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Executive Summary

This deliverable is a report on the recalibration module of the Platform of Analytics
Workflows (PAW). This module enables the analytics expert to change the original
task or workflow by altering the task parameters or infusing new tasks, while he mon-
itors the progress of processing in terms of data accessing and resource utilization
based on input from the runtime machines or the visualization tool. The report first
gives a quick overview of the PAW architecture, then delves into the details of recal-
ibration techniques and demonstrates the efficiency of their application on real-world
applications, as well as on a synthetic workflows.
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1 Introduction

The analysis of Big Data is a core and critical task in multifarious domains of science
and industry. Such analysis needs to be performed on a range of data stores, both
traditional and modern, on data sources that are heterogeneous in their schemas and
formats, and on a diversity of query engines. Workflow execution can be extremely
resource- and time-consuming. Thus, a system that enables such long-term analytics
processes on Big Data needs to be able to show the progress of the execution and
the intermediate results. This means that the user should be able to monitor which
workflow tasks have been executed, their produced results, which tasks are currently
executing, as well as data accessing and resource utilization based on input from the
runtime machines or the visualization tool. Further, the system should allow the user to
influence workflow processing. This means that the system should provide methods
that enable the analytics expert to change a workflow by altering task parameters
or infusing new tasks manually at runtime, or even to predefine automatic changes
at workflow creation by providing alternative workflow branches. Such recalibration
methods constitute a powerful functionality of a workflow management system, since
they enable the gradual design of exploratory analytics workflows based on feedback
from intermediate results, as well as the efficient error handling of complex and long-
running workflows.

In this deliverable we focus on the novel functionality of PAW (Platform for Analytics
Workflows)| for workflow recalibration. PAW is a platform for the design, management,
analysis, optimization and execution of analytics workflows. The first version of PAW is
presented in [1}, 2, 3] and includes the functionalities of workflow design and analysis in
order to clarify execution semantics, single workflow optimization and multi-workflow
optimization. In this deliverable we present for the first time the new functionality of
PAW on workflow recalibration. It includes novel techniques for (a) manually changing
a workflow at runtime and re-executing it avoiding repeated computations, called re-
covery and monitoring points technique (3.1); (b) automatically changing a workflow at
runtime based on conditional structures if-then-else and goto statements (3.3).

1.1 Task Description

This deliverable describes work performed in task T5.3 “Dynamic re-calibration of
processing” by UNIGE. The task aims to produce a module that implements the re-
calibration of processing, that enables the analytics expert to change the original task
or workflow by altering the task parameters or infusing new tasks, while he monitors
the progress of processing in terms of data accessing and resource utilization based
on input from the runtime machines or the visualization tool. During Y3 of the ASAP
project, the system for workflow management and optimization produced during the
second year and tasks T5.1-5.2 was augmented with a recalibration module.

"In previous deliverables, this tool was called WMT (Workflow Management Tool).
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Figure 1: The architecture of PAW and its interaction with IRES

1.2 Overview of PAW

PAW implements a novel workflow model [5, 6]. A workflow W is a directed, acyclic
graph (DAG) G = (V,&). The vertices V represent data processing tasks 7 and the
edges £ represent the flow of data. Each task is a set of inputs, outputs and an op-
erator. Data and operators need to be accompanied by a set of metadata, i.e., prop-
erties that describe them. Such properties include input data types and parameters
of operators, the location of data objects or operator invocation scripts, data schemas,
implementation details, engines etc. PAW is a part of the system ‘Adaptable Scal-
able Analytics Platform’ (ASAP) [7], but it can also stand as an independent tool for
workflow management and optimization. PAW enables workflow design by users with
various expertise, the automation of workflow analysis in order to clarify and specify
execution semantics, single and multiple workflow optimization with respect to time ef-
ficiency, over a diverse collection of data stores and processing engines, monitoring of
workflow execution and manual and automatic workflow recalibration. Figure [{]depicts
the architecture of PAW, as well as its interaction with the rest of ASAP. PAW consists
of four layers: Operators Library, Interface, Optimizer, and Executor. These provide
for workflow design, optimization, and execution dispatch, respectively. Workflows are
executed on a set of execution engines and storage repositories of the multi-engine
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Figure 2: The generic metadata tree for operator

environment.

