. In this way,
WMT can be easily, i.e. intuitively and in a straightforward manner, used by many types of
users, with various levels of data management expertise and interest in the implementation.

The workflow and the including tasks are described using a JSON-based metadata lan-
guage. The workflow is analysed and the result of the analysis can be a list of detected
errors of a workflow or an analysed workflow which is actually an enhancement of the initial
workflow with more vertices, substitution of vertices and/or edges in the initial workflow
with others, and addition of metadata to the tasks.

WMT is a fully open-source1 instrument that includes the designing interface, as well as
analysis and optimisation modules.

1.2 Purpose of the document
This document serves as a report on the first version of the WMT and accompanies its
prototype implementation. Its purpose is to delve into the implementation details of the core
architectural modules. This includes the declaration semantics of the workflow, analysis and
optimization techniques. Furthermore, we demonstrate the work of WMT on specific use-
cases from D8.2 [13] and D9.2 [1]. Finally, we make an initial discussion on multi-workflow
optimisation.

1https://github.com/maxfil/wmt - this will be changed to the ASAP repository

6

https://github.com/maxfil/wmt


ASAP FP7 Project
ASAP D5.2

Workflow management tool

1.3 Document structure
The rest of this document is structured as follows:

• Chapter 2 gives a brief overview of the workflow model, including manipulation as
described in D5.1 [19]. Moreover, it gives details on the workflow analysis and the
workflow optimisation.

• Chapter 3 presents details of the current architecture and implementation of WMT
modules.

• Chapter 4 guides the reader on how to use the tool from creation up to optimisation,
describing the functionalities and then gives examples of workflows driven by the use-
case scenarios of D8.2 [13] and D9.2 [1].

• Chapter 5 gives details on the current status of the formulation of some other optimi-
sation objectives and multi-workflow optimisation and outlines our next steps.

• Chapter 6 summarises related work in the topic of the workflow optimization.

• Chapter 7 concludes the deliverable.

7



Chapter 2

Workflow management

This chapter gives an overview of the workflow model, its analysis and its optimisation, as
it is defined in D5.1 [19], and gives details on what it is currently implemented in WMT.
Moreover, it gives an update on our work in workflow optimisation.

2.1 Workflow model
The workflow represents applications as a directed acyclic graph (DAG) G = (V, E). The
vertices V in the graph represent application logic and the edges represent the flow of data.
Application logic includes (a) the analysis of data, and (b) the modification of data. The
edges E are directed and connect the vertices that produce and consume data. Each vertex
in a workflow represents one or more tasks of data processing. Each task T is a set of inputs,
outputs and a processor. In this text we also use the term operator instead of the term
processor. Tasks may share or not inputs, but they do not share processors and outputs.
The inputs and outputs of the tasks of a vertex can be related to incoming and outgoing
edges of this vertex, but they do not identify with edges: inputs and outputs represent
consumption and production of data, respectively, and edges represent flow of data.

Definition 1. In a digraph G, the out-degree d+
G(v) is the number of edges leaving a vertex

v, and the in-degree d−G(v) is the number of edges entering a vertex v.

Definition 2. A root is a vertex v with in-degree d−G(v) = 0; and a sink is a vertex with
out-degree d+

G(v) = 0.

A workflow has one root and several sink vertices. Data and operators can be either
abstract or materialized. Abstract are the operators and datasets that are described partially
or at a high level by the user when composing her workflow whereas materialized are the
actual operator implementations and existing datasets, either provided by the user or residing
in a repository. A generic tree-metadata format depicted as a subtree with a root ‘operator’

8



ASAP FP7 Project
ASAP D5.2

Workflow management tool

is shown in Figure 2.1. In Section 3.1.1 (Tree-metadata framework) of the report D3.2 [8]
meta-data of data and operators are described in more detail.

2.1.1 Workflow representation
In WMT a workflow is represented in a single JSON file. This representation captures
structural information, design metadata (e.g., functional and non-functional requirements,
physical characteristics like resource allocation), operator properties (e.g., type, schemata,
statistics, engine and implementation details, physical characteristics like memory budget),
and so on.

Figure 2.1: Workflow metadata tree

The first levels of the metadata tree of the workflow are the following (shown in Figure
2.1):

• Nodes Each node contains a list of task IDs which belong to this node.

