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Abstract This deliverable is a report on the optimization module of the Platform
of Analytics Workflows (PAW). This module enables both single-workflow and multi-
workflow optimization. The report first gives a quick overview of the PAW architecture,
then delves into the implementation details of optimization algorithms and showcases
the efficiency of the proposed optimization techniques, applied on three real-world ap-
plications and their data, as well as on a synthetic benchmark.
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1 Introduction

Enterprises today employ a variety of data repositories and processing engines to
meet their needs for analytics. In addition to an SQL engine, a business might use a
Map-Reduce engine, a scripting engine, and so on. This diversity of systems enables
rapid development of new analytics, but also increases the management complexity.
Even a simple analytics environment comprising a data warehouse and an ETL system
might include many analytics scripts. This is a management challenge and, as more
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repositories and processing engines are added to the mix, the complexity increases
substantially.

In such a heterogeneous environment, analytics programs and computations span
multiple execution engines and storage repositories and they typically form data flows,
which we call workflows. Due to the importance and complexity of workflows, Work-
flow Management Tools constitute a multi-million dollar market (e.g., Forrester re-
search [11]). There is a plethora of commercial ETL tools available. The traditional
database vendors provide ETL solutions along with the DBMSs: IBM with InfoSphere
Information Server [15], Oracle with Oracle Warehouse Builder [19], and so on. There
also exist independent vendors that cover a large part of the market (e.g., Informatica
with Powercenter [14] and Taverna [25]). Nevertheless, an in-house development and
processing of ETL workflows is preferred for many data warehouse projects over an
ETL tool, due to the significant cost of purchasing and maintaining latter. The usage of
existing commercial solutions comes with a major drawback. Each one of them follows
a different design approach, offers a different set of operators, and provides a different
internal language to represent essentially similar functions.

Although Extract-Transform-Load (ETL) tools are available in the market for more
than a decade, only in the last few years researchers started to realize the importance
of this field. There have been several efforts towards (a) modeling analytics tasks and
automation of the design process (e.g., [6]), (b) monitoring workflow execution over
multiple engines (e.g., [17]), (c) optimization of specific workflow parts (e.g., optimiza-
tion of the loading phase in RiTE [26], iterative parts in Stratosphere [1] and Apache
Flink [10], scheduling policies [12], parallel collection processing in Emma [2] and so
on), and (d) some first results towards the optimization of the whole workflow (e.g.,
HFMS [23]). In this report we present a module, that implements algorithms of opti-
mizing the entire workflow, so the last point (d) in this list.

Complementary to the above, all these works provide methods of a single-workflow
optimization, while our module also enables a joint optimization of several workflows.
We demonstrate a novel technique for multi-workflow optimization that is implemented
as part of our system called PAW (Platform for Analytics Workflows), a fully open-
source platform1 for the design, analysis and execution of analytics workflows. To the
best of our knowledge, there is no previous work on multi-workflow optimization. The
first version of PAW is presented in deliverable D5.2 [28]. A workflow created in PAW
is prepared for execution in three steps: First, the tasks are analyzed and the workflow
is augmented with associative tasks; the new version of the workflow, which we call
the analyzed workflow. Second, workflows are manipulated by swapping, compos-
ing/decomposing and factorizing/distributing transitions, in order to achieve workflows
that have equivalent outputs with their original state, but have a form that can result in
optimized execution. Third, PAW schedules the execution of a set of workflows follow-
ing the novel technique of multi-workflow optimization. This technique is based on the
joint execution of the common parts of two or more workflows.

1Source available in https://github.com/project-asap/workflow
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1.1 Overview of PAW
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Figure 1: The architecture of PAW

PAW is part of Adaptable Scalable Analytics Platform (ASAP) [3], but it can also
stand as an independent tool for workflow management and optimization. Figure 1
depicts the architecture of PAW. The latter consists of four layers: Operators Library,
Interface, Optimizer, and Executor. These provide for workflow design, optimization,
and execution dispatch, respectively. Workflows are executed on a set of execution
engines and storage repositories of the multi-engine environment.

Operators library. This library contains operators, and their corresponding imple-
mentations with cost functions. The operators are classified as, either logical opera-
tors, which perform the core analytics jobs over the data, or the associative operators,
which serve as ‘glue’ between different engines and perform move and transformation
operations.

Interface. The GUI allows users to interactively create and/or modify a workflow,
and add new operators to the Library. The user designs a workflow graph in the in-
teractive tool and describes data and operators in the Tree-metadata language, which
captures structural information, operator properties (e.g., type, data schemas, statis-
tics, engine and implementation details, physical characteristics like memory budget),
and so on. The metadata tree is user extensible. To allow for extensibility, the first
levels of the metadata tree are predefined. Users can add their ad-hoc subtrees to
define their custom data or operators. Figure 2 shows the generic metadata tree for
an operator.
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Figure 2: The generic metadata tree for operator

Optimizer. The orchestration of the optimization process is performed by the Plan-
ner. It takes as an input a workflow from the Interface and sends it to the Decision
Making module, that returns back an optimized version of a workflow. All possible
versions are produced in the Versions Space Generator and their costs are estimated
by the Cost Estimator. The Decision Making module chooses the version with the
minimal cost as an optimal one.

Executor. The executor performs several tasks. The Enforcer schedules work-
flows for execution, generates executable code and dispatches workflow fragments to
execution engines. The Monitor observes the system state, tracks the progress of ex-
ecuting workflows and stores History Logs of runs. These logs are used to construct
more precise cost functions of operators through the Profiling module. As an execution
system, PAW uses IReS [16].

PAW implements a novel workflow model, that was presented in deliverable D5.1 [29].
A workflow W is a directed, acyclic graph (DAG) G = (V,E). The vertices V represent
data processing tasks and the edges E represent the flow of data. Each task is a set
of inputs, outputs and an operator. Data and operators need to be accompanied by a
set of metadata, i.e., properties that describe them. Such properties include input data
types and parameters of operators, the location of data objects or operator invocation
scripts, data schemas, implementation details, engines etc.

1.2 Purpose of the document

This document serves as a report on the optimization module of PAW and accom-
panies its prototype implementation. Its purpose is to delve into the details of opti-
mization techniques and showcases their efficiency. This includes detailed description
and pseudo-code of optimization algorithms and a benchmark suited for the problem
of experimenting with a broad range of workflows. Furthermore, we demonstrate the
work of WMT on specific use-cases from D9.2 [4]. Finally, we evaluate optimization
algorithms on a set of experimental tests.
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Figure 3: Original ‘Peak Detection’ workflow

1.3 Document structure

The rest of this document is structured as follows:

• Chapter 2 gives a brief overview of the workflow model and states a problem
of optimization. Moreover, it gives a motivation example driven by the use-case
scenario of D9.2 [4].

• Chapter 3 presents a single-workflow optimization, with respect to time efficiency.
This chapter includes operators categorization and based on it heuristics.

• Chapter 4 presents a thorough technique for the multi-workflow optimization.

• Chapter 5 gives details on the benchmark suited for the problem of experimenting
with a broad range of workflows. It provides a principled way for constructing
workflows. In this chapter we propose a categorization of workflow structures,
which covers frequent design cases.

• Chapter 6 describes the main configuration parameters and a set of measures
to be monitored in the experimental tests for the evaluation of optimization algo-
rithms. These tests consist of both synthetic workflows, generated in proposed
benchmarking tool, and workflows of real-world applications.

• Chapter 7 summarizes related work in the topic of the workflow optimization.

• Chapter 8 concludes the deliverable.

2 Problem Discussion

2.1 Motivating example

Figure 3 shows a real-world, analytic workflow from WIND, which involves processing
of the anonymised Call Data Records (CDR) to populate a report on a dashboard. The
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Figure 4: Optimized version of ‘Peak Detection’ workflow

report lists peaks in calls and their ratios to an averaged number of calls over a training
period (one month). The peaks are defined by “differences from typical”.

This workflow starts with extracting day of the week, hour of the day from timestamp
for each call record (extract ts). The calc num sums calls at one-hour intervals. Then,
two filters split the data to training and test datasets. The next step is to limit analysis to
specific geographical regions. Then, the number of calls in training period is averaged
over each mobile tower region, day in a week and hour in a day (week aggr ); this is
the typical distribution of calls. Next, calc test sum and calc train sum produce sum
of calls in each day of the test and training datasets. Then, test and training data are
joined and the ratio of calls to average number is produced. The filter peaks finds
ratios that are over a specified limit. These peaks is the sought information.

Initially this workflow comprised from three complex UDFs (DataFilter, DistrComp,
that matches to Distribution Computation in the operator library, PeakDet). Our first
goal is to optimize the workflow for performance over multiple engines; such an opti-
mization involves the consideration of these UDFs as single operators versus a series
of basic operators that as a whole can replace the UDFs. We aim to create alterna-
tive workflow versions, generate respective execution plans, estimate their costs and
select an optimal plan for execution. Figure 4 shows the optimized version of this
workflow that is selected by our technique for execution. In the remainder of this re-
port, we revisit this example in order to demonstrate how the proposed optimization
technique works. In our experimental study we show the performance of the original
and optimized workflow on real datasets of variable size.

Next, we consider the situation when the user sends to execute two Peak Detec-
tion workflows with different parameters in vertices filter region (different regions of
exploration). Here it is our second goal: optimize such multi-workflow system. First,
we perform an individual optimization for each workflow. Then, we aim to combine
these two workflows to one joint workflow, so that one or more common subgraphs of
original workflows, appear only once in the joint workflow and, therefore, are executed
only once. Further, in the report we show how the whole space of possible joint work-
flows is produced and the optimized version is selected for execution. The result of
optimization of such system is shown in the experiments section 6.
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2.2 Context

In this section we briefly recall the context and used concepts. Thoroughly it is de-
scribed in previous deliverables D5.1 [29] and D5.2 [28].

We assume a data processing environment that comprises numerous machines
(e.g. a cluster) on which a variety of processing engines are installed (e.g. traditional
and modern DBMSs). Each engine has access to a local data store. This environment
may include multiple instances of the same engine (e.g. PostgreSQL). The processing
environment takes as input logical workflows of data processing on a set of input data
Di, producing a set of output data Do. The logical workflows (hereafter workflow)
W1, . . . ,Wn are directed acyclic graphs (DAGs), Gk = (Vk, Ek) where Vk is the set of
vertices and Ek the set of edges of the graph Gk. Therefore, Wk = {Gk,Di,Do}. Each
vertex v ∈ V represents a logical processing operator and each edge e ∈ E , e = (v1, v2)
the flow of data between two operators v1 and v2. Therefore, an operator v processes
the data output by other operators v′, for which there exists edges e = (v′, v) in G.