Operators library. This library contains operators, and their corresponding imple-
mentations with cost functions. The operators are classified as, either logical opera-
tors, which perform the core analytics jobs over the data, or the associative operators,
which serve as ‘glue’ between different engines and perform move and transforma-
tion operations. The recalibration module has supplemented the library with several
operators, called recalibration points and described further in Section [3]

Interface. The GUI allows users to interactively create and/or modify a workflow,
and add new operators to the Library. The user designs a workflow graph in the in-
teractive tool and describes data and operators in the Tree-metadata language, which
captures structural information, operator properties (e.g., type, data schemas, statis-
tics, engine and implementation details, physical characteristics like memory budget),
and so on. The metadata tree is user extensible. To allow for extensibility, the first
levels of the metadata tree are predefined. Users can add their ad-hoc subtrees to de-
fine their custom data or operators. Figure [2/ shows the generic metadata tree for an
operator. Furthermore the interface allows users to observe the process of execution
and intermediate results of a workflow for the recalibration needs.

Optimizer. The orchestration of the optimization process is performed by the Plan-
ner. It takes as an input a workflow from the Interface and sends it to the Decision
Making module, which returns an optimized version of a workflow. All possible ver-
sions are produced in the Versions Space Generator and their costs are estimated
by the Cost Estimator. The Decision Making module chooses the version with the
minimal cost as an optimal one.

Executor. The executor performs several tasks. The Enforcer schedules work-
flows for execution, generates executable code and dispatches workflow fragments to
execution engines. The Monitor observes the system state, tracks the progress of ex-
ecuting workflows and stores History Logs of runs. These logs are used to construct
more precise cost functions of operators through the Profiling module. As an execution
system, PAW uses IReS [8].
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1.3 Purpose of the document

This document serves as a report on the recalibration module of PAW and accompa-
nies its prototype implementation. Its purpose is to delve into the details of recalibration
techniques and showcase their application. This includes detailed description of each
novel recalibration technique, as well as the description of the overall recalibration pro-
cess. Finally, we demonstrate the recalibration module of PAW on specific use-cases
from D9.2 [9] and D8.2 [10] and on a set of synthetic workloads.

1.4 Document structure
The rest of this document is structured as follows:

e Chapter 2| gives a brief overview of the workflow model and states the problem
of workflow recalibration. Moreover, it gives a motivating example driven by the
use-case scenario of D9.2 [9].

e Chapter 3 presents recalibration techniques.

e Chapter 4 showcases the application of the recalibration process describes on
both synthetic workflows and workflows of real-world applications.

e Chapter 5] summarizes related work in the topic of the workflow recalibration.

Chapter|[g| concludes the deliverable.
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2 Problem Discussion

2.1 Motivating example

DataFilter PeakDet
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Figure 3: ‘Peak Detection’ of mobile calls workflow
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Figure [3 shows a real-world analytics workflow from WIND, which involves pro-
cessing of the anonymised Call Data Records (CDR), collected in Rome for 2015 year
and stored in HDFS, to populate a report on a dashboard. The report lists peaks
in calls and their ratios to an averaged number of calls over a training period (one
month). Peaks are defined by “differences from typical”. The workflow extracts the day
of the week, hour of the day from timestamp for each call record (extract ts). The task
calc_.num sums calls at one-hour intervals. Then, two filters split the data to training
and test datasets. Further, analysis is limited to specific geographical regions and,
then, the number of calls in the training period is averaged over each mobile tower
region, day in a week and hour in a day (week_aggr); this is the typical distribution of
calls. Next, calc_test sum and calc_train_sum produce sum of calls in each day of the
test and training datasets. Then, test and training data are joined and the ratio of calls
to average number is produced. The filter_peaks finds ratios that are over a specific
limit. These peaks is the sought information.

Initially this workflow comprised three complex UDFs, (DataFilter, DistrComp and
PeakDet), implemented in PySpark. Later, for optimization needs [14] they were de-
composed to smaller basic tasks, the operators of which have implementations in
Spark and PostgreSQL. It is quite common that industrial workflows, like this one,
are versioned and updated with time, resulting in a design that may not be optimal for
the exploration procedure that the analytics expert needs to follow. In this example,
the expert needs to explore the peaks one by one. This requires a complete restart of
the workflow with changed search regions, a parameter of the filter_region tasks. This
problem can be solved with recalibration methods that allow for the re-usage of the
intermediate results produced by the tasks leading to the filter_region tasks, without
re-executing the first. Also, recalibration methods would enable the expert to monitor
the result of filter_region, visualized on a geographical map, so that he can observe
faster call congestion and decide to change the search region. Furthermore, methods
for automatic recalibration can enable the expert to predefine conditions on interme-
diate results and, also, predefine decisions to be taken according to the outcome of

8
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condition evaluation.