9



ASAP FP7 Project
ASAP D5.2

Workflow management tool

• Edges This is a list of pairs of node IDs - (sourceId, targetId). An edge defines the
flow of data from one vertex to another. These nodes are called the source and the
target, respectively.

• Tasks This part contains a list of task meta-data. The task meta-data consists of the
information that is used to match abstract and materialized operators and datasets
and the ID of a node to which this task belongs.

• TaskLinks (optional) This part contains links between tasks lying within a single
node.

2.2 Workflow analysis
The workflow structure alleviates from the user the burden of determining any or some
execution semantics for the application logic. The execution semantics of the workflow
includes the execution of tasks in vertices and the execution of input-output dependencies
of edges. The determination of the execution semantics of vertices and edges leads to an
execution plan of the workflow. We refer to this plan as the analysed workflow. The latter
is actually an enhancement of the initial workflow with more vertices, and substitution of
vertices and/or edges in the initial workflow with others.

More specifically, in the analysed workflow, an edge with different input and output
metadata, may be replaced with two edges and a new vertex; the new vertex corresponds to
a new task that takes the data and metadata of the input of the initial edge and produces
the data and metadata of the output of the initial edge. In other words, since the data of the
input and the output of an edge are equivalent, this task changes only the metadata. Such
vertices are associative, as they encompass associative tasks. Also, a vertex that includes
multiple tasks, in the original workflow, is replaced, in the analysed workflow, with a set of
new vertices that each includes one task of the original vertex. The new vertices may or may
not be connected with new edges.

Furthermore, in the analysed workflow, a vertex that corresponds to multiple tasks is
replaced with an associative subgraph that contains a set of new vertices that correspond to
these tasks. This set contains vertices that correspond to the tasks of the initial vertex: each
new vertex corresponds to one task; vertices may correspond 1-1 to tasks, but it can be the
case that two or more vertices correspond to the same task1. Naturally, the incoming edges
of the initial vertex may have to be replicated, since they may correspond to the input of
more than one tasks. The outgoing edges, however, remain the same, as each corresponds
to the output of one task. The replacing subgraph may also contain new edges that connect
the replacing vertices. Such edges represent the dependencies between tasks related to their

1Replication of tasks using many associative vertices that correspond to the same task of an original
vertex may be necessary for the optimisation of the workflow execution.

10



ASAP FP7 Project
ASAP D5.2

Workflow management tool

execution semantics, and not related to the semantics of the application logic, as expressed
by the user.

2.3 Workflow optimisation
In D5.1 [19] we have proposed two axes of a workflow optimization, namely: optimisation
via graph reconfiguration and via optimal resource management. Currently, we focus on the
first axis of optimisation, i.e. via the reconfiguration of the graph of the analysed workflow.
To do this we employ methods for the manipulation of the workflow. A brief overview of
these methods is provided below.

2.3.1 Workflow manipulation
A workflow is manipulated so that it can be executed more efficiently than originally de-
signed. Manipulation is performed using the following operations:

• Swap. The swap operation applies to a pair of vertices, v1 and v2, which occur in
adjacent position in an workflow graph G, and produces a new workflow graph G′

in which the positions of v1 and v2 have been interchanged. The goal of the swap
operation is to change the execution order of tasks. Currently, the WMT uses the
swap operation in the optimisation module.

• Merge. The merge operation takes as an input two vertices and produces one new
vertex that includes the tasks of both initial vertices. The vertices that are merged can
be connected with an edge, i.e. together they represent some task dependency(ies), or
not, i.e. there is no task dependency between them. The goal of the merge operation
is to allow for a united optimisation of the tasks included in the two initial vertices,
e.g. joint micro-optimisation on an execution engine. Currently, this operation is not
yet implemented in the WMT.

• Split. The split operation takes as input one initial vertex and produces two new
vertices that, together, include all the tasks included in the initial vertex. The two
new vertices may or may not be connected. The goal of the split operation is to lead to
separate optimisation of subgroups of tasks included in the initial vertex. Currently,
this operation is implemented in WMT and used to produce the analysed workflow.