Each workflow W corresponds to multiple alternative execution plansWe, in which
the logical operators v ∈ V are matched 1-1 with specific implemented operator ver-
sions ve, running on a specific engine instance; also, an execution plan may include
associative operators ae that move data from one engine to another and new edges
that connect the associative operators ae ∈ Ae with the implemented ones ve ∈ Ve .
Furthermore, the input and output data are matched with specific local data stores, Die

andDoe. Therefore, an execution plan is We = {Ge,Die,Doe}, where Ge = {Ve∪Ae, Ee}.
Every vertex in We has an execution cost c and the execution cost of the whole execu-
tion plan is: c(We) =

∑
c(ve) +

∑
c(ae).

Goal. Our goal is to create and select for execution, the execution plan We of a
workflow W with a minimal execution cost, i.e. We ∈ We s.t. c(We) ≤ c(W ′

e),∀W ′
e ∈ We.

Solution. We do this with the following steps:

1. For the original workflow W , we create equivalent optimized versionsWl.

2. For each version Wl ∈ Wl we create the respective execution plansWle.

3. For each execution plan Wle ∈ Wle for all Wl ∈ Wl we estimate the respective
cost c(Wle).

4. We select the execution plan with the minimal cost.

Step 1 of the above process performs the optimization of the workflow at the a
logical level. The challenge is to restructure the original workflow in a manner that:
(a) ensures that the resulting version is equivalent to the original one, i.e. given the
same input data it produces the same output data, and (b) ensures that the resulting
version will correspond to execution plans among which, at least one will have cost
smaller than the cost of each of the execution plans that correspond to the original
workflow, i.e. for each optimized workflow Wl ∈ Wl, there exists Wle ∈ Wle, so that
c(Wle) ≤ c(We), for all We ∈ We. Step 2 refers to the matching of the created optimized
workflow versions Wl with implemented versions for each one of the involved logical
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operators, and, in case two adjacent operators are matched with implementations on
different engines or machines, infusion of an associative operator that moves data
from one engine/machine to the other. Steps 3 and 4 refer to estimating the execution
cost of all the alternative execution plans of all the optimized workflow versions, and
selecting the one with the minimal cost.

Let’s extend the goal from one to a set of workflows. The solution of it is the same
list of steps with a supplement of these two placed between step 1 and 2:

1.1 Find common parts CPs for pairs of workflows, that are sent for execution

1.2 Combine by common parts CPs and produce all possible joint workflowsW l
j

In the following we describe all these process steps in detail, taking a bottom-up
approach, i.e. we start from the description of operators, we continue with the creation
of the alternative execution plans of a workflow and the estimation of their cost, next,
we presents the whole algorithm of the single-workflow optimization, then we turn to a
process of finding of common parts and combining by them a pair or a set of workflows
to a joint workflow, and we finish with the multi-workflow optimization algorithm.

2.3 Operators

Each logical operator has an abstract definition and one or several implementations,
that can span several types of engines (i.e. one or more implementations per engine).
For example, a traditional logical join has an abstract definition, and can be imple-
mented for a relational DBMS and a NoSQL database. A logical operator can corre-
spond to a simple operation or to complex algorithmic computation. In both cases,
in order to use a logical operator in an execution plan, we need to have a tailored
implementation for every engine on which it is going to be executed. The definition
of a logical operator includes: the type and number of inputs, the number and type
of outputs, and mandatory and optional attributes of the operator; it can also include
functions to compute cardinality and processing cost. For example, operators filter
and calc from our library both have one input and one output and are defined for re-
lational data. The filter operator retrieves tuples from a relation, limiting the results to
only those that meet a specific criterion and the calc operator produces tuples supple-
mented with additional attribute, calculated by a specific expression. Formally they are
defined as follows:
O(filter, I) = {r | r ∈ I ∧ FilterPredicate(r)}
O(calc, I) = {r ∪ {attr : val} | r ∈ I ∧ val := CalcExpression(r)}

Logical operators are categorized as:
• Blocking operators, which require knowledge of the whole dataset, e.g., a

groupBy, a join or a sort.

• Non-blocking operators, which process each tuple separately, e.g., operators
filter.
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• Restrictive operators output a smaller data volume than the incoming data vol-
ume, e.g. filter.

Logical operators and their implementations are stored in the library. Table 5 shows
implemented operators from the library of our real processing environment and the
categorization of the respective logical operators. Users can register their own new
logical operators together with respective implementations, or new implementations
of existing logical operators. Some examples of the operators that has been added
to the library by the users of our system are: PeakDet (peak detection), Stereo-
type Classification, Distribution Computation and User Profiling, which are complex
operators used in telecommunication data analytics. These operators have been de-
composed to a set of basic operators (Figure 3) for more possibilities for optimization.
Some of the operators can be used associatively in the creation of execution plans of
workflows. These are the operators that move data from one engine to another, or
one machine to another. Table 5 shows 2 such operators, Move Hive Postgres and
Move Postgres Hive, which move a dataset from Hive to PostgreSQL and the oppo-
site.

2.4 Execution plans of workflows

In this section we describe the creation of the execution plans for a workflow and the
estimation of their cost.

2.4.1 Creation of execution plans

The creation of an execution plan We for a workflow W = {V , E} is achieved in two
steps:

1. Every logical operator v ∈ V is matched with a respective implemented operator,
ve that can be executed on a specific machine and engine.

2. For every pair of adjacent implemented operators (ve1, ve2) we check if these
operators are on the same engine and machine; if they are not on the same
engine or machine, we check if there is an associative operator ae that can be
used to transfer the output data of ve1 to the engine and machine where ve2
resides, so that the latter can use it as input. If this is not possible, the creation
of the execution plan fails. If it is, then:

3. The set of edges Ee is instantiated with edges that correspond 1-1 with the edges
E of the original graph G. The edge (ve1, ve2) ∈ Ee is substituted with two new
edges (ve1, ae) and (ae, ve2). The execution plan is a new DAG with vertices
the union of all implemented operators Ve and all associative operators Ae, and
edges Ee ← (Ee −

⋃
(ve1,ve2)

) ∪
⋃
{(ve1,ae),(ae,ve2)}.
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Figure 5: Categorization of operators

A logical operator (e.g. logical join) may have various implementations for the same
engine, (e.g. merge-sort) and across multiple engines (e.g., relational join, Hadoop/Pig
join). Also, a specific implementation may be or not available in a specific machine
(even if it runs the respective engine). Therefore, we first try to match each logical
operator of a workflow with all respective implementations that exist in the processing
environment. This action results possibly in the matching of parts of the workflow to
different machines or different engines (that reside in the same or different machines).
In order to achieve the execution of the workflow as a whole by executing its parts in the
matched machines and engines, we need to transfer data from one machine/engine to
another. This can be achieved with the infusion of associative implemented operators
that move data (as described in Section 2.3). If such operators do not exist, then
the creation of the execution plan fails. If they exist, they are used as intermediaries
between the execution of two parts of the workflow that are connected, i.e. the output
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of a workflow part is the input to the other.

2.4.2 Cost estimation of an execution plan

As mentioned, the cost of each execution plan We created by the process of Section
2.4.1 is the summation of the cost of every implemented operator and all infused as-
sociative operators: c(We) =

∑
c(ve)+

∑
c(ae). The cost c(ve) is based on: (a) existing

cost functions of the implemented operator ve (e.g. given by the user), and (b) sta-
tistical summaries of the outputs of operators, i.e. empirical graphs of execution time
versus data input size that are produced by test runs or history logs of runs of the
implemented operator ve.

The cost function (a) of an implemented operator ve involves measures like CPU,
memory (e.g., buffer sizes), I/O, and communication costs. Naturally, different imple-
mentations of a logical operator (including implementations for different engines) have
different cost functions. In most cases, the developer or provider of an implemented
operator ve does not disclose a cost function (and the source code of the operator
may not be available either). In such frequent cases, we treat the operator as a ‘black
box’ and we run a series of micro-benchmarks to study the operator’s behavior under
different configurations. Based on the results of micro-benchmarking, we build a cost
function for an implemented operator. As an extra, but optional, step, we enable users
to run their workflows with a sample of their data and we use the obtained statistics to
fine-tune the cost functions of employed implemented operators, before using them in
cost estimation of execution plans of workflows.

The statistical summaries of the outputs of operators, (b), show, essentially, the
selectivity of the operator with respect to the size of the input data. Once more, if
these summaries are not given with the registration of a logical operator in the library,
we create them by running micro-benchmarks using available implementations of the
logical operator.

The cost c(ae) of an associative operator ae that moves data captures different
costs involved in the data moving process, like data shipping cost, the cost of initial-
izing the target engine, the monetary cost of such an action, network bandwidth etc.
Naturally c(ae) is always a function that increases with the size of the data (frequently
linearly); therefore, as the data to be moved from one engine to the other increases,
the respective moving cost increases too, making execution plans that include such an
associative operator very expensive.

3 Single-workflow optimization

In this chapter we describe the single-workflow optimization. We describe how we
create the search space of the optimization and the search algorithms.

Search space The search space of possible execution plans for a workflow is multi-
dimensional. It includes 3 dimensions: (a) the dimension that represents the set of
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possible equivalent versions of the original workflow, (b) the dimension that repre-
sents the set of alternative implementations of logical operators, and (c) the dimension
that represents the execution of implemented operators on different machines and
engines. Dimension (a) is independent from (b) and (c), whereas (b) and (c) are inter-
dependent, as a specific implemented operator may run on a specific type of engine,
and on machines where this engine is installed and the input data are stored locally.
Taking the original workflow as input, our optimization technique produces equivalent
versions by applying transitions on the logical operators of sets of adjacent vertices
(Step 1 of the Solution in Section 3). In Section 3.1 we describe in detail how the
equivalent versions are created.

Search techniques Following the procedure described in Section 2.4.1, every
equivalent workflow (i.e. a point in dimension (a) of the search space) is matched with
implemented operators (points in dimension (b)) and engines that run on the available
machines (points in dimension (c)) in order to produce respective execution plans.
The cost of execution plans is estimated as described in Section 2.4.2. Therefore, the
search for the optimal execution plan(s) is led by the exploration of alternative equiv-
alent versions of the workflow. We use two algorithms to explore the search space
of dimension (a). The first is an exhaustive algorithm that constructs all alternative
equivalent versions and their respective execution plans by iterating on the number of
possible transitions. The second is a heuristic algorithm that creates only some of the
alternative equivalent versions based on heuristics. In Section 3.2 we give the details
of the algorithms.

3.1 Creating equivalent workflows

In this section we describe the transitions that we apply to the workflow in order to
create equivalent versions that may lead to plans with smaller cost estimation.

