
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D7.2
Integration Prototype “ASAP System

Prototype v.2”

WP 7 – Integration of the ASAP System

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 10 Feb 2016 Papagiannaki S. Initial Version
0.2 25 Feb 2016 Papagiannaki S. Revised Version
0.5 01 Jun 2016 Papagiannaki

S., Pratikakis P.,
Chalkiadaki M.

Revised Version

1.0 11 Jun 2016 Papagiannaki
S., Pratikakis P.,
Chalkiadaki M.

Final Version

Acknowledgment This project has received funding from the European Union’s 7th Framework Pro-
gramme for research, technological development and demonstration under grant agreement number 619706.

Contents

1 Introduction 4
1.1 Task Description . 4

2 ASAP Components 6
2.1 Intelligent, Multi-Engine Resource Scheduler (IReS) . 6
2.2 Workflow Management Tool (WMT) . 6
2.3 Asap Operators . 7
2.4 Engines . 7
2.5 Visualization Component . 8

3 ASAP Integration Summary 9

4 Prototype Setup 11
4.1 ASAP source code . 11
4.2 Unified Setup using Fabric . 11
4.3 WMT Setup . 13
4.4 IReS Setup . 13
4.5 Spark Nested Setup . 14
4.6 ASAP Operators Setup . 15

4.6.1 Swan Operators Setup . 15
4.6.2 Telecom Analytics Setup . 15
4.6.3 Web Analytics Setup . 16

4.7 Visualization API Setup . 16
4.8 Clusters . 16

4.8.1 IMR Cluster . 16
4.8.2 WIND Cluster . 16

5 Testing 17
5.1 Module Correctness Tests . 17

5.1.1 IReS unit tests . 17
5.1.2 Swan operators . 18
5.1.3 Dashboard unit tests . 19
5.1.4 Workflow Management Tool unit tests . 19

2

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

5.2 Integration Tests . 20
5.3 Jenkins . 20

A WMT Setup Fabric example 24

B IReS Setup Fabric Task 25

3

Chapter 1

Introduction

ASAP focuses on (i) innovative methods and technologies and (ii) tools and applications. Regarding meth-
ods and technology, we develop novel methods in order to model cost and performance of multiple data
stores and analytics execution engines. Building on these, we perform automated job scheduling to multiple
runtime and data store technologies together with real-time tracking of intermediate results. To deliver this
technology to the end user, we couple it with state-of-the-art visualization tools enabling both qualitative
and quantitative monitoring of a job’s performance and cost. The integrated technology enables fast, easy
development and submission of both simple and highly complex analytics tasks that take full advantage of
the existing resources according to user requirements. Overall, ASAP delivers open source tools that can
be used both separately and as an integrated system in order to provide efficient execution and management
of complex analytics tasks. This deliverable reports on the current status of work for the integration of all
components into an integrated system.

Specifically, the main objectives of this work package are:

• Ensure the integration of the contributions in WP2, WP3, WP4, WP5 and WP6.

• Coordinate development and delivery of the integrated modules based on the research and develop-
ment results in the different Research Areas.

• Ensure that these prototypes are used to integrate and coordinate the coherent delivery of the ASAP
system for its application in WP8 and WP9.

1.1 Task Description

This deliverable reports on work done within tasks T7.2 and T7.3.
Task T7.2 integrates the technologies of the components from WP2, WP3, WP4, WP5 and WP6, based

on the overall architecture defined in D1.2, in order to execute a subset of the use cases proposed in WP8
and WP9.

Task T7.3 tests alpha- and beta-versions of the integrated platform and the individual components. It
gives continuous feedback to the application development and drives modifications to the integrated tool, as
well as to the individual components and services. For this reason this Task continues until the end of the
project. During task T7.2 we tested the functionality of the simple use cases developed in WP1 to verify

4

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

the correctness of the integrated system. We also tested the queries developed on the two applications using
simple or reduced, heterogeneous data stores. All of these tests are automated. We test and verify the correct
function of the integrated platform.