2.3.2 Operator characteristics
Workflow manipulation can be performed selectively depending on operator characteristics:

• Blocking operators require knowledge of the whole dataset, e.g., a grouping operator
or an operator join or sort.

11



ASAP FP7 Project
ASAP D5.2

Workflow management tool

• Non-blocking operators that process each tuple separately, e.g., operators filter or
calc.

• Restrictive operators output a smaller data volume than the incoming data volume,
e.g. filter.

Table 2.1 shows the operators that are currently in the operator library in WMT and
their categorization.

Operator Blocking Non-blocking Restrictive
Filter x x
Calc x

Filter Join x
groupBy Sort x
PeakDetection x

Tf-idf x
k-Means x

Table 2.1: Operator categorization

The filter operator returns all rows for which the <filter_predicate> is ‘True’. The calc
operator produces data with new attribute <calc_attr> and value calculated by <calc_expression>.
The others are obtained from the IReS platform.

For any operator that is added in WMT, the user has to define combinations of the new
operator and operators already in the library, on which the swap operation can be applied,
if there are any such combinations. The WMT can apply swapping on these predetermined
combinations during the optimization stage. For example, the groupBy Sort/filter combina-
tion is always swappable, while the calc/filter combination is swappable or not depending
on the specific implementation of calc.

2.3.3 Single-workflow optimization
We formulate the problem of optimizing a workflow for a single engine as a state space search
problem. Starting with an initial workflow graph, we apply a set of graph transitions (see
Section 2.3.1) to create new, equivalent graphs with (possibly) different costs. Applying
transitions creates a large state space and the goal is to find an optimal workflow in this
space with respect to the objective function (see Chapter 5).

We explore the state space exhaustively using the Exhaustive Search (ES). ES generates
all possible states by applying all the applicable transitions to every state. The vastness of
the state space requires more efficient exploration methods than the Exhaustive Search. To
improve the search performance, a solution is to prune the state space. In the following, we
propose techniques for achieving this.

12



ASAP FP7 Project
ASAP D5.2

Workflow management tool

Heuristics that can drive us close to the optimal solution quickly are the following:

• H1: Move restrictive operators to the root of the workflow to reduce the data volume,
e.g., rather than extract →function →filter do extract →filter →function.

• H2: Place non-blocking operators together and separately from blocking operators,
e.g., rather than filter →sort →function →group do filter →function →sort →group.

• H3: Parallelize non-blocking operators. Place adjacent operators on parallel paths,
so that the latter can be executed on separate physical processors, e.g., if there are
adjacent operators filter1 →filter2, create two new paths in the workflow and assign
the filter1 and filter2 operators each to a different path, so that these workflow paths
can run on separate processors concurrently. The workflow paths or, in general, parts,
to be executed in parallel should be chosen such that their latency is approximately
equal, i.e., if parallelization is possible on n processors, break the flow into n workflow
parts x1, . . . , xn of equal (or near-equal) execution time, such that max(time(xi)) is
minimized.

Currently, the workflow optimization in WMT is carried out using the operation swap
and following the heuristics H1 and H2 (for the current form of the optimization algorithm
see Section 3.3).

13



Chapter 3

Workflow management tool
architecture and implementation

Executor

IRES,(WP3)

Operator,library

O
pt
im
ize

r

Interface

parse

match validate

refine

Analyzer

WMT

Figure 3.1: The architecture of the WMT

In this chapter, we describe in detail the current implementation of WMT. We discuss
the architecture, the functionalities provided by the different modules and integration of
WMT with other parts of ASAP. Figure 3.1 depicts the architecture of WMT as well as its
interaction with external components. The main components of the architecture are:

• Interface. The interface accepts a workflow definition in the representation described
in Section 2.1.1. It enables users to interactively create and/or modify a workflow.

• Analyzer. The analyzer parses the workflow, identifies operators and data stores and
maps them to a library of operators supported in WMT (See Section 3.4), generates
metadata of edges, finds edges where the data conversion should be applied and adds
the appropriate conversions.

14



ASAP FP7 Project
ASAP D5.2

Workflow management tool

• Optimizer. The optimizer generates a functionally equivalent workflow graph opti-
mized towards the performance objective (for more on the performance objective see
Section 5.1).