3.1.1 Transitions

A transition is applied on a set of adjacent vertices of a workflow W and transforms it
to an equivalent workflow Wl.
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Definition of transitions. We introduce 5 transitions. Their input workflow is
W = {V , E} and their output is workflow Wl = {Vl, El}. The transition swap changes
the order of a pair of adjacent operators v1, v2. The transition compose replaces a
subgraph of the initial workflow with one operator that is capable of performing the
combined operation of all the operators in this subgraph; ordinarily, compose is ap-
plied on a pair of of adjacent operators and replaces them with a new one capable of
performing their combined operation; the transition decompose does the opposite of
compose and replaces one complex operator with a subgraph of new operators that
are capable to jointly perform the operation of the replaced complex operator; ordi-
narily decompose is applied in order to split one complex operator into a pair of more
basic operators. Transition factorize is applied on a subgraph that consists of a set
of operators Vf the output of which is input to (or the input of which is output of) one
operator (we call this a branching operator and we denote it with vb); it swaps all op-
erators vf ∈ Vf with vb and composes them in one complex operator vt that is capable
of performing the operations of all operators vf ∈ Vf . Ordinarily factorize is applied on
two operators that perform the same operation, e.g. the same filter and are adjacent
to the same branching operator, e.g. a join, or (from Table 5) Join4, Left Outer Join,
User Profiling, or on operators that output copies of the processed data; in this case
the transition swaps the pair of identical operators with the branching one and elimi-
nates one of the first. Transition distribute performs the opposite of factorize, i.e. swaps
a branching operator vb with the following adjacent vd, and replicates the latter so that
one operator vt identical to vb is included adjacently in all paths leading to vb. Ordinar-
ily, distribute is applied to a branching operator like join and an operator following it,
e.g. a filter, so that the latter can be applied separately to the inputs of the first. display
an example for each one of the transitions. The following are the formal definitions of
the transitions:

• swap(W, v1, v2), v1, v2 ∈ V , (v1, v2) ∈ E : this transition is applied to a pair of
adjacent operators v1 and v2, and produces a new workflow W ′ in which the
positions of v1 and v2 have been interchanged, i.e. Vl = V and El = (E −
{(v1, v2), (vi, v1), (v2, vj)}) ∪ {(v2, v1), (vi, v2), (v1, vj)},∀vi, vjs.t.(vi, v1), (v2, vj) ∈ E .

• compose(W, v12, v1, v2), v1, v2 ∈ V , (v1, v2) ∈ E : this transition is applied to a pair
of adjacent operators v1 and v2, and produces a new workflow W ′ in which these
are replaced by a new operator v12, i.e. Vl = (V − {v1, v2}) ∪ v12 and El =
(E − {(v1, v2), (vi, v1), (v2, vj)}) ∪ {(vi, v12), (v12, vj)}, ∀vi, vjs.t.(vi, v1), (v2, vj) ∈ E .
Composition of a set of operators can be defined in a recursive manner.

• decompose(W, v12, v1, v2), v12 ∈ V: this transition is applied to one operator v12
and produces a new workflow W ′ in which this is replaced by a pair of adjacent
operators v1 and v2, i.e. Vl = (V−v12)∪{v1, v2}) and El = (E−{(vi, v12), (v12, vj)})∪
{(v1, v2), (vi, v1), (v2, vj)}, ∀vi, vjs.t.(vi, v12), (v12, vj) ∈ E . Decomposition of a set
of operators can be defined in a recursive manner.

• factorize(W, vb,Vf , vt), Vf ⊂ V , vb ∈ V , (vf , v) ∈ E , ∀vf ∈ Vf : this transition is
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applied to a set (two or more) operators vf that are adjacent to the same operator
vb and performs swapping of vf with vb and composition of all vf ∈ Vf into one
operator vt, i.e. Vl = (V − Vf ) ∪ vt and El = (E − {(vf , vb), (vi, vf ), (vb, vj)}) ∪
{(vi, vb), (vb, vl), (vl, vj)},∀vf ∈ Vf and ∀vi, vj, s.t. (vi, vf ), (vb, vj) ∈ E .

• distribute(W, vb,Vt, vd), vb, vd ∈ V , (vb, vd) ∈ E : this transition is applied to ad-
jacent operators vb and vd and performs swapping of vd with vb and inclusion
of a new operator vl,adjacently to vb, in all workflow paths leading to vb, i.e.
Vl = (V−vd∪Vt and El = (E−{(vi, vb), (vb, vd), (vd, vj)}),∪{(vi, vt), (vt, vb), (vb, vj)},
∀vi, vj, s.t.(vi, vb), (vb, vj) ∈ E .

Functionality of transitions. The 5 transitions defined above are introduced be-
cause they can create optimization opportunities of parts of the input workflow.

Transition swap allows for pushing highly selective operators toward the root of the
workflow; in this way, the size of the data that are input to the workflow, Di, can be
significantly reduced early during the execution of the workflow, leading to lighter data
load, and, therefore, faster execution, for many of the operators of the workflow.

Transitions compose and decompose allow for the replacement of complex oper-
ators with a set of simpler ones that can perform the same operation and vice versa;
this creates opportunities for optimization that are adaptive to the specific environment
(available machines and engines, distribution of data locally to machines and engines,
size of data, and current workload of machines). Specifically, the complex operator
and the respective equivalent set of operators most probably have implementations
for one or a few engines. Depending on the location and distribution of the data on
the machines and engines, as well as their workload, it may be best to execute either
an implementation of the complex operator (naturally on one engine and machine) or
the equivalent set of operators (distributed on different engines and machines). In the
first case, there are optimization opportunities created by the specific engine on which
the complex operator is executed, and in the second there are optimization opportuni-
ties that are created by the distribution of execution of operators on a combination of
machines and engines.

Transition factorize allows for the replacement of multiple identical operators that
(i) all feed one branching operator and take as input different datasets, with one such
operator that is performed on the sum of the datasets, after the latter have been pro-
cessed by the branching operator, or (ii) oppositely, all are fed by the same branching
operator, with one operator performed on the input data of the branching operator.
The optimization derives from the fact that the operation of the replaced operators is
performed only once instead of several times, and, moreover, on a reduced in size
aggregated dataset. Inversely, transition distribute allows for the replacement of one
operator with multiple identical ones, which are distributed on the input (or output)
paths of a preceding (or succeeding) branching operator. The optimization oppor-
tunity is created either by the parallelization of the execution of the operation of the
identical operators, their distribution over the input dataset, or even by the reduction
of size of the aggregated input data due to their being pushed toward the root of the
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Figure 9: A workflow example and a corresponding schemas table of operators and
data of this workflow

workflow.
As an example, the original workflow of Figure 3, designed by the user, con-

sists of three complex operators (DataFilter, DistrComp, that matches to Distribu-
tion Computation in the operator library, PeakDet) implemented on a scripting engine;
the optimization technique decomposes these operators to basic operators that have
implementations in RDBMSs. This decomposition gives more possibilities for workflow
versioning through the application of transitions. In the optimized version of Figure 4
vertices LO Join and filter region of decomposed UDF DataFilter are first swapped
with filter train, filter test and then factorized over calc num, their common predeces-
sor.

Another example is a real workflow from a sales use-case, shown in Figure 33 and
described in Section 6.2.2. During the optimization process a vertex filter by prod&reg
is twice distributed over join2 by prod&reg and join1 by prod&reg. Then it is decom-
posed to filter by prod and filter by reg; the second vertex of these two is swapped sev-
eral times towards the input data source tweets. The vertex filter by prod is composed
with select product and the produced vertex is called select&filter product. Figure 34
displays the optimized workflow version.

3.1.2 Schemas of operators

Apart from the input and output data schemas, each logical operator is accompanied
by the following schemas:

• Functionality schema. This schema is a list of attributes, being a subset of (the
union of) the input schema, denoting the attributes which take part in the compu-
tation performed by the task.

• Generated schema. This schema is a list of attributes, being a relative comple-
ment of input schema in output schema and are generated due to the processing
of the tasks.
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Figure 10: Applicability of swap for pairs of operators

• Projected-out schema. This schema is a list of attributes that belongs to the input
schema, but is not propagated further after processing.

These schemas are used to validate the correctness of a workflow and to determine
the possibility of transition application. The latter is described in Section 3.1.3. Figure 9
shows a workflow consisting of an input data source (data) and two vertices (filter and
projection), and the table with the schemas of operators used in this workflow.

3.1.3 Applicability of transitions

The transitions can be applied only to sets of operators that confirm to specific condi-
tions. When a new operator is defined and added to the operator library, the developer
or provider of the operator has to declare if it conforms to the conditions of a transition
by filling in a specific table template. This is a n × n table where n is the number of
operators in the library; the row in this table indicates the operator that is predecessor
and the column indicates the operator that is successor; the cell represents a condition
for the applicability of the transition for this ordered pair of operators, the condition is
based on schemas of operators described above. Filling in this table is a step of the
process of adding operators to the library. Defining conditions for all pairs is not nec-
essary; if the condition for some pair of operators is not defined, then the transition for
them cannot be applied. Figures 10, 11 and 12 display a part of the applicability tables
for swapping, (de)composing and factorizing/distributing, respectively. In the following,

21



ASAP FP7 Project
ASAP D5.3

Data Processing Deployment

Figure 11: Applicability and a resulting operator of compose/decompose for pairs of
operators

Figure 12: Applicability of factorize and distribute transitions
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schemas calc tax calc totalCost

functionality cost cost,	tax

generated tax totalCost

projected-out ⌀ ⌀
input date,	cost date,	cost,	tax

output date,	cost,	tax date,	cost,	tax,	
totalCost

Figure 13: An example of a workflow, where swap can’t be applied

we discuss the conditions for each transition.
Swap. One would normally anticipate that swapping is already covered by tradi-

tional query optimization techniques. However, this is not true. On the contrary, we
have observed that the swapping of operators deviates from the equivalent problem
of “pushing vertices downward” as we normally do in the execution plan of a rela-
tional query. The major reason for this deviation is the presence of functions, which
potentially change the semantics of attributes. Relational algebra does not provide
any support for functions; still, the “pushing” of operators should be allowed in some
cases, whereas, in some others, it should be prevented. Swapping of operators in a
workflow is a generalization of “pushing”operators towards both the start or the end of
a workflow.

Formally, we allow the swapping of two operators v1 and v2 if the following condi-
tions hold:

1. The functionality schema of v1 and v2 is a subset of their predecessors’ output
schemas (both before and after the swapping).

2. The input schemas of v1 and v2 are subsets of their predecessors’ output schemas,
both before and after the swapping.

Conditions 1 an 2 cover two possible situations, which we describe with examples.
Let us consider a workflow (Figure 13) with one input data source sales and two

vertices calc tax and calc totalSales. calc tax computes the tax from the cost for each
sale record, then calc totalSales sums tax and cost, and records the result to a new
field totalCost. The functionality schema of calc totalSales contains tax and cost. If
swapping is attempted, calc totalSales precedes calc tax and the schema of sales
data (date, cost) doesn’t contain tax ; this contradicts the first condition. Thus, the
swapping of calc tax and calc totalSales is rejected.