5

Chapter 2

ASAP Components

This chapter briefly describes the separate components of the ASAP system, depicted, along with their inter-
actions, in Figure 2.1. Readers alreadly familiar with every module, as reported in detail in the corresponding
deliverables, can skip this chapter.

2.1 Intelligent, Multi-Engine Resource Scheduler (IReS)

The IReS platform, thoroughly described and implemented in the scope of WP3, targets the workflow
optimization, examining alternative execution paths using various underlying engine and operator imple-
mentations. Using its web interface the user can define operators and datasets along with their properties
and restrictions and store them in a language understandable by the other ASAP components and speci-
fied in WP5. Furthermore, it provides functionality for validating and executing workflows by extending
the Apache Kitten7 framework [4] in order to execute over YARN [3], apart from separate operators, also
workflows as a DAG of operators.

IReS is an open source1 web application that exposes its functionality to the rest of the ASAP compo-
nents through a RESTful API. It is implemented in Java using the Jetty [11] servlet engine and the Jersey
[10] RESTful Web service framework.

2.2 Workflow Management Tool (WMT)

The WMT, described and implemented in the scope of WP5, provides full functionality for designing,
editing, analyzing and optimizing an abstract workflow. It interacts with IReS for loading the registered
operators and executing workflows via the RESTful API the latter provides. Its Analysis and Optimization
functionality can be invoked by web actions that call the respective Python methods.

The WMT is an open source2 Javascript [8] Web application rendered behind a Nginx [13] web server.

1https://github.com/project-asap/IReS-Platform
2https://github.com/project-asap/workflow

6

https://github.com/project-asap/IReS-Platform
https://github.com/project-asap/workflow

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

Figure 2.1: ASAP components

2.3 Asap Operators

In the scope of WP3 a number of popular analytics operations (TF/IDF, K-Means, Word2Vec etc) are mod-
eled and profiled in several runtimes (Hadoop [1], Weka [19], Mahout [12]). In addition to this for the needs
of the ASAP the following additional operators have been implemented, registered and profiled by IReS:

• K-Means, TF/IDF and Word2Vec implementations for Swan, developed in the scope of WP2.

• Web analytics operation implementations, developed in the scope of WP8.

• Peak detection and Sociometer implementations in Spark and Spark-Nested, developed in the scope
of WP9.

• Operators for dumping data in the visualization dashboard, developed in the scope of WP9.

2.4 Engines

For the execution of the operators listed in the previous section, ASAP uses Hadoop [1] and more pre-
cilly HDFS [2], Mahout [12] and Weka [19]. In addition, we use Swan [21], an experimental extension of
Cilk [20] for operators written to use a data-flow style of execution. Finally, we use the Spark-Nested frame-

7

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

work developed in WP4 for support of Spark applications that require nested transformations, hierarchical
data representation and distributed scheduling.

2.5 Visualization Component

The visualization component, subject of the WP6, consists of:

• The ASAP dashboard which collects, queries and visualizes data. The dashboard is implemented
using the D3 JavaScript library and it is hosted on a webLyzard server.

• Open APIs for ingesting data in an Elasticsearch [6] installation. The Document API is used for
ingesting crawled Web documents (unstructured data) from WP8. The Statistical Data API is used for
ingesting the telecommunications data (structured data) produced by WP9.

8

Chapter 3

ASAP Integration Summary

The life-cycle execution of a data analytics job in the scope of ASAP is summarised in the following steps:

1. The Developer designs a primitive computation as an abstractor operator using the IReS web interface.

2. The operator metadata, describing its semantics in the workflow description language developed in
WP5, are stored in the ASAP operator library that resides in the IReS.

3. The Developer adds a number of data sources using the IReS web interface.

4. The data source metadata, describing its location in the workflow language developed in WP5, are
stored in the ASAP operator library that resides in the IReS.