These provide for workflow design, analysis and optimization. After their design, analysis
and optimization, workflows are ready for their execution. They can be executed on inde-
pendent engines and storage repositories, i.e. engines and repositories that may be accessed
through other paths in ASAP (Section 3.4) or another third party platform, besides WMT.

3.1 WMT architecture

GUI$(Web)app)
HTML JS CSS

User

Sources
Jade CoffeeScript Less Compilation

Monitoring

Grunt

Web)server$Nginx Job)parser$PHP)FPM

Analyzer Optimizer

Python$scripts

Figure 3.2: Technology stack used in WMT

WMT interface is a web application. It provides full functionality for designing a workflow
even in the absence of server-side (Analyzer and Optimizer modules). It is encoded in
Hypertext Markup Language (HTML [4]). To deliver content, WMT uses the Nginx [10]
web server. To encode business logic, WMT uses Javascript [7] and PHP-FPM [11]. The
pages and scripts are compiled from Jade [6] and CoffeeScript [2] sources, respectively, using
Grunt [3]. The Analysis and Optimisation modules are scripts in Python [12]. Figure 3.2
depicts the technical stack used in WMT and the interaction of WMT parts.

15



ASAP FP7 Project
ASAP D5.2

Workflow management tool

3.2 Analyzer
WMT analyses a workflow in several steps:

1. Parsing the workflow.

2. Categorizing operators (see Section 2.3.2).

3. Validating consistency. A workflow is checked for the existence of cycles (Tarjan’s
Algorithm [18]) and correspondence of metadata of adjacent nodes. Cycle discovery
and metadata mismatch of adjacent nodes fall into the error list. The errors with the
cycles cannot be resolved and the analysis stops and returns a list of errors back to
the Interface. If possible, the data flow errors are solved by adding associative tasks in
Step 6.

4. Generating metadata of edges. These are a joint result of input and output metadata
of source and target nodes, respectively.

5. Splitting several tasks in a single node to several single-task nodes.

6. Augmenting the workflow with associative tasks. Currently, the implemented tasks are
converting data flow: buffer and format conversion.

3.3 Optimizer
The Optimizer works on the analyzed workflow, where tasks have been categorized and each
node has a single task. Currently, the Optimizer uses heuristics H1 and H2 described in
Section 2.3.3. These move restrictive operators towards the root of the workflow and place
non-blocking operators together and separately from blocking operators.

The current form of the optimization algorithm follows all paths in a workflow by en-
countering all edges. It swaps nodes following the heuristics. It stops when no more swaps
can be performed and an optimized version is produced (See Algorithm 3.1).

Algorithm 3.1: Optimization algorithm
1 Input : An i n i t i a l workflow W
2 Output : An opt imized by two h e u r i s t i c s equ iva l en t workflow s t a t e W o

3 W = (nodes, edges, tasks)
4 while swaps <> 0 do
5 swaps = 0
6 for edge in edges do
7 source = nodes[edge[sourceId]]
8 target = nodes[edge[targetId]]
9 i f d+

G(source) <> 1 or d−G(source) <> 1 then
10 continue

16



ASAP FP7 Project
ASAP D5.2

Workflow management tool

11 i f d+
G(target) <> 1 or d−G(target) <> 1 then

12 continue
13 # h e u r i s t i c 1
14 i f category(task(source)) i s ‘restrictive′ then
15 continue
16 i f category(task(target)) i s ‘restrictive′ then
17 swap(source, target)
18 swaps + +
19 continue
20 # h e u r i s t i c 2
21 i f category(task(source)) i s ‘non− blocking′ then
22 continue
23 i f category(task(target)) i s ‘non− blocking′ then
24 swap(source, target)
25 swaps + +
26 continue
27 W o = (nodes, edges, tasks)
28 return W o end

The employed heuristics are based on the workflow topology as well as on the catego-
rization of operators. In the future, the Optimizer will also employ estimations about the
processing cost of workflows, which will be derived from the IReS Model db.