2.2 Problem statement

In this section we briefly recall the context and used concepts. These are thoroughly
described in previous deliverables D5.1 [12] and D5.2 [3].Then we state the problem
of recalibration.

We assume a data processing environment that comprises numerous machines
(e.g. a cluster) on which a variety of processing engines are installed (e.g. traditional
and modern DBMSs). Each engine has access to a local data store. This environment
may include multiple instances of the same engine (e.g. PostgreSQL). The processing
environment takes as input logical workflows of data processing on a set of input data
D;, producing a set of output data D,. The logical workflow (hereafter workflow) W is
directed acyclic graph (DAG), G = (V, &) where V is the set of vertices and £ the set
of edges of the graph G. Therefore, W = {G, D;, D, }.

Each vertex v € V represents a logical processing task ¢t and each edge e € £,¢ =
(v1,v9) the flow of data between two vertices v; and v,. Therefore, a task of v; pro-
cesses the data output by other tasks of v;, for which there exists edges e = (vq, 1) in
G. Each task is a set of inputs, outputs and an operator. The operator of any task ¢ is
accompanied by a set of parameters P,.

The recalibration of a workflow entails the following requirements:

Enable access to intermediate results. The intermediate result of workflow exe-
cution is the (complete) result of a task ¢ that has been executed, while the execution of
the entire workflow is not yet completed. The user can have access to the intermediate
results of executed tasks their visualization.

Enable workflow changes at runtime. Such workflow changes consist of (a)
altering the task parameters P, — P/ of a workflow task ¢ and (b) changing a workflow
graph G = (V,€) — G' = (V', &), that includes infusing new tasks and/or removing
existing ones.

Avoid repeated computations. Workflow changes at runtime need to incur re-
execution of the workflow. However, we require that only tasks of changed workflow
parts are re-executed, thus avoiding to repeat the computation of tasks the intermedi-
ate results of which do not change after the recalibration of the workflow.

In the following we describe the proposed novel recalibration techniques and overall
process, which solve the recalibration problem by fullfiling the above requirements.
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3 Workflow recalibration

We propose three recalibration techniques. All techniques perform recalibration in an
online manner, i.e. during workflow execution.

Recovery and monitoring points. This technique offers to the user manual recal-
ibration. It enables the user to monitor intermediate results, make workflow changes
and if the changes are in the already executed workflow part, then only the changed
part is re-executed, avoiding to repeat computations; if changes affect only the non-
executed part, then workflow changes are applied and execution continues.

Conditional points. This is an automatic technique that allows the execution of
alternative predefined workflow branches.

Goto points. This is an automatic technique that conditionally changes an exe-
cuted workflow part to a predefined alternative and re-executes it.

3.1 Recovery and monitoring points

This recalibration technique allows the user to change a workflow during its execution
and avoids to unnecessarily repeat computations in the already executed workflow
part. It involves the employment of two novel types of tasks: recovery and monitoring
points. A recovery point rpr is a task that stores the result of task 7. A monitoring
point mpr is a task that invokes the visualization of the result of task 7" or part of it.
We use the phrase intermediate result to refer to the result of a task 7" that has been
executed, while the whole workflow execution is not yet finished. The visualization of
intermediate results assists the user in making a recalibration decision.

Recalibration using this technique is performed in four steps: (1) the user augments
a workflow with recovery and monitoring points and starts the workflow execution;
(2) when the execution reaches a recovery point the system stores the intermediate
results of the preceding task, required for a possible re-execution of the workflow part
following this recovery point; (3) when the execution reaches a monitoring point the
user observes intermediate results of the preceding task; the workflow keeps executing
after the monitoring point, while the user observes the intermediate results; (4) the user
changes the workflow part following a recovery point and performs a re-execution of
the workflow from this recovery point and on.

When the user changes the workflow and re-executes it, PAW determines which
intermediate results are required to re-execute the changed workflow part that follows a
specific recovery point (or points). It prepares this workflow part as a new materialized
workflow with these intermediate results as input datasets and sends it to IReS. The
execution of the previous (original) workflow is aborted.

Figure [4]displays the workflow from the motivating example augmented with recov-
ery and monitoring points. The user observes the result of filter_regions at monitoring
points, decides to change the parameters of filter_regions and re-executes the work-
flow from the recovery points. So the most time-consuming part of DataFilter is not
re-executed.