Let us consider the workflow of Figure 9, in which a projection rejects an attribute c
of its input schema. Then, an attempted swapping produces an error since the rejected
attribute c in the input schema of operator filter (now a successor of projection) will not
be presented in the output schema of projection.
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Factorize/Distribute. The conditions governing factorization of a set of vertices
Vf are similar to conditions of swapping. First, according to a definition of factorize,
vertices in Vf are identical instantiations of the same logical operator and vb is their
common successor or predecessor. Therefore the conditions for factorization are the
following:

1. The functionality schema of ∀vi ∈ Vf and vb, v and vb after factorization is a
subset of their predecessors’ output schemas,

2. The input schemas of ∀vi ∈ Vf and vb, v and vb after factorization are subsets of
their predecessors’ output schemas.

The distribution is governed by similar conditions; a vertex v can be cloned in a set
of vertices Vt if:

1. The functionality schema of v and vb, vb and ∀vi ∈ Vf after distribution is a subset
of their predecessors’ output schemas,

2. The input schemas of v and vb, ∀vi ∈ Vf and vb after distribution are subsets of
their predecessors’ output schemas.

Compose/Decompose. Composition of two vertices, v1 proceeding v2, is applica-
ble if the output schema of the new vertex is the output of v2 and the input schema
is the input of v1. Decomposition requires that the originating vertex is a composed
one, like, for example, filter calc. In this case, the vertex is decomposed in two ver-
tices filter and calc. (As described in Section 3.2, our algorithms apply transitions on
workflows in which the original complex operators are initially decomposed to a set of
basic operators. After this initial decomposition, attempts and application of various
compositions and afterwards decompositions of operators are possible.)

3.1.4 Identification of versions

During the application of the transitions, we need to be able to discern versions from
one another so that we avoid generating (and computing the cost of) the same version
more than once. A workflow is a directed graph that can be topologically ordered on
the basis of the predecessor-successor relationship so that an execution priority can
be assigned to each vertex. In order to automatically derive vertex identifiers for all
equivalent versions of a workflow we assign to each vertex the priority that stems from
the topological ordering of the original workflow.

Based on the above observations, we create a version identification scheme such
that: 1) each (linear) path is denoted as a string where the vertices of the path are
delimited by underscores, and 2) concurrent paths are delimited by a double slash.
We call the string that characterizes each version as the signature of the workflow
version. Between concurrent paths, the signature of the version starts with the path
including the identifier with the lowest value.

For the cases in which new vertices are derived from existing ones, we use the
following rules:
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• If two existing vertices a and b are composed to create a new one, then the new
vertex is denoted as a+ b.

• If two existing vertices a and b are factorized to create a new one, then the new
vertex is denoted as a; b.

• If a vertex is cloned to be distributed in more that one paths, then each of its
clones adopts the identifier of the original vertex followed by a dot and a unique
integer as a partial identifier (e.g., a.1; a.2).

• If a vertex is decomposed, we reuse the identifiers of its components (e.g., a+ b
or a; b can be decomposed to a and b, respectively).

3.2 Searching for optimal execution plans

In this section we present our algorithms for exploring alternative equivalent workflow
versions in order to find one with an optimal execution plan.

3.2.1 Exhaustive Search

We create Basic Exhaustive Search algorithm (BES) that explores the version space
exhaustively. First, BES generates a set of equivalent versions of the original workflow,
in which the original complex operators are decomposed to a set of basic operators;
even though there can be multiple such decompositions for one complex operator, in
practice there is usually only one. Second, BES generates all possible versions by
applying all the applicable transitions to every version in an iterative manner.

BES uses two lists open and close for keeping track of unvisited and visited ver-
sions, respectively. It also uses a version variable Wmin for storing through iterations
the workflow version having the minimum cost. The algorithm starts from all decom-
posed versions of the original workflow, i.e., versions W i

o, which are given as an input
parameter. At the beginning open contains W i

o and close is empty. For every version W
in open, we apply any applicable transition f to it. For every newly generated, but not
already visited, version W ′, if the cost of it is less than the minimum cost discovered
so far, then W ′ becomes the new Wmin. In any case, W ′ is marked as visited and
we proceed until there is no other version to create. Then, BES returns the optimal
version Wmin.

Clearly, the version space is finite and the algorithm terminates after having gener-
ated all possible versions and returning the optimal one.

The version space is exponentially large and in realistic environments we may need
more efficient exploration methods than BES. To improve the search performance of
BES we employ a set of heuristics, based on simple observations relevant to the def-
inition of transitions. Heuristic H1 is based on the observation that transition factorize
indicates that it is not necessary to try factorizing all the vertices of a workflow. Instead,
a new version should be generated from an old one through a factorize transition that

25



ASAP FP7 Project
ASAP D5.3

Data Processing Deployment

involves only identical operators connected to a branching operator. Heuristic H2 is
based on the observation that transition swap can be applied only on operators that
have one input and one output.

• H1: Find branching operators and check if they are connected with operators that
are identical instances of a logical operator. Try to factorize this set of operators.

• H2: Find (linear) paths and try to swap the operators in each of such paths.

Heuristics H1 and H2 accelerate the generation of the search space and are used
in the exhaustive algorithm ES.

Algorithm 1: Basic Exhaustive search.
Input: An original workflow Wo = (V,E)
Result: A version Wmin having the minimum cost

1 begin
2 Wmin = Wo;
3 open←Wo;
4 close = ∅;
5 while open <> ∅ do
6 W ← open;
7 for all W ′ = f(W ) do
8 if W ′ 6∈ open and W ′ 6∈ close then
9 if C(W ′) < C(Wmin) then Wmin = W ′;;

10 open←W ′;

11 close←W ;

12 return Wmin

Algorithm 2: Exhaustive transitions application.
1 Function f(W )
2 W = (V,E);
3 foreach adj pair(vi, vj) ∈ V do
4 if compose(vi, vj) then W ′ ← compose(vi, vj)(W );

5 foreach {vb, v1, v2} ∈ V do
6 if factorize(vb, v1, v2) then W ′ ← factorize(vb, v1, v2)(W );

7 foreach {vb, v} ∈ V do
8 if distribute(vb, v) then W ′ ← distribute(vb, v)(W );

9 foreach adj pair(vi, vj) ∈ V do
10 if swap(vi, vj) then W ′ ← swap(vi, vj)(W );

11 return W ′

3.2.2 Pruning the search space

The version space is exponentially large and in realistic environments we may need
more efficient exploration methods than BES. To improve the search performance, we
propose two heuristics that prune the search space. Heuristic H3 moves restrictive
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Figure 14: Three workflows and a joint workflow of them

operators towards the root of the workflow in order to reduce early the volume of the
propagated data, resulting in workflow versions that have low overall cost. Heuristic
H4 groups blocking and non-blocking operators separately. Since blocking operators
need the total of a dataset to start processing, whereas non-blocking do not, a ran-
dom sequence of a blocking and a non-blocking operators may result in delayed over-
all processing time, because of necessary accumulation of intermediate outputs. By
grouping blocking and non-blocking operators separately we to eliminate such points
of necessary accumulation of intermediate data.

• H3: Move restrictive operators to the root of the workflow, e.g. change extract→
function→ filter to extract→ filter→ function, if possible.

• H4: Group non-blocking operators together and separately from blocking opera-
tors, e.g., change filter→ sort→ function→ group to filter→ function→ sort→
group.

Based on the heuristics H3 and H4 we present the heuristic algorithm HS.

4 Multi-workflow optimization

Our technique of multi-workflow optimization is based on the joint execution of the
common parts of workflows. Specifically, a set of workflows is combined to one joint
workflow, so that one or more common subgraphs in these workflows, appear only
once in the joint workflow and, therefore, are executed only once. The technique
consists of four steps: (1) for each workflow generate all possible equivalent workflow
versions; (2) detect common tasks and find the common parts in workflow versions;
(3) estimate the processing cost of joint executions; (4) choose workflow versions and
common parts in them for the joint execution.

4.1 Creating the joint workflow

A set of workflows W = {W1, . . . ,Wm} may be combined in a joint workflow denoted
as Wj = W1 ◦W2 ◦ · · · ◦Wm−1 ◦Wm. This creation is based on finding common parts
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Algorithm 3: ES.
Input: An original workflow Wo = (V,E)
and a list of compose constraints compose cons
Result: A version Wmin having the minimal cost and versions search space

1 begin
2 Wmin = Wo;
3 open←Wo;
4 close = ∅;
5 apply all composes according to compose cons;
6 H ← Find Homologous Tasks(Wo);
7 D ← Find Distributable Tasks(Wo);
8 LPs← Find Linear Paths(Wo);
9 foreach lp ∈ LPs do

10 foreach adj pair(vi, vj) ∈ lp do
11 if swap(vi, vj) then
12 W ′ ← swap(vi, vj)(Wo);
13 if (C(W ′) < C(Wmin)) then Wmin = W ′;

14 foreach pair(vi, vj) ∈ H do
15 if factorize(vb, vi, vj) then
16 W ′ ← factorize(vb, vi, vj)(Wo);
17 if (C(W ′) < C(Wmin)) then Wmin = W ′;
18 open←W ′;

19 foreach W ∈ open do
20 foreach v ∈ D do
21 if distribute(vb, v) then
22 W ′ ← distribute(vb, v)(W );
23 if (C(W ′) < C(Wmin)) then Wmin = W ′;
24 open←W ′;

25 while open <> ∅ do
26 W ← open;
27 LP ← Find Linear Paths(W );
28 foreach lp ∈ LPs do
29 foreach adj pair(vi, vj) ∈ lp do
30 if swap(vi, vj) then
31 W ′ ← swap(vi, vj)(W );
32 if W ′ 6∈ open and W ′ 6∈ close then
33 if (C(W ′) < C(Wmin)) then Wmin = W ′;
34 open←W ′;

35 close←W ;

36 return ({min : Wmin}, {versions : close})

in the workflows and using them as joint subgraphs between the rest of the workflow
graphs. Figure 14 depicts three workflows W1, W2, W3 and a joint workflow of them,
Wj. CP1 and CP2 represent common parts of W1, W2 and W1, W3, respectively, and
A..G are the remaining parts of workflows.