5. The Developer creates one or multiple implementations of the above operator, following the program-
ming model proposed in WP2.

6. The Developer using the IReS web interface, stores the above implementations in the ASAP operator
library as materialized operators.

7. The Developer updates the metadata describing the materialized operator’s semantics in the workflow
description language developed in WP5 by introducing scripts for its execution automation.

8. The IReS profiler builds a cost model of the operator implementations and saves them along with the
materialized operator’s metadata.

9. The WMT, during the initialization process, loads the ASAP library by making the respective request
to the RESTful API of the IReS platformm.

10. The Workflow Designer, using the WMT web interface, designs a workflow by combining the avail-
able data sources and operators.

11. The Workflow Designer, using the WMT web interface, can analyze and optimize the workflow.

12. The Workflow Desinger, can save the workflow in the workflow language developed in WP5.

9

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

13. The User, using the WMT web interface, can load a existing workflow and initiate the execution of
the computation by making the respective request to the API of the IReS platform.

14. The IReS platform schedules the workflow using the best possible execution plan, based on the oper-
ator metadata and costs.

15. The IReS platform orchestrates the execution of the selected execution plan by employing YARN
for integrating with the various computing engines that lay underneath (e.g. Swan or Spark Nested
documented in WP4).

16. An operator can dump results to the Elasticsearch installation of the Visualization component using
the RESTful API introduced in WP6.

17. The User can see the intermediate or final computation results using the Visualization Dashboard
described in WP6.

10

Chapter 4

Prototype Setup

This chapter describes the current status of the ongoing integration. Spcecifically, we describe the organiza-
tion of code in repositories and provide brief directions on how one can deploy the corresponding modules
and the system as a whole. For more detailed and up-to-date user guide and installation instructions, we
refer the reader to the documentation within the repositories described below.

4.1 ASAP source code

The majority of the ASAP components are open source. Therefore a separate repository for each component
has been created under the project’s account in Github or it has been forked from a repository residing under
another account. In each separate repository the collaborator Github accounts, which are authorised to push
to the respective repository, are assigned. The table 4.1 shows the respective Github repositories.

4.2 Unified Setup using Fabric

As mentioned in the previous chapter, the ASAP system consists of a number of components developed
using different technologies. In order to simplify the installation of all the components and their continuous
and smooth integration we have employed Fabric [7]: a Python library and command-line tool for stream-
lining the use of SSH for application deployment or systems administration tasks. Fabric tasks are typically
methods that execute shell commands easily and handle failures nicely.

In that way we have created such fabric tasks for each ASAP component. The typical scenario of such
a task is more or less the following:

• install prerequisites

• get a copy of the component: e.g. clone the respective github repository.

• configure: create and modify configuration files.

• build: generate the executables (if necessary)

• test the base functionality

11

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

Repository Description
Work

Package
Collaborators

asap operators forked
from
hvdieren/asap operators

Swan Analytics
Operators

WP2 hvdieren (QUB), Murphky(QUB)

IReS-Platform IReS WP3
npapa (ICCS), gsvic (ICCS), vpapaioannou
(ICCS), cmantas (ICCS), kdoka (ICCS),
polyvios (FORTH)

Spark-Nested Spark Nested WP4
polyvios (FORTH), papagian (FORTH),
mhalkiad (FORTH), p01K (FORTH)

workflow WMT WP5 maxfil (GENEVE)
weblyzard api forked
from weblyzard’s
repository

Visualization Web
Services

WP6

fabric-scripts Fabric scripts WP7 papagian (FORTH)

web-analytics
Web analytics
application

WP8 thanh-im (IMR), rigaux (IMR)

telecom-analytics
Telecom analytics
application

WP9
papagian (FORTH), mhalkiad (FORTH),
mesosbrodleto (UNIPI)

Table 4.1: Github repositories

The bootstrap_wmt() method in Appendix A is an example of such a bootstrap scenario for the
WMT component.