10
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Figure 4: ‘Peak Detection’ workflow augmented with recovery and monitoring points

3.1.1 Implementations of points

Monitoring points invoke the visualization of the result of the preceding task. PAW
includes monitoring points for specific operators, such as implementations of k-means,
for which the result is visualized as a map of centroids or the histogram of cluster sizes.
It also provides three basic monitoring operators, for the visualization of: geographical,
numerical and categorical data. PAW includes recovery points for HDFS, Elasticsearch
and operator-specific monitoring points for k-means and tf-idf.

3.2 Conditional points

branch_A output
: : / data
input data L, if-then-else
data preparation point
\ branch_B output
- data

Figure 5: A workflow with an if-then-else point

PAW includes a new type of task that realizes the conditional structure of the form if-
then-else. The latter allows the design of a workflow with several alternative workflow
parts. Depending on the intermediate results of the task preceding the if-then-else
task, a workflow branch is chosen for execution, over another one. These workflow
branches are not yet executed. Figure [5|displays a workflow that has been augmented
with one if-then-else point and two following workflow branches. The if-then-else task
has two outputs; the boolean condition evaluates to true or false, depending on which
PAW executes one of two branches.

The operator of the if-then-else point is implemented for any particular data. For
example, for tf-idf PAW has an if-then-else task that evaluates if the weight of some
word is above a certain value. Additional conditional points can be added through the
interface of PAW.

11



ASAP FP7 Project

ASAP D5.4

Dynamic re-calibration of processing

data data goto
. * gotolabel > . Y
preparation processing condition
input alternative output
data branch data

3.3 Goto points

Figure 6: A workflow recalibrated with a goto point
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The workflow is augmented with two tasks: goto label and goto condition points, and
an alternative workflow part related to the goto label point (Fig. [6). When the work-
flow execution reaches the goto condition point and if this task triggers ‘goto’ to goto
label, then it re-executes the workflow from that point choosing for execution the alter-
native workflow part. Therefore, this technique is a combination of the recovery and

monitoring points and conditional techniques.

The goto condition task has two outputs and a boolean condition evaluating to
true or false, depending on which PAW continues execution or jumps to the goto label
alternative workflow branch. The implementation of goto condition is similar to the

if-then-else point

3.4 Description of recalibration process
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Figure 7: Recalibration process scheme
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The above described techniques can be applied together to a single workflow. The
process of recalibration unfolds as follows (Fig.[7):

1. The user augments a workflow with recovery and monitoring, if-then-else and
goto points in GUI of PAW.

2. PAW prepares the workflow part ‘till’ the first if-then-else or goto point for execu-
tion. If there is no such points, it prepares for execution the entire workflow.

3. PAW sends the prepared workflow part to IReS for materialization and execution
using REST API calls. More details about integration are in [4].

4. PAW periodically checks the status of workflow execution in IReS, which tasks
have been executed and which are currently executing (RunningWorkflows.getState()).

5. When the execution reaches a monitoring point:

(a) PAW displays the intermediate result in GUI to the user.
(b) If the user changes the workflow, then PAW prepares a workflow part start-
ing from the recovery point that includes the user changes.

6. When the execution reaches if-then-else or goto point PAW checks the result
produced by this point and decides which workflow part has to be executed in
the following.

7. If PAW prepared a new workflow part to be executed, then PAW aborts the previ-
ous execution and sends this new part to IReS.

13
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4 Application of recalibration

In the following, we describe application scenarios of recalibration and demonstrate it
on a set of workloads.

Workloads. We use synthetic and real workflows on real data. The real work-
flows and data come from the two use cases of ASAP [7] and belong to the domains
of telecommunications and web analytics. One of the telecommunication workflows
is described as a motivating example (Section 2.1). The web analytics use case in-
volves anonymization of web content (WARC files) stored in ElasticSearch. The work-
flows are implemented in Spark and run over varying data set sizes ranging from 1
million to 4 billion rows. There are two types of workflows: one models entity recog-
nition/disambiguation and k-means, and another models continuous processing of in-
coming data, e.g., subscription/notification at scale.

input . N Ll L, output
tf-idf rp k-means mp .