4.2 Finding common parts

A common part consists of common tasks. Two common tasks consist of the same
operators, inputs and outputs. We detect common tasks by comparing properties of
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Algorithm 4: HS.
Input: An original workflow Wo = (V,E)
and a list of compose constraints compose cons
Result: A version Wmin having the minimal cost

1 begin
2 Wmin = Wo;
3 open←Wo;
4 close = ∅;
5 apply all composes according to compose cons;
6 H ← Find Homologous Tasks(Wo);
7 D ← Find Distributable Tasks(Wo);
8 LP ← Find Linear Paths(Wo);
9 foreach lpk ∈ LP do

10 foreach adj pair(vi, vj) ∈ lpk do
11 if swap(vi, vj) and H4(vi, vj) then
12 W ′ ← swap(vi, vj)(Wo);
13 if H5(W ′,Wmin) and (C(W ′) < C(Wmin)) then Wmin = W ′;;

14 foreach pair(vi, vj) ∈ H do
15 if factorize(vb, vi, vj) and H4(vb, vi, vj) then
16 W ′ ← factorize(vb, vi, vj)(Wo);
17 if H5(W ′,Wmin) and (C(W ′) < C(Wmin)) then Wmin = W ′;;
18 open←W ′;

19 foreach W ∈ open do
20 foreach v ∈ D do
21 if distribute(vb, v) and H4(vb, v) then
22 W ′ ← distribute(vb, v)(W );
23 if H5(W ′,Wmin) and (C(W ′) < C(Wmin)) then Wmin = W ′;;
24 open←W ′;

25 while open <> ∅ do
26 W ← open;
27 LP ← Find Linear Paths(W );
28 foreach lpk ∈ LP do
29 foreach adj pair(vi, vj) ∈ lpk do
30 if swap(vi, vj) and H4(vi, vj) then
31 W ′ ← swap(vi, vj)(W );
32 if W ′ 6∈ open and W ′ 6∈ close then
33 if H5(W ′,Wmin) and (C(W ′) < C(Wmin)) then Wmin = W ′;;
34 open←W ′;

35 close←W ;

36 return Wmin

metadata of tasks, such as input and output data schemas, parameters of operators
etc.

After detecting common tasks, we look for subgraphs consisting only of common
tasks and compare their structures. If such subgraphs are identical, then they consti-
tute a common part. Formally, the latter is defined as follows:

Definition 1 A common part CP (W1, . . . ,Wm) of a set of workflows {W1, . . . ,Wm} is
a subgraph S, so that S is part of every one of the workflows, i.e. S ∈ W1 ∧ · · · ∧ S ∈
Wm, and operators of corresponding vertices in a subgraph S of every workflow are
identical.
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Figure 15: Independently executable and not independently executable subgraphs
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Figure 16: Mutual arrangement of subgraphs A and B

4.2.1 Evaluation of a common part

After finding a common part, we determine if it can be used for the creation of the
joint workflow. We do this based on the concepts of execution state and independently
executable subgraph.

An execution state XS of a workflow W is a state for which some of the vertices
are assumed to have been executed and no vertices are executing. Further, XS =
{XSe, XSne}, where XSe and XSe are sets of executed and not executed vertices,
respectively, and we denote as XSW as the set of all execution states of a workflow
W .

An independently executable subgraph S ∈ W with respect to some execution
state XSW ∈ XSW , is a subgraph that can be executed without executing any vertex
in W \ (XSe

W ∪S). There can be several execution states with respect to which S is an
independently executable subgraph. Let us denote as XSW (S) the execution state with
the minimal number of executed vertices with respect to which S is an independently
executable subgraph.

Figure 15 depicts two workflows W1 and W2. In W1, subgraph A is independently
executable with respect to the execution state, the executed vertices of which are col-
ored in blue. In W2, subgraph A is not independently executable with respect to any
execution state, because vertex 4 cannot be executed before vertex 2, and vertex 2
cannot be executed before vertex 3, so vertex 2 has to be executed between vertices
3 and 4.

The creation of a joint workflow Wj of a set of workflows W = {W1, . . . ,Wm} that
have one common part CP , is possible if CP is independently executable for some
execution state for every W ∈ W.
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4.2.2 Evaluation of a set of common parts

A set of workflows to be combined may contain not one, but several common parts.
There can be cases for which not all of the common parts can be used for the cre-
ation of the joint workflow. To evaluate if a set of common parts CP can be used in
combination for the creation of the joint workflow, we check the mutual arrangement of
common parts in this set in pairs CPi, CPj ∈ CP.

A vertex v is reachable from another vertex u if there is a directed path that starts
from u and ends at v. A subgraph S depends on vertex v if there exists a vertex u in the
subgraph and u reachable from v. The possible mutual arrangement of the subgraphs
corresponding to two common parts CPi and CPj is one of the following (Figure 16):

1. Independent, if there does not exist a pair of vertices {vi, vj}, vi ∈ CPi, vj ∈ CPj

for which CPi depends on vj or CPj depends on vi.

2. CPi depends on CPj, if there is a vertex v ∈ CPj and CPi depends on v, but
there is not a vertex in CPi so that CPj depends on it.

3. CPi and CPj are cross-dependent if there are vertices vi ∈ CPi, vj ∈ CPj and
CPj depends on vi and CPi depends on vj.

Depending on their mutual arrangement in the set of workflows, a pair of common
parts can be selected for the construction of the joint workflow or not: If the common
parts are mutually arranged as (1) in all workflows, both can be selected; if they are
mutually arranged as in (3), even in one workflow, they cannot be both selected. If they
are mutually arranged as in (2) in some of the workflows, they can be both selected
if they have the same dependency in all these workflows. As an example, Figure 17
depicts workflows W1, W2 with common parts A, B. In W1, A depends on B, and in W2

B depends on A. Only one of A and B can selected for the construction of the joint
workflow. Hence, in some cases, we are forced to select only some of the common
parts. We do this based on the estimation of processing cost of different choices for
the construction of the joint workflow.

4.3 Estimation of processing costs

The processing cost CT of a task T , is given by IReS [16]. The latter estimates the
performance and cost of operators by actually running the operator in representative
configuration combinations. Using these measurements, IReS trains surrogate esti-
mator models that can be used to approximate its performance for non-tested config-
urations. The processing cost of a workflow W , CW , is the sum of the cost of its tasks:
CW =

∑n
i=1CTi

.
Let us consider a pair of workflows {W1, W2} with a common part CP and exe-

cution states XSW1(CP ) and XSW2(CP ), respectively. The cost for creating the joint
workflow Wj = W1 ◦W2 is the sum of the cost of execution states C(XSe

W1
(CP )) and

C(XSe
W2

(CP )), the cost of the common part C(CP ), the costs of the rest of workflows
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Figure 17: Cross-dependence of common-parts A and B in workflows W1 and W2

C(W1 \ (CP ∪ XSe
W1

(CP ))), C(W2 \ (CP ∪ XSe
W2

(CP ))), and a synchronization cost
C(sync), which captures the cost for creating the joint workflow:

C(W1 ◦W2) = C(XSe
W1

(CP )) + C(XSe
W2

(CP )) + C(CP ) + C(sync)+

+C(W1 \ (CP ∪XSe
W1

(CP ))) + C(W2 \ (CP ∪XSe
W2

(CP ))) =

= C(W1) + C(W2)− C(CP ) + C(sync)

The processing cost of workflowsW = {W1, . . . ,Wm}with common parts {CP1, . . . , CPn}
is:

C(W1 ◦ · · · ◦Wm) =
m∑
i=1

C(Wi)−
n∑

i=1

((ni − 1)C(CPi)− C(synci))

where ni is the number of occurrences of common part CPi inW. After estimating
the processing costs of all workflow versions and common parts, exhaustive search
chooses common parts and workflows with the lowest cost.

4.4 Combining by a common part

A

CP

CP D

B<:

<;

A

CP

D

B
<>

Figure 18: Combining of W1 and W2 by a common part CP , located at the beginning
of workflows

Let us consider two possible placements of a common part:
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Figure 19: Combining of W1 and W2 by a common part CP , located in the middle of
workflows

1. A common part CP is located at the beginning of workflows W1 and W2, this is
equivalent to that sets of executed vertices XSe

W1
(CP ) and XSe

W2
(CP ) are empty.

In this case a common part processes the same datasets in both workflows.
Figure 18 shows how workflows are combined by a common part, located at the
beginning. Formally, a joint workflow Wj = (Vj, Ej) is following:

Vj ← Vcp ∧ (V1 \ Vcp) ∧ (V2 \ Vcp)

Ej ← Ecp ∧ (E1 \ Ecp) ∧ (E2 \ Ecp)

2. A common part CP is located in the middle of workflows W1 and W2, this is
equivalent to that sets of executed vertices XSe

W1
(CP ) and XSe

W2
(CP ) are not

empty. In this case, the datasets input to the common part by the different work-
flows are not equal. However, if the common part consists only of non-blocking
operators, then we can optimize as follows: Two datasets D1 and D2 (or two sets
of datasets) can be split into three datasets D1∩D2, D1\D2 and D2\D1. Further,
these three datasets are processed in three parallel branches CP , which can be
executed in parallel. Then, processed data is merged into two datasets (inverse
transformation of splitting). Figure 19 displays an example of this split-merge
combining. Formally, a joint workflow Wj = (Vj, Ej) is following:

Vj ← XSe
W1

(CP )∧XSe
W2

(CP )∧vsplit∧3×Vcp∧vmerge∧ (V1 \ (Vcp∧XSe
W1

(CP )))∧
(V2 \ (Vcp ∧XSe

W2
(CP )))

Ej ← EXSe
W1

(CP ) ∧ EXSe
W2

(CP ) ∧ {XSe
W1

(CP ), vsplit} ∧ {XSe
W2

(CP ), vsplit} ∧ 3 ×
{vsplit, Vcp}∧3×Ecp∧3×{Vcp, vmerge}∧{vmerge, V1\(Vcp∧XSe

W1
(CP ))}∧{vmerge, V2\

(Vcp ∧XSe
W2

(CP ))} ∧ (E1 \ (Ecp ∧ EXSe
W1

(CP ))) ∧ (E2 \ (Ecp ∧ EXSe
W2

(CP )))

In these equations vsplit and vmerge are vertices, that are placed on the incoming
and outgoing edges of common part, respectively. The split-merge combining
can be performed if operators splitter and merger have an appropriate imple-
mentations for the datatypes of processed data. Also note, that merger is cheap
operator and splitter is quite expensive. Therefore, the efficiency of the split-
merge combining depends on the cost of the common part and the size of com-
mon data (D1 ∩D2). MWO takes into account the cost estimation of the common
part, but it doesn’t estimate the size of common data. In this regard, MWO can
be improved so that a decision on the application of split-merge combining will be
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taken dynamically after estimation of a size of the common data: if the common
data is big, then apply split-merge combining, if not, then leave as it is.

The pseudo-code of combining is shown in Code List 6, procedures combine and
scombine there. The procedure combine takes as input two workflows and their com-
mon part. Then, it detects the location of a common part and combines by this com-
mon part according to the rules described above. The procedure scombine is similar
to combine, but combines by a common part in one workflow.