3.4 Integration

Workflow(
Description(
Language

User(Interface(
(optimization(

policy)

Online(
Adaptation

WMT (WP5)

IRES((WP3)

Visualization((WP6)

WP4

M
on
ito

rin
g Processing(

engines

Data(stores

Figure 3.3: WMT interaction with the rest components of ASAP

IReS is a component of the ASAP that executes workflows (See D3.2 [8]), therefore WMT
will have a tight integration with it (Figure 3.3). Currently WMT uses the Tree-metadata

17



ASAP FP7 Project
ASAP D5.2

Workflow management tool

language (See 3.1.1 in the document D3.2 [8]) to express operators and receives a list of
existing operators from IReS (See 2.3 in the document D3.2 [8]).

18



Chapter 4

Workflow management tool
functionality

4.1 GUI

Figure 4.1: GUI of WMT

WMT provides a GUI to enable users to design workflows and perform analysis and

19



ASAP FP7 Project
ASAP D5.2

Workflow management tool

Figure 4.2: Library of abstract operators

optimization. The GUI consists of several areas (Figure 4.1) that perform the following
functions:

• Display the workflow (Area 1).

• Add nodes and edges (Area 2). This process is depicted in Figure 4.3. First, the user
adds a node, then she adds two tasks in it from the operators library, and finally she
connects nodes and tasks.

• Create a new workflow from scratch, save and load it.

• Perform workflow analysis or optimization.

• Add tasks from a library (see Figure 4.2) or create new ones (Area 3). If the user
adds a task from a library then it is accompanied by a set of metadata, i.e., properties
that describe them. If a new task is created then the first levels of the metadata tree
are predefined but users can add their ad-hoc subtrees to define their custom data or
operators.

• Display metadata of the selected task (Area 4).

4.2 Examples
The ASAP focuses on the real-time analysis of Web content and telecommunications data.
This section presents several indicative use-cases selected based on their relevance to the
ASAP research.

20



ASAP FP7 Project
ASAP D5.2

Workflow management tool

Figure 4.3: Steps of adding node

4.2.1 Web content analytics
The use case in this domain are centered on the services by Internet Memory Research as
part of the Mignify platform (www.mignify.com). These services provide access to a very
large collection of contents extracted from the Web, cleaned, annotated and indexed in a
distributed infrastructure mainly based on Hadoop components. ASAP focuses on extending
and enriching the public workflow interface supplied by Mignify, referred to as pipes (queries
associated with a set of intelligent agents to extract or transform large-scale web data).

Stream processing

This use case captures a typical form of the current IMR Web analytics pipeline. Figure 4.4
presents a workflow for this use case. Data are selected from the document store based on
some conditions (select). These data are processed in order to extract some text (calc), and
the extracted text is moved to a different data store and stored there with other text and
annotations (move). The output data are further processed via NLP-classification.

Figure 4.4: Workflow for NLP-classification

21

www.mignify.com


ASAP FP7 Project
ASAP D5.2

Workflow management tool

Figure 4.5 shows the result of the analysis module. The node containing two tasks select
and calc has been split into two single-task nodes.

Figure 4.5: Workflow for NLP-classification

4.2.2 Telecommunications data
Call Detail Records (CDR) data is a good proxy to understand human mobility. The sheer
volume of this data poses new challenges when extracting and visualizing specific indicators.
ASAP investigates applications such as the following:

Peak detection

This use case involves processing of the anonymised CDR data of the past day by first
selecting a spatial region and a temporal period (select). For this region and period, the
number of calls is calculated (calc). Data and calculations from CDR are archived (archive)
in other storage (history). After calls are counted, the application proceeds with algorithmic
processing that detects peaks (calc2 ). The objective of this processing is to detect peaks in
load, according to a set of criteria. Criteria may include the minimum size of a region and/or
period, the cut-off distance, or other parameters for selecting regions and periods. These
parameters should be adjustable by the analytics engineer, marketing expert, etc., who uses
the peak analysis results. The results of this workflow are added to a database (relational
or graph DBMS) that contains peaks detected in previous data. The database of peaks can
then be queried by a user to discover clusters of calls that occur with regularity e.g., every
week, discover clusters of calls that occur without any regularity, or similar ad-hoc queries
based on the pre-computed peak data. The workflow for this use case is shown in Figure
4.6.

Figure 4.6: Workflow for the detection of peaks

22



ASAP FP7 Project
ASAP D5.2

Workflow management tool

Figure 4.7 shows the result of the analysis module. The node containing two tasks calc
and archive has been split into two single-task nodes.