Figure 8: Application of rp-mp technique to k-Means workflow

output

k-means_1
2 —Camd
output

k-means_2
2 oD

Figure 9: Application of if-then-else technique to k-Means workflow

thidf |—| if-then-else

Figures [8] and [9] display one k-means clustering workflow of a real web analytics
use-case, on which we have applied two different recalibration techniques: recovery
and monitoring points and conditional points, respectively. The workflow starts, as
usual, with an input data extracted from the Web collections with an ElasticSearch
query. Then tf-idf produces the term and inverse document frequencies. Further,
k-means produces the clustering model and outputs the final result. The workflow dis-
played in Figure (8] is augmented with one recovery and one monitoring point. When
execution reaches mp the user can see the cluster sizes in a form of histogram and
can change the parameters of k-means and re-execute a workflow avoiding repeated
computation of tf-idf. The workflow displayed in Figure [9] is augmented with an if-
then-else point that compares the number of words, the score of which is above some
prespecified threshold. k-means_1 and k-means_2 are the clustering tasks with a dif-
ferent number of centroids. Based on the result of if-then-else, either k-means_1 or
k-means_2 is executed.

Figure [10| displays a workflow of an analysis of a product marketing campaign. It
combines sales data with sentiments (join1 by prod&reg) about that product gleaned
from tweets crawled from the Web (calc sent&tag). The result consists of total sales
(calc totalSales) and average sentiment (calc avgSent) for each day of the campaign.

14
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Figure 10: A workflow of marketing campaign analysis

Campaigns promote a specific product and are targeted at non-overlapping, geograph-
ical regions. To simplify the presentation, we assume the sentiment analysis of a tweet
yields a single metric, i.e., like or dislike the product over a range of -5 to +5. In this use
case the user places a monitoring point between calc avgSent and join1 by prod&reg
that invokes the visualization of the geographical distribution of reviews. Observing
this geographical distribution the user finds out that there is a peak of reviews in one
region. Then he decides to limit the analyzed area to this specific region, (he adds a
vertex filter_region right after calc avgSent) and changes the monitoring point to one
that represents sentiment rating in a form of histogram. This histogram shows that
there are a lot of negative reviews. Further, the user changes the workflow to show
raw negative reviews in the analyzed area, by removing the part after the monitoring
point, and finds out what is the reason of this “dissatisfaction peak”. Figure [11|shows
the workflow with all these changes made by the user. This use case demonstrates
recovery and monitoring points technique with the infusion of a task.

@ select convert
product time&coord
@ buffer H calc sent&tag recovery point|—>| calc avgSent |—b| filter region |—>| monlfcorlng POl
(histogram) reviews

Figure 11: A workflow of marketing campaign analysis after two re-calibrations

Application scenarios of recalibration. The recalibration functionality of PAW
can be demonstrated with four types of scenarios that aim to show each a distinct view
of the recalibration benefits and its potential.

Scenarios A. These demonstrate the recovery and monitoring points technique.
Specifically, they show real necessities to change workflows during execution. Above,
we have described two real workflows which need infusion of new tasks or alteration
of task parameters during the execution: Peak detection and k-means workflows.

Scenarios B. These also demonstrate the recovery and monitoring points tech-
nique. Specifically, they show how the user can design a workflow in a gradual and
modular manner, while he is testing and debugging already created parts by moni-
toring intermediate results. These scenarios show how this workflow design process
benefits exploratory data analysis. Above, we have described such a scenario on a
synthetic workflow of marketing campaign analysis.

Scenarios C. These demonstrate the conditional technique for workflows with a
natural conditional branching, for which data analysis based on some conditions fol-
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lows different paths, and the selection between these alternative paths should be made
at runtime. Above, we have described such a scenario on the k-means workflow and
on one synthetic workflow.

Scenarios D. These demonstrate the goto technique using workflows that benefit
from the goto point in order to find anomalies in data, narrow or refocus the search or
analysis, as well as meet deadlines and milestones of analysis.

16
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5 Related Work

Most Workflow Management Systems (WMS) are described in detail in the reports
D5.1 [12], D5.2 [3] and D5.3 [13]. In this chapter we overview some of them and
discuss works that engage in recalibration.