4.5 Multi-workflow optimization algorithm

Code List 5: Algorithm of Multi-Workflow Optimization.
1 Algorithm MWO(W1,W2)

Input: Two workflows W1,W2

Result: A joint version Wmin
12 or two versions Wmin

1 ,Wmin
2 having the minimal cost

2 begin
3 Wmin

1 = ES(W1)[min];
4 Wmin

2 = ES(W2)[min];
5 versions1 = ES(W1)[versions];
6 versions2 = ES(W2)[versions];
7 CTs← Find Common Tasks(W1,W2);
8 foreach v1 ∈ versions1 do
9 foreach v2 ∈ versions2 do

10 CPs← Find Common Parts(v1, v2, CTs);
11 foreach cp ∈ CPs do
12 Wj ← combine(v1, v2, cp);
13 if (C(Wj) < C(Wmin)) then Wmin = Wj ;
14 innersearch(Wj ,Wmin, CPs \ cp);

15 if (C(Wmin) ≤ C(Wmin
1 ) + C(Wmin

2 )) then
16 return Wmin

17 else
18 return {Wmin

1 ,Wmin
2 }

We create the Multi-workflow Optimization algorithm (MWO) that explores the space
of joint versions of two workflows exhaustively. First, MWO generates a set of equiva-
lent versions of the workflows W1 and W2 (versions1 and versions2, respectively) and
finds optimal versions Wmin

1 and Wmin
2 from these spaces (lines 3–6 in code list 5).

Second, MWO finds common tasks of W1 and W2 (line 7). Third, for every pair of
versions MWO finds all common parts CPs (line 10). Fourth, MWO produces joint
workflows by a single common part exhaustively (line 12). Then, recursively in proce-
dure innersearch MWO combines by the rest common parts and finds the optimal joint
version Wmin

12 with the minimal cost. Finally, the algorithm returns Wmin
12 or Wmin

1 and
Wmin

2 depending on which execution cost is lower.
Clearly, the search space of joint versions is finite and the algorithm terminates

after having generated all possible versions and returning the optimal one.
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Code List 6: Procedures for Multi-Workflow Optimization.
1 Procedure innersearch(W,Wmin, CPs)

Input: Workflows W , Wmin and common parts CPs of W
Result: Wmin is replaced with a version having the minimal cost

2 begin
3 foreach cp ∈ CPs do
4 W ′ ← scombine(W, cp);
5 if (C(W ′) < C(Wmin)) then Wmin = W ′;
6 innersearch(W ′,Wmin, CPs \ cp);

1 Procedure combine(W1,W2, cp)
Input: Two workflows W1, W2 and their common part cp
Result: A joint workflow Wj by cp

2 begin
3 XS1 = XSe

W1
(CP );

4 XS2 = XSe
W2

(CP );
5 (V1, E1)←W1;
6 (V2, E2)←W2;
7 (VXS1

, EXS1
)← XS1;

8 (VXS2 , EXS2 )← XS2;
9 (Vcp, Ecp)← cp;

10 if XS1 == ∅ and XS2 == ∅ then
11 Vj ← Vcp ∧ (V1 \ Vcp) ∧ (V2 \ Vcp);
12 Ej ← Ecp ∧ (E1 \ Ecp) ∧ (E2 \ Ecp);
13 else
14 Vj ← VXS1 ∧ VXS2 ∧ vsplit ∧ 3× Vcp ∧ vmerge ∧ (V1 \ (Vcp ∧ VXS1 )) ∧ (V2 \ (Vcp ∧ VXS2 ));
15 Ej ← EXS1

∧EXS2
∧{VXS1

, vsplit}∧{VXS2
, vsplit}∧3×{vsplit, Vcp}∧3×Ecp∧3×{Vcp, vmerge}∧

{vmerge, V1\(Vcp∧VXS1 )}∧{vmerge, V2\(Vcp∧VXS2 )}∧(E1\(Ecp∧EXS1 ))∧(E2\(Ecp∧EXS2
));

16 Wj ← (Vj , Ej);
17 return Wj

1 Procedure scombine(W, cp)
Input: A workflow W and its common part cp
Result: A joint workflow Wj by cp

2 begin
3 {XS1, XS2} = XSe

W (CP );
4 (V,E)←W ;
5 (VXS1 , EXS1 )← XS1;
6 (VXS2

, EXS2
)← XS2;

7 (Vcp, Ecp)← cp;
8 if XS1 ∩ cp == ∅ and XS2 ∩ cp == ∅ then
9 Vj ← VXS1∩XS2

∧ VXS2\XS1
∧ VXS1\XS2

∧ vsplit ∧ 3× Vcp ∧ vmerge ∧ (V \ (Vcp ∧ VXS1
∧ VXS2

));
10 Ej ← EXS1∩XS2

∧EXS2\XS1
∧EXS1\XS2

∧ {VXS1∪XS2
, vsplit} ∧ 3×{vsplit, Vcp} ∧ 3×Ecp ∧ 3×

{Vcp, vmerge} ∧ {vmerge, V \ (Vcp ∧ VXS1∪XS2 )} ∧ (E \ (Ecp ∧ EXS1∪XS2 ));

11 Wj ← (Vj , Ej);
12 return Wj

5 Benchmarking Workflows

In this section, first, we present several high-level graph patterns that the structure
of a workflow may follow, and, second, we describe an algorithm of “filling” workflow
structures that follow such patterns with operators.
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5.1 Generating a workflow structure

Butterflies. We introduce a broad category of workflows, called Butterflies. A butterfly
(Figure 20) is a workflow that consists of three distinct components: (a) the left wing,
(b) the body, and (c) the right wing. The left and right wings are two non-overlapping
subgraphs which are connected to the body of the butterfly. Specifically:

• The left wing of the butterfly includes two (can be the same) or more data sources
and operators. Typically, this part of the butterfly performs the extraction and
transformation part of the workflow and loads the processed data to the body of
the butterfly.

• The body of the butterfly is an operator that takes as input the data produced
by the left wing. It is branching operator that merges parallel data flows through
some variant of a join (e.g., a relational join, diff, merge) or a union (e.g., the
overall sorting of two independently sorted datasets).

• The right wing receives the data output by the body and uses them to support re-
porting and analysis activity. The right wing consists of operators that materialize
views and create reports.

Lines. Lines (see Figure 21) are sequences of an input data source, a series of
operators with one input and one output and a target data store and operators. Lines
form single data flows.

Forks and Trees. These workflows are structured around a branching operator
that either unifies the data flows of multiple lines into one, or distributes the data flow
of one line into multiple ones. In the first case the pattern of the structure is called
a Tree (Figure 23), and in the second it is called a Fork (Figure 22). In a Tree the
branching operator is usually some type of a join. In a Fork the branching operator can
be any operator the output data of which is input to multiple operators.

The above patterns form a classification that assists the creation of a benchmark of
synthetic workflows. For example, to create a memory intensive workflow, we consider
using Tree or Fork patterns, which include joins and a significant number of sorting
or aggregating operators. If we want to study pipelining as well, we may consider
extending these workflows with line workflows (we need to tune the distribution of
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blocking and non-blocking operations in these workflows too, how it is done described
further).

Furthermore, the above classification can be employed to decompose existing
complex workflows into sets of primitive structures in order to study their execution
behavior in a systematic manner. This decomposition can be used for optimization
purposes too. We study the behavior of the workflow patterns in isolation, and then,
we can use our findings for optimizing and tuning the whole workflow: the performance
of a workflow with complex structure can be derived from the performance of the com-
ponent primitive ones.

5.2 Generating workflow queries

After creating a workflow graph from the patterns described above we need to fill the
vertices with analytic queries and choose input data sources. For this purpose we use
TPC-DS [27].

TPC-DS. TPC-DS is a Decision Support (DS) benchmark being developed by the
TPC. This benchmark models the decision support system of a retail product supplier,
including queries and data maintenance. The relational schema of this benchmark is
more complex than the schema presented in TPC-H. There are three sales channels:
store, catalog and the web. There are two fact tables in each channel, sales and
returns, and a total of seven fact tables. In this dataset, the row counts for tables
scale differently per table category: specifically, in fact tables the row count grows
linearly, while in dimension tables grows sub-linearly. This benchmark also provides
refreshment scenarios for the data warehouse.

In our benchmark of workflows we use two tables: web sales and customers.
Therefore, we prepare query templates which produce operators, which correspond
to the types of operators we define in Section 2.3. One of such query template, shown
in Listing 1, produces restrictive non-blocking operators. Templates produce opera-
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tors of four combinations of operator types: blocking and restrictive, non-blocking and
restrictive, blocking and non-restrictive, non-blocking and non-restrictive. Thus, we
can fill the workflow structure with the desired composition of operators, regulating the
percentage of blocking, non-blocking and restrictive operators.

Algorithm 1: Example of Query Template
1 def ine YEAR=random(1996 ,2001 , uni form ) ;
2 de f ine RANGE=random (1 ,4 , uni form )
3 de f ine LISTPRICE= u l i s t ( random(0 ,190 , uni form ) ,2 ) ;
4 de f ine LIMIT=random (1 , rowcount ( web sales ) , uni form ) ;
5
6 [ LIMITA ] s e l e c t [ LIMITB ] ∗
7 from web sales
8 where YEAR( ws sold date ) between [YEAR]− [RANGE]
9 and [YEAR]− [RANGE]

10 and w s l i s t p r i c e between [ LISTPRICE . 1 ]
11 and [ LISTPRICE . 2 ]
12 order by ws order number
13 [ LIMITC ] ;

6 Experiments

In this section we present a thorough experimental study on real and synthetic work-
flows and data.

6.1 Experimental Setup

Methodology Our experimental study measures the performance of original work-
flows and their optimizations, the size of the workflow versions space produced by
the proposed optimization algorithms ES, HS and MWO for multi-workflow systems,
and is divided in two parts: the first part studies real workflows and their execution
on real datasets, and the second studies synthetic workflows generated based on the
benchmarking method described in Chapter 5. The second part of the study exam-
ines the performance behavior of workflows and the relation of performance to the
version space size, with respect to the size and the structure of the workflows, the
length of paths (single data flows), connectivity (existence of branching operators),
and parallelization opportunities (multiple parallel data flows). Also, the second part of
the study examines the performance behavior of workflows and the relation of perfor-
mance to the version space size, with respect to the distribution of operators, as well
as to whether there are opportunities for composition/decomposition of operators and
execution of alternative implementations of operators on different engine types.

Datasets Our workloads involves three sets of data sources, namely (1) CDR and
voronoi ; (2) tweets, sales, products, region, and campaign; (3) web sales and cus-
tomers.
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Figure 24: Telecommunication data structures
CDR (id, user id, ts, aid)
voronoi (aid, rid)

(1) CDR is an anonymised Call Detail Records data for the City of Rome, from
01 Jun 2014 until 30 June 2015, provided by WIND and stored in CSV format. The
whole dataset has size in the order of hundreds of Terabytes. Voronoi is a small table
that stores links of regions and antennas. Data structures of CDR and voronoi are
displayed in Table 24

Figure 25: Sales data structures
products (product id, product name)
tweets (id, reg id, ts, text)
sales (id, product id, reg id, ts)
campaign (id, product id, reg id, ts)

Table 1: Data sizes of tweets and sales data stores
10k rows 100k 1M rows 10M rows

Tweets 1.31MB 12.44MB 124.39MB 1.23GB
Sales 0.33MB 2.72MB 26.84MB 262.1MB

(2) Data stores tweets and sales are large fact tables stored in PostgreSQL. Tweets
keeps unstructured information. Sales records lineitems for a purchase order. The
other two data stores products and campaign are slowly changing dimensional data.
We consider four different data sizes for tweets and sales comprising 10k, 100k, 1M
, 10M rows and with a row size of 26 bytes for sales and an average of 124 bytes for
tweets. The other tables are relatively small. Tables 25 and 1 represent data structures
and data sizes, respectively.