Figure 4.7: Analysed workflow for the detection of peaks

4.2.3 Marketing analytics
Figure 4.8 displays workflow of an analysis of a product marketing campaign. It combines
sales data with sentiments about that product gleaned from tweets crawled from the Web.
The result consists of total sales and average sentiment for each day of the campaign. Cam-
paigns promote a specific product and are targeted at non-overlapping, geographical regions.
To simplify the presentation, we assume the sentiment analysis of a tweet yields a single met-
ric, i.e., like or dislike the product over a range of -5 to +5.

Figure 4.9 represents an analysed workflow. The Analyzer splits two multi-task vertices
(convert time&coord, calc avgSent and filter by prod&reg, join2 by prod&reg) and adds an
associative tasks buffer. It is added to convert streaming data to batch.

Figure 4.10 depicts the result of the Optimizer work. It makes several workflow graph
manipulations: (a) the vertex filter by prod&reg is factorized1 and pushes closer to data-
sources (sales, campaign, tweets); (b) The vertex convert time&coord is swapped with select
product and merged with calc sent&tag, producing the vertex calc&conv. We have presented
the example of marketing analytics, as described here, in [9].

1This and two more transitions are part of future work and will be described in the next deliverable.

23



ASAP FP7 Project
ASAP D5.2

Workflow management tool

salestweets
reviews

resultproducts

campaign

calc
sent&tag

calc
totalSales

filter5by
prod&reg

convert
time&coord

calc
avgSent

select
product

join15by
prod&reg

join25by
prod&reg

Figure 4.8: Workflow analysing a product in a marketing campaign

salestweets
reviews

resultproducts

campaign
calc

totalSales

filter	by
prod&reg

select
product

calc
avgSent

calc
sent&tag

join1	by
prod&reg

join2	by
prod&reg

buffer

convert
time&coord

Figure 4.9: Analysed version of the workflow in Fig. 4.8

sales

tweets
reviews

resultproducts

campaigncalc
totalSales

filter	by
prod&reg

select
product

calc
avgSent

filter by
reg

join1	by
prod&reg

join2	by
prod&reg

buffer

filter	by
prod&reg

calc&conv

Figure 4.10: Optimised version of the workflow in Fig. 4.9

24



Chapter 5

Ongoing and future work

This chapter presents ideas that are towards a multi-workflow optimization.

5.1 Performance objective
Performance is a metric of workflow execution expressed in terms of time and used re-
sources.

Let W = {W1, . . . Wn} be a list of workflows. These workflows arrive at time points
T a = {ta

1, . . . ta
n}. These two lists are not fixed, but changing over time as new workflows

are added. The sizes of lists are equal and initially the list of times consist of zeros and
∀i < j, ta

i ≤ ta
j . Workflow W(n+1) arrives at ta

(n+1) and these elements append to the lists and
so on.

A workflow Wi is a graph G as defined by the workflow model. Each manipulation
operation (see Section 2.3.1) transforms a workflow graph G into an equivalent graph G′. In
other words, if an operation f is applied on a workflow Wi it produces a new workflow W ′

i :
W ′

i = f(Wi). Two workflows are equivalent if they produce the same output, given the same
input.

All possible equivalent workflows, or else, workflow states, can be produced by applying
all the applicable operations to every equivalent workflow state. We denote as SL(Wi) =
{W 1

i , . . . W k
i } the list of all equivalent workflow states. T s = {ts

1, . . . ts
n} and T e = {te

1, . . . te
n}

are the lists of start and end times of execution for workflows respectively.
The goal is to minimize the total elapsed time of completion of the execution of workflows:

min
n∑

i=1
(te

i − ta
i )

The end time of execution te of a workflow depends on the starting time of execution ts, as
well as the processing cost C of this workflow. The cost C is related to the time intervals the
workflow is processed on one or several machines (i.e. a parallelized execution) and depends

25



ASAP FP7 Project
ASAP D5.2

Workflow management tool

on the state of the system, (i.e. the utlization of resources by a pool of workflows), at a
specific point in time. Consequently, the objective function is:

OF (t) = min
n(t)∑
i=1

(ts
i − ta

i + C(Wi, t))

The estimations of the processing cost of workflows will be an input from the IReS
platform.