Multi engine systems Many systems have the ability to generate an execution
plan from a logical. Here, Garlic [20], and TSIMMIS [24] were early prototypes of such
systems. However, no systems are able to generate an execution plan for a variety
of engines. Some systems can generate code within a particular family of engines.
For example, some database query systems can generate SQL code for a variety of
database systems (e.g., PostgreSQL, MariaDB [26]). Some systems have the ability to
generate execution plans for more than one processing engine, for example BigDAWG
Polystore System [21], which focuses on integrating independent storage engines.
BigDAWG offers users location transparency, so that application programmers do not
need to understand the details about the underlying database(s) that will execute their
queries. This has been implemented using islands of information. Each island is a
front-facing abstraction for the user, and it includes a query language, data model,
and a set of connectors or shims for interacting with the underlying storage engines.
Our system considers a wider configuration of a multi-engine platform; besides a set
of datastores, there are many execution engines, such as a MapReduce engine or a
scripting engine. Moreover, our model of logical workflow is more flexible and simple:
to start using a new engine in BIGDAWG requires to define an island for it, in our
system the user provides implementations in that engine of needed logical operators.

Many Extract-Transform-Load (ETL) systems (e.g., [15], [16]) can generate execu-
tion plans to, for example, filter and extract data from several database systems and
then import and process that data into there native ETL engine. However, these sys-
tems are inflexible in that the data processing can be performed only on their internal
ETL engine. Our system can generate a variety of execution plans from a single logical
plan, e.g., given a logical plan, we might create one execution plan that filters a data
set in a database system, while another plan might filter that data set using a scripting
engine.

To the best of our knowledge, there is no previous work on a manual workflow re-
calibration at runtime. Also, existing workflow management systems do not provide
recalibration based on goto methods. Some of them support conditional structures,
but in a limited way: ASKALON is a grid application development and computing envi-
ronment [28] based on AGWL [27], an XML-based workflow language, that supports if
and switch structures. These are predefined for specific basic input and output.

Kepler [29] allows the design of scientific workflows and executes them efficiently
using emerging Grid-based approaches to distributed computation. It offers several
workflow control actors, that implements a conditional functionality on a high level:
(1) a structure called Comparator, which takes two inputs and performs a numerical
comparison (<, <=, >, >=, ==), its output is a boolean result; (2) the BooleanSwitch
actor has one data input and one control input. It has two output ports: TrueOutput
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and FalseQOutput. Based on the value on the control input, data in the input port is
forwarded to the output port; (3) the Switch actor has one data input port, one control
input port and many output ports. Control input port selects one output port to forward
the input data to that output port.

Kepler is derived from Ptolemy [30]. In Ptolemy, many actors have conditional
behavior. For example, generic filters may use conditions to filter some tokens at the
input ports to forward them to their output ports. Also, there exist workflow control
actors, that implements a conditional functionality on a high level. The Comparator is
a logic actor, which takes two inputs and compares them according to <, <=, >, >=,
==. The output is a boolean result. The BooleanSwitch actor has one data input and
one control input. It has two output ports: TrueOutput and FalseOutput. Based on the
value on the control input, data in the input port is forwarded to the output port. Since
Kepler does not have an if construct, BooleanSwitch actor can be considered as the
closest construct to it. The Switch actor has one data input port, one control input port
and a enumerated list of output ports. According to a number passed to control the
input port this actor selects the corresponding output port to forward the input data to
that output port.

Taverna [32] is a well-known workflow management system that does not include
conditional structures in the workflow model, but tries to achieve the if and switch
functionality at a higher layer of workflow management. Conditionals are driven by
the control links within the workflow. As a process can only run when all upstream
links, data and control, are satisfied it is possible to construct workflows where only a
subset of the available downstream processors can run and where the others are left
in the scheduled state. Effectively those chosen to run are in the ‘true’ branch of the
conditional and those left scheduled in the ‘false’ branch. In Taverna such conditional
behavior is implemented using processors fail_if false and fail_if_true placed as first
vertices of parallel branches. Depending of their input one of those processors fails,
another satisfies and only satisfied branch continue execution.

UNICORE is a grid middleware, aims to provide seamless, secure and intuitive
access to distributed resources [33]. UNICORE has a programming environment to
design and execute workflows. It supports three specific types of if-then-else condi-
tions, ReturnCode, FileTest and TimeTest. The first performs a numerical comparison,
the second checks if a file exists or is executable and the third checks the current time.

Recalibration in PAW offers an abstract if-then-else task that can be customized for
a variety of input data and complex conditions that involve the execution of fully-fledged
procedures. Only Taverna offers same level of flexibility in the design of conditions as
PAW does. The rest of the considered systems are very limited in possibilities to
construct a condition.
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6 Summary

This document describes novel techniques for recalibration of analytics workflows de-
fined on multi-engine systems. This includes both automatic and manual techniques.
Further, we showcase the application of the described recalibration techniques on a
set of synthetic workflows and workflows of real-world applications.
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