(3) Web-sales and customers are data sources that are generated using TPC-DS
and are stored in PostgreSQL. Web-sales has around 720k rows and 34 columns.
Customers has 100k rows and 18 columns. Data structures are shown in Table 26.

Experimental Platform We measured performance of workflow versions on a clus-
ter that consists of 4 server-grade physical nodes. Each one of those is equipped with
a 3rd generation i5 CPU (@ 2.90 GHz) and 16GB of physical memory and an array
of 2x4TB SSHD on RAID-0. The operating system is Debian 6 (squeeze) Linux. For
the time being, the three software platforms running on this setup are Hadoop, Spark,
Postgres and Weka. The distribution of Hadoop is CDH 4.6.0 (a popular bundling of
Hadoop by Cloudera) which uses Hadoop version 2.0.0 over MapReduce scheduler.
The version of Spark is 1.4.1, running in standalone mode. The Hadoop and Spark
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Figure 26: Benchmark data structures
web sales (ws sold date sk, ws sold time sk,
ws ship date sk, ws item sk, ws bill customer sk,
ws bill cdemo sk, ws bill hdemo sk, ws bill addr sk,
ws ship customer sk, ws ship cdemo sk,
ws ship hdemo sk, ws ship addr sk, ws web page sk,
ws web site sk, ws ship mode sk, ws warehouse sk,
ws promo sk, ws order number, ws quantity,
ws wholesale cost, ws list price, ws sales price,
ws ext discount amt, ws ext sales price,
ws ext wholesale cost, ws ext list price, ws ext tax,
ws coupon amt, ws ext ship cost, ws net paid,
ws net paid inc tax, ws net paid inc ship,
ws net paid inc ship tax, ws net profit)
customer (c customer sk, c customer id,
c current cdemo sk, c current hdemo sk,
c current addr sk, c first shipto date sk,
c first sales date sk, c salutation, c first name,
c last name, c preferred cust flag, c birth day,
c birth month, c birth year, c birth country, c login,
c email address, c last review date)

installation on this cluster is configured so that all the machines run as workers and
one of them runs the master.

6.2 Description of Experimental Workloads and Results

In this section, we evaluate our exhaustive and heuristic optimization algorithms. First,
we demonstrate the whole process of optimization, including operator training on two
real-data driven workflows. Then, we evaluate each algorithm on a benchmark of
synthetic workloads of workflows.

We execute approximately 1400 workflows and record the execution times and
used system resources. We label each workload with the set of characteristics of the
workflows it includes.

1. the size of the workflow (i.e., the number of vertices contained in the graph),

2. the structure of the workflow,

3. the percentage of blocking, non-blocking and restrictive operators,

4. the size of input data sources,

5. the workflow selectivity, based on the selectivities of the workflow operators
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We examine the optimization algorithms in order to answer the following questions:

1. How fast does the algorithm produce an optimized version of a workflow? This
question is covered by experiments 3.1 – 3.3.

2. What is the performance gain of the optimized version with respect to the perfor-
mance of the original workflow? This is a basic question and it is answered in all
experiments 1.1 – 4.1.

3. How large is the search space generated by the algorithm? This question is
answered in all experiments 1.1 – 4.1.

4. What is the impact of workflow characteristics (workflow size, structure, percent-
age of blocking, non-blocking and restrictive operators, input data size)? This
question is fully covered by experiments 3.1 – 3.3.

5. Do the algorithms ES and HS produce the same solutions? What causes the
divergence of solutions? This is a basic question and is answered in all single-
workflow optimization experiments 1.1 – 3.3.

6. How does the algorithm cope with a workflow that contains an operator, for which
the cost function is not defined? This question is answered in experiment 1.2.

We use the following workloads to help answer the above questions:

1. WL-1: Real-time analytics on telecommunication data.

2. WL-2: Analysis of a product marketing campaign.

3. WL-3: Benchmarked workflows.

4. WL-4: Similar workflows

6.2.1 Workload 1 - Real-time analytics on telecommunication data.

With the execution of this workload we demonstrate how the optimization algorithms
adapt to changes of the cost functions of operators. This workload consists of two
workflows of real-time analytics on telecommunication data. Both workflows involve
processing of CDR and voronoi data sources. One of these workflows is described
as a motivating example (Sec. 2.1). Another workflow, called ‘User Profiling’, divides
users based on their call behavior into five following categories: “Commuter”, “Static”
resident, “Occasional”, “Dynamic” resident and “Uncategorized”. This workflow is de-
picted in Figure 27 and an optimized version of it is shown in Figure 28.

Experiment 1.1 In the first experiment of this workload we perform execution and
we test optimization of both workflows, ‘Peak Detection’ and ‘User Profiling’, for several
input data sizes: 10k, 100k, 1M, 2M, 5M, 7.5M and 10M rows in CDR data source.
The execution times of the original and optimized versions of workflows are shown in
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UserProfiling

cdr resultextract_ts filter_region

filter_1

filter_5

filter_2

filter_3

filter_4

Figure 27: Original ‘User Profiling’ work-
flow

cdr resultfilter_region extract_ts

filter_1

filter_5

filter_2

filter_3

filter_4

Figure 28: Optimized version of ‘User Pro-
filing’ workflow

Figure 29: Execution time versus input
data size in ‘Peak Detection’ workflow

Figure 30: Time gain versus input data
size in ‘Peak Detection’ workflow

Figures 29 and 31. The time gain of ‘Peak Detection’ workflow is around 20% and that
of User Profiling is around 30% (Figures 30 and 32). For both workflows, the versions
space size of algorithms is independent of the input data size. For workflow ‘User
Profiling’ ES and HS space sizes are of equal size (4) and for ‘Peak Detection’ workflow
the HS versions space size (15) is smaller than the ES space size (18). An example of
pruning by HS is the following: HS doesn’t swap LO join with filter train and filter test,
because this transition contradicts to a heuristic H4. However, HS produces the same
result, as ES. Here is how HS works in this case: first, the pairs of vertices LO join and
filter region are composed; next, the composed vertices are swapped with filter train
and filter test, this can be done because composed vertices are restrictive operators;
and then this composed vertices are distributed over calc num and swapped further to
the root of the workflow.

Experiment 1.2 In this experiment, we perform execution of the workflow ‘Peak De-
tection’ on 10M rows with two different states: (1) all operators are supplied with cost
functions; (2) all operators except filter region have cost functions and filter region
doesn’t have a cost function. In the first case HS and ES produce identical optimal
versions of the workflow. In the second case HS produces the same result (Figure 4)
and ES returns the original version as an optimal. This is due to the fact that HS takes
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Figure 31: Execution time versus input
data size in ‘User Profiling’ workflow

Figure 32: Time gain versus input data
size in ‘User Profiling’ workflow

tweets result

select	
product

convert	
time&coord

calc sent&tag calc avgSentbuffer

products

join1	by	
prod&reg

calc totalSales

join2	by	
prod&reg

filter	by	
prod&reg

campaign

sales

Figure 33: Original workflow of marketing campaign analysis

into account not only cost estimation of a workflow, but also closeness of restrictive op-
erators to the root of a workflow. I.e. if workflow versions have equal cost estimations,
HS compares in which one restrictive operators are closer to input datasets.

6.2.2 Workload 2 - Marketing campaign.

In this workload, we demonstrate the impact of different input data sizes to optimiza-
tion. Figure 33 displays a workflow of an analysis of a product marketing campaign. It
combines sales data with sentiments (join1 by prod&reg) about that product gleaned
from tweets crawled from the Web (calc sent&tag). The result consists of total sales
(calc totalSales) and average sentiment (calc avgSent) for each day of the campaign.
Campaigns promote a specific product and are targeted at non-overlapping, geograph-
ical regions. To simplify the presentation, we assume the sentiment analysis of a tweet
yields a single metric, i.e., like or dislike the product over a range of -5 to +5.

Figure 34 depicts the result of optimization. The Optimizer makes several workflow
graph manipulations: (a) the vertex filter by prod&reg is distributed and pushed closer
to input data sources (sales, campaign, tweets); (b) The vertex convert time&coord is
swapped with select product and composed with calc sent&tag, producing the vertex
calc&conv.

Experiment 2.1 In this experiment, the workflow ‘Marketing Campaign’ runs on
several input data sizes: 10k, 100k, 1M, 2M, 5M, 7.5M and 10M rows of tweets data-
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tweets result

select&filter
product

calc&conv calc avgSentbuffer

products

join1	by	
prod&reg

calc totalSales

join2	by	
prod&reg

campaign

sales filter	by	
prod&reg

filter	by	
prod&reg

filter	by	reg

Figure 34: Optimized workflow of marketing campaign analysis

Figure 35: Execution time versus input
data size in a workflow of Marketing Cam-
paign analysis

Figure 36: Time gain versus input data
size in a workflow of Marketing Campaign
analysis

source. In Figures 35 and 36, the effect of optimization is more evident than in previous
experiments. This is due to the fact that the highly restrictive operator filter by prod&reg
in the original workflow is closer to the end, and in optimized version it is moved closer
to the input data sources. This results in more than 70% time gain.

6.2.3 Workload 3 - Benchmarking workflows.

Table 2: Benchmark parameters
Parameter range constant

Workflow size 10–200 20–50
Workflow structure

butterfly 10–70% 25%
line 10–70% 25%
fork 10–70% 25%
tree 10–70% 25%

Operators
blocking 0–100% 25–75%

non-blocking 0–100% 25–75%
restrictive 0–100% 25–75%
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This workload comprises synthetic workflows. These are based on several graph
patterns and “filled” with queries generated using TPC-DS. A detailed way of con-
structing them is provided in Section 5. The parameters of workflow generation for this
workload are shown in Table 2.

We measure the optimization time, the execution time and we demonstrate the
effect of workflow characteristics for each algorithm.