5.2 Multi-workflow optimization
Beyond optimising single workflows, we will explore the optimisation of multiple workflows.
We will aim to find common or similar subgraphs that we can optimise once and execute
once or a few times.

Definition 3. A ‘common part’ is a subgraph that is part of two or more workflows; these
parts are bijective and corresponding operators in vertices are equivalent.

Thus, our approach for multi-workflow optimization will be the joint execution of common
parts (Definition 3). We will try to rearrange workflows with common parts in order to enable
such execution (see Figure 5.1).

t"

t"

Synchronize"similar"parts"and"compute"once"

Figure 5.1: Synchronisation of common parts of multiple workflows

However, there are cases of workflows with common parts for which such rearrangement,
and, therefore, joint execution of common parts, is not possible. Such cases occur if subgraphs
of common parts have dependencies on subgraphs of other common parts. We introduce the
terminology of ‘mutual arrangement’ of subgraphs:

Definition 4. A vertex v is reachable from another vertex u, if there is a directed path that
starts from u and ends at v.

26



ASAP FP7 Project
ASAP D5.2

Workflow management tool
A A AB B B

MA1 MA2MA3

Figure 5.2: Mutual arrangement of subgraphs A and B

Definition 5. A subgraph S depends from a vertex v, if there exists a vertex u in the subgraph
and u reachable from v.

Definition 6. The mutual arrangement of two subgraphs A and B may be (Figure 5.2):

• MA1: A and B are independent, if there does not exist a pair of vertices of the two
subgraphs, for which one vertex depends on another.

• MA2: Uni-dependent (A depends on B), if there exists a vertex v in B and A depends
on v, but there does not exist a vertex in A on which B depends.

• MA3: Cross-dependent (A and B are cross-dependent if there exist vertices v in A, u
in B and B depends on v, A depends on u.

Depending on the mutual arrangement of subgraphs that belong to common parts of
workflows (within or across workflows), it may or not be possible to perform joint execution
of more than one common parts. We will showcase this with an example. Let us consider
the two workflows W1 and W2 that have two common parts, A and B. Joint execution of
both A and B is not possible if:

• At least in one workflow the subgraphs of common parts A and B are cross-dependent
(MA3).

• In workflow W1 common part A depends on common part B (MA2) and in W2 B
depends on A (MA2), as depicted in Figure 5.3.

We will devise techniques in order to discover efficient dependencies of common parts.
Towards this goal we will be inspired by the problem and solutions of the Longest and
Heaviest Increasing Subsequence [5, 20], which seem very promising for dealing with such
situations.

27



ASAP FP7 Project
ASAP D5.2

Workflow management tool

A

B

B

A

!" !#

Figure 5.3: Cross-dependency of common-parts A and B in workflows W1 and W2

28



Chapter 6

Related Work

Most Workflow Management Systems (WMS) are described in the report D5.1 [19]. In this
chapter we discuss only works that engage in optimization.

Workflow management systems have emerged in order to provide easy-to-use specifica-
tion of tasks that have to be performed during data analysis. An essential problem that
these systems need to solve is the combination of various tools for workflow execution and
optimization over multiple engines into a single research analysis / system. The field of work-
flow management is a relatively new field of research, but there are already some promising
results.

The HFMS system [15] builds on top of previous work on multi-engine execution opti-
mization [16]. This research focuses on optimization and execution across multiple engines.
The design of flows in HFMS is agnostic to a physical implementation. Data sets need not
be bound to a data store, and operators need not be bound to an execution engine. HFMS
handles flows as DAGs encoded in xLM, a proprietary language for expressing data flows.

Work related to HFMS [14] and [16] focuses on optimizing flows for several objectives:
performance, fault-tolerance and freshness over multiple execution engines. Optimization is
defined as a search space problem. These states are obtained by a large number of possible
transitions: swap, factorize, distribute, compose, decompose, partition, add recovery point,
replicate, parallelization, function shipping, data shipping, etc. Due the vastness of the state
space, some techniques / heuristics are proposed to prune it. To assess the cost of states
functions are defined both for operations (each vertex in a flow graph) and transitions.
The work in [17] describes the process of construction of cost functions in more detail, and
shows how they can be defined by engineer or during test runs or using micro-benchmarks.
The experiments demonstrate the feasibility of their technique by comparing the heuristic
solutions to those found by exhaustive search.

Thus, a significant difference of the HFMS system and related works from our research
is that we are tackling and aim to propose solutions for a wider statement of the problem:
the development of WMT in ASAP aims to manage workflows that have a variety of hetero-
geneous formats and can be processed on a variety of heterogeneous engines that may be,

29



ASAP FP7 Project
ASAP D5.2

Workflow management tool

furthermore, distributed. Beyond this, the main difference of our research with HFMS and
related works is that the latter focuses only on single-workflow optimization, whereas the
first will focus also on multi-workflow optimization.

30



Chapter 7

Summary

This document describes the first version of WMT. This includes the declaration semantics of
the workflow, design, analysis and optimization modules. Furthermore, we depict the work of
WMT on specific use cases from the telecommunication and web analytics domains.Finally,
we make an initial discussion on multi-workflow optimization.

31



Bibliography

[1] R. Bertoldi. Wp 9 - applications: Telecommunication data analytics. D9.2 Use Case
Requirements, February 2015.

[2] Coffeescript. http://coffeescript.org/.

[3] Grunt - the javascript task runner. http://gruntjs.com/.

[4] Hypertext markup language. http://www.w3.org/TR/html/.

[5] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems.
In Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching,
CPM ’92, pages 52–66, London, UK, UK, 1992. Springer-Verlag.

[6] Jade - template engine. http://jade-lang.com/.

[7] Javascript. https://www.javascript.com/.

[8] D. Tsoumakos K. Doka, N. Papailiou et al. Wp 3 - intelligent, multi-engine resource
scheduling platform. D3.2 IReS Platform v.1, August 2015.

[9] Verena Kantere and Maxim Filatov. A framework for big data analytics. In Proceedings
of the Eighth International C* Conference on Computer Science & Software Engineer-
ing, Yokohama, Japan, July 13-15, 2015, pages 125–132, 2015.

[10] Nginx. http://nginx.org/.

[11] Php-fpm (fastcgi process manager). http://php-fpm.org/.

[12] Python. https://www.python.org/.

[13] Philippe Rigaux. Wp 8 - applications: Web content analytics. D8.2 Use Case Require-
ments, February 2015.

[14] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. Optimizing etl workflows for
fault-tolerance. In Data Engineering (ICDE), 2010 IEEE 26th International Conference
on, pages 385–396, March 2010.

32

http://coffeescript.org/
http://gruntjs.com/
http://www.w3.org/TR/html/
http://jade-lang.com/
https://www.javascript.com/
http://nginx.org/
http://php-fpm.org/
https://www.python.org/


ASAP FP7 Project
ASAP D5.2

Workflow management tool

[15] A. Simitsis, K. Wilkinson, U. Dayal, and Meichun Hsu. Hfms: Managing the lifecycle
and complexity of hybrid analytic data flows. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 1174–1185, April 2013.

[16] Alkis Simitsis, Kevin Wilkinson, Malu Castellanos, and Umeshwar Dayal. Optimizing
analytic data flows for multiple execution engines. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, pages 829–
840, New York, NY, USA, 2012. ACM.

[17] Alkis Simitsis, Kevin Wilkinson, and Petar Jovanovic. xpad: A platform for analytic
data flows. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1109–1112, New York, NY, USA, 2013.
ACM.

[18] Robert Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1972.

[19] M. Filatov V. Kantere. Wp 5 - adaptive data analytics. D5.1 Workflow Management
Model, February 2015.

[20] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Inf. Process. Lett., 93(5):249–253, March
2005.

33


	List of Figures
	List of Tables
	Introduction
	Workflow management tool overview
	Purpose of the document
	Document structure

	Workflow management
	Workflow model
	Workflow representation

	Workflow analysis
	Workflow optimisation
	Workflow manipulation
	Operator characteristics
	Single-workflow optimization


	Workflow management tool architecture and implementation
	WMT architecture
	Analyzer
	Optimizer
	Integration

	Workflow management tool functionality
	GUI
	Examples
	Web content analytics
	Telecommunications data
	Marketing analytics


	Ongoing and future work
	Performance objective
	Multi-workflow optimization

	Related Work
	Summary