Figure 37: Execution time versus workflow
size

Figure 38: Time gain versus workflow size

Figure 39: Versions space size versus
workflow size

Figure 40: Versions space size versus
workflow size broken down by structure
type

Figure 41: Optimization time versus work-
flow size

Figure 42: Optimization time versus ver-
sions space size

Experiment 3.1: Workflow size effect Figures 37 – 40 display the results of runs
of 200 workflows automatically generated for the following configuration: Structure
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[butterfly, line, fork, tree] - [25%, 25%, 25%, 25%]; Workflow size - 10–200; Operators
[blocking, non-blocking, restrictive] - [25–75%, 25–75%, 25–75%]. In this experiment
set we vary workflow size from 10 to 200 with the step of 10 vertices. Figure 37
shows that the execution time is similar to a linear function of the size of the generated
workflows and ES execution times are lower than those of the execution of the original
workflow. Figure 38 displays the time gain due to optimization. Figure 39 shows the re-
lation of the size of the search space and and the size of workflows. The search space
is bigger for bigger workflows, since more vertices provide, usually, more possibilities
for workflow manipulations. Figure 40 displays the same data (ES space size versus
workflow size) but also broken down by structures: lines have bigger search spaces for
the same workflow size than other workflow structures. This is because workflows with
long or many lines process in a serial manner data of one input dataset and without
the interpolation of branching vertices, which often becomes an obstacle to moving
the vertices to other branches in Trees, Forks and Butterflies. Then, Figures 41 – 42
show that an increase of search space size causes an increase of time for choosing an
optimal version of a workflow. Figure 42 shows that optimization time increases with
a higher rate if the search space size increases from small to medium (0-400), and
with a slower rate if the search space increases from medium to large (400 - > 600).
The reason is that in the first case, the search space consists of many versions which
present with different optimization opportunities, whereas in the second, it comprises
also many similar versions which present with the same optimization opportunities, or,
equivalently, the same optimization restrictions.

Figure 43: Execution time versus percent-
age of restrictive operators

Figure 44: Optimization time versus ver-
sions space size

Experiment 3.2: Effect of restrictive operators Figures 43 – 48 display the re-
sults of runs of 200 workflows automatically generated for the following configuration:
Structure [butterfly, line, fork, tree] - [25%, 25%, 25%, 25%]; Workflow size - 20–50;
Operators [blocking, non-blocking, restrictive] - [25–75%, 25–75%, 0–100%]. In this
experiment set we vary the percentage of restrictive operators from 0% to 100% with
a step of 10%. Figure 47 displays the time gain of optimization. We observe that time
gain increases with the increase of the percentage of restrictive operators from 0%
up to about 80%; however, as the percentage of restrictive operators increases more
and reaches close to 100%, the time gain values decrease. Thus, for workflows with a
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Figure 45: Versions space size versus
percentage of restrictive operators

Figure 46: Optimization time versus per-
centage of restrictive operators

Figure 47: Time gain versus percentage
of restrictive operators broken down by
structure type

Figure 48: Versions space size versus
percentage of restrictive operators broken
down by structure type

“medium” number of restrictive operators (30%-80%) we can expect a significant time
gain from optimization. Figure 44 shows that an increase of search space size causes
an increase of time for choosing an optimal workflow version. This relation is close to
linear. Figure 45 shows that there is no evident dependence of search space size from
the percentage of restrictive operators in a workflow.

Figure 49: Versions space size versus
percentage of blocking operators

Figure 50: Optimization time versus per-
centage of blocking operators

Experiment 3.3: Effect of blocking operators Figures 49 – 52 display the results
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Figure 51: Time gain versus percentage of
blocking operators broken down by struc-
ture type

Figure 52: Versions space size versus
percentage of blocking operators broken
down by structure type
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Figure 53: An optimal joint workflow of two ‘Peak Detection’ workflows in case if total
selectivity of filter region1 and filter region2 is high

of runs of 200 workflows automatically generated for the following configuration: Struc-
ture [butterfly, line, fork, tree] - [25%, 25%, 25%, 25%]; Workflow size - 20–50; Oper-
ators [blocking, non-blocking, restrictive] - [0–100%, 0–100%, 25–75%]. Figure 49
shows that as the percentage of blocking operators increases the size of the optimiza-
tion search space decreases and, respectively, the optimization time also decreases
(Figure 50). However, Figure 51 shows that there is evident dependence of time gain
of optimization algorithm from the structure type.

6.2.4 Workload 4 - Similar workflows.

With this workload we demonstrate how the algorithm of multi-workflow optimization
performs depending on the selectivity of operators. We demonstrate this on a system
of two similar ‘Peak Detection’ workflows. The ‘Peak Detection’ workflow is described
in the motivating example (Sec. 2.1). The workflows of this workload differ only in the
vertex filter region.

Experiment 4.1: Effect of operators selectivity
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Figure 54: An optimal joint workflow of two ‘Peak Detection’ workflows in case if total
selectivity of filter region1 and filter region2 is low

In this experiment, we have two workflows W1 and W2. Vertices filter region1 and
filter region2 limit different regions of data analysis. There is a total 12 regions in the
input dataset CDR. In the first run, both workflows limit their analyzed area in 4 regions
(the regions may be different for the two workflows). Figure 53 displays the result of
multi-workflow optimization for these workflows. This joint workflow is a combination
of the two initially optimized workflows (see the result of experiment 1.1) with respect
to a small common part, that consists of one vertex LO join. In the second run, the
workflows limit their analyzed area in 8 regions (the regions may be different for the two
workflows). The join workflow produced by MWO is shown in Figure 54. This result
differs from the one in the first run because of the different selectivity of filter region1
and filter region2. The sum of the estimated costs of vertices extract ts and calc num
of both workflows after filtering by regions, in the first run, is smaller than the cost of
executing the same vertices on the unfiltered data. In the second run, extract ts and
calc num are swapped with filter region1 and filter region2, and, therefore, the com-
mon part is bigger and includes vertices extract ts and calc num. MWO also considers
three single-vertex common parts in the middle of the workflows: filter test, filter train
and filter peaks. However, the split-merge combination only increases the cost of pro-
duced workflow version, because the costs of these common parts (vertices) are very
low.

The original, the optimized and joint workflows are executed on 10M rows CDR
dataset. In the first run, the joint optimized workflow (Figure 53) has an execution time
that is 3218 ms less, ( 2.3% time gain), compared to the sum of execution times of the
optimized versions of the two initial workflows. In the second run, the joint optimized
workflow (Figure 53) has an execution time that is 9512 ms less ( 6.0% time gain),
compared to the sum of the execution times of the optimized versions of the two initial
workflows..
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7 Related Work

Most Workflow Management Systems (WMS) are described in detail in the reports
D5.1 [29] and D5.2 [28]. In this chapter we overview some of them and discuss works
that engage in optimization.

Multi engine systems Many systems have the ability to generate an execution
plan from a logical. Here, Garlic [22], and TSIMMIS [5] were early prototypes of such
systems. However, no systems are able to generate an execution plan for a variety
of engines. Some systems can generate code within a particular family of engines.
For example, some database query systems can generate SQL code for a variety of
database systems (e.g., PostgreSQL, MariaDB [18]). Some systems have the ability to
generate execution plan for more than one processing engine, for example BigDAWG
Polystore System [9], that focuses on integrating independent storage engines. Big-
DAWG offers users location transparency, so that application programmers do not
need to understand the details about the underlying database(s) that will execute their
queries. This has been implemented using islands of information. Each island is a
front-facing abstraction for the user, and it includes a query language, data model, and
a set of connectors or shims for interacting with the underlying storage engines. Our
system considers a wider configuration of multi-engine platform, besides a set of data-
stores, there are many execution engines, such as a MapReduce engine or a scripting
engine. Moreover, our model of logical workflow is more flexible and simple: to start
using a new engine in BIGDAWG requires to define an island for it, in our system user
provides implementations in that engine of needed logical operators.

Many Extract-Transform-Load (ETL) systems (e.g., [14], [19]) can generate execu-
tion plan to, for example, filter and extract data from several database systems and
then import and process that data into there native ETL engine. However, these sys-
tems are inflexible in that the data processing is can be performed only on there inter-
nal ETL engine. Our system can generate a variety of execution plans from a single
logical plan, e.g., given a logical plan, we might create one execution plan that filters
a data set in a database system, while another plan might filter that data set using a
scripting engine.

Workflow optimization There are many workflow management systems, e.g. Tav-
erna [25] and Pegasus [20]. Taverna is an open source domain-independent workflow
management system, which includes a suite of tools used to design and execute sci-
entific workflows. It is most widely used in bioinformatics. Taverna is focused on the
issue of the analysis of data from heterogeneous and ‘incompatible’ sources and does
not provide any sophisticated methods for workflow optimisation. Pegasus is another
workflow management system that allows users to easily express multi-step computa-
tional tasks. Pegasus provide several optimization approaches, such as Data Reuse,
Task Clustering, Just In Time Planning etc. These approaches speed up the execution
of a single execution plan. In contrast to this, our optimisation technique finds several
execution plans for a logical workflow and chooses an optimal one.

Workflow optimization is a relatively new field of research, but there are already
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some promising results. Commercial ETL tools (e.g. [14], [19]) provide little support
for automatic optimization. They provide hooks for the ETL designer to specify for
example which flows may run in parallel or where to partition flows for pipeline paral-
lelism. Some ETL engines such as PowerCenter [14] support PushDown optimization,
which pushes operators that can be expressed in SQL from the ETL flow down to the
source or target database engine. The rest of the transformations are executed in the
data integration server. The challenge of optimizing the entire workflow remains.

Towards this direction, HFMS [23] performs optimization and execution across mul-
tiple engines. Work related to HFMS [24] focuses on optimizing flows for several ob-
jectives: performance, fault-tolerance and freshness over multiple execution engines.
HFMS uses many optimization strategies, such as parallelization, recovery points,
function shipping, data shipping, decomposition, etc. Complementary to the above,
our work provides detailed optimization algorithm, that uses more general workflow
graph reconfiguration that takes into account the semantics of the operators. This
semantics include operators categorization and prepared decomposition of complex
library operators into a set of operators.

Another system, one of the newest, that provides an abstraction on top of existing
data processing platforms is called Rheem [21]. It provides multi-platform data analyt-
ics applications execution and optimization. But at the moment, there is not so much
information has been published about it.

Let us note, that all these works devoted to a single-workflow optimization. In this
report, in addition to a single-workflow we propose a thorough technique for a multi-
workflow optimization.

Query optimization Some ETL engines provide limited performance optimization
techniques such as pushdown of relational operators [13]. Query optimization focuses
on performance and considers a subset of operators typically encountered in our case.
Also, we want the optimizer to be independent of the execution engine; in fact, we want
to allow the optimized workflow to be execute on more than one engine. Research on
federated database systems has considered query optimization for multiple execution
engines, but this work was limited to traditional query operators (e.g., see Garlic [22],
Pegasus [7], and in papers [8] [22]).

8 Summary

This document describes a thorough technique for the optimization of analytics work-
flows defined on multi-engine systems. This includes single and multi workflow opti-
mization. Further, we provide a benchmark suited for the problem of experimenting
with a broad range of workflows. It provides a principled way for constructing work-
flows. We propose a categorization of workflow structures, which covers frequent de-
sign cases. Finally, we evaluate described optimization algorithms on a set of experi-
ment sets, that include both synthetic workflows, generated in proposed benchmarking
tool, and workflows of real-world applications.
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