Fabric scripts for the all the components developed in the scope of the ASAP, as well as third-party
software employed by ASAP, such as for Hadoop cluster installation, can be found in the following github
repository:

https://github.com/project-asap/fabric-scripts

The main defined fabric tasks are the following:

• bootstrap_wmt: bootstrap WMT

• bootstrap_IReS: bootstrap IReS

• bootstrap_spark: bootstrap Spark Nested

• bootstrap_operators: bootstrap Swan, Telecom and Web analytics operators

• bootstrap: wrapper task for bootstrapping all the above components

The following sections describe the setup details and usage guidelines followed for creating the above
tasks for each separate ASAP component.

12

https://github.com/project-asap/asap_operators
https://github.com/hvdieren/asap_operator
https://github.com/project-asap/IReS-Platform
https://github.com/project-asap/Spark-Nested
https://github.com/project-asap/workflow
https://github.com/project-asap/weblyzard_api
https://github.com/weblyzard/weblyzard_api
https://github.com/weblyzard/weblyzard_api
https://github.com/project-asap/fabric-scripts
https://github.com/project-asap/web-analytics
https://github.com/project-asap/telecom-analytics

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

4.3 WMT Setup

The WMT component uses Nginx [13], PHP-FPM [16] and Python, therefore these packages are among the
components prerequisites. The following command installs these packages in an Ubuntu machine:

sudo apt-get nginx php-fpm python

The web content of the WMT is compiled using Grunt. The installation of Grunt’s command line
interface (CLI) globally can be done with the following commands:

sudo apt-get npm
sudo npm install -g grunt-cli

For building the component as a Grunt project, one needs to:

1. go to the component’s root directory.

2. install project dependencies with npm install.

3. run Grunt with grunt.

Then the Nginx has to be configured to serve this content. Therefore a new file pointing to the WMT
installation has to be created under the /etc/nginx/sites_enabled.

Finally, one can enjoy the WMT functionality using a web browser by navigation to the host and the
port that Nginx uses to serve the content.

The workflow analysis and optimization functionalities can be challenged by running the following
example script:

python pub/py/main.py analyse
python pub/py/main.py optimise

The Fabric tasks that automate the above procedure are listed in Appendix A.

4.4 IReS Setup

The IReS assumes a Hadoop [1] or Yarn [3] installation. Moreover, requires Maven [5] v3 for building the
IReS components.

Running the IRes-Platform requires the following steps:

• Clone IReS-Platform:

git clone https://github.com/project-asap/IReS-Platform.git

• Build panic, cloudera-kitten and asap-platform IReS components by navigating to the
respective folder and running:

sudo mvn clean install -DskipTests

13

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

• Update configuration files and folders appropriately.

After successful installation the file:

asap-platform/asap-server/src/main/scripts/asap-server

should be updated to set the IRES_HOME parameter to point to the location of the IReS installation.
Also the followind Hadoop/Yarn configuration files:

etc/hadoop/core-site.xml
etc/hadoop/yarn-site.xml

should be copied to the asap-platform/asap-server/target/conf directory.
The asap-client contains two examples for testing the main functionality for Operators and Work-

flows respectively. These examples can run using Maven:

mvn exec:java -Dexec.mainClass="gr.ntua.cslab.asap.examples.TestOperators"
mvn exec:java -Dexec.mainClass="gr.ntua.cslab.asap.examples.TestWorkflows"

The Fabric task that automates the above procedure is listed in Appendix B.

4.5 Spark Nested Setup

Spark Nested source code can be downloaded using the following git commands:

git clone https://github.com/project-asap/Spark-Nested.git
git checkout nested-hierarchical

Hence, it can be built using the SBT [17] following the guidelines for building the original Spark using SBT.
Moreover, since we require Spark to read from HDFS, we need to build Spark against the installed HDFS
version in our environment, for example:

sbt -Pyarn -Phadoop-2.7.1 assembly

After successful build a newly created jar should exist in the directory assembly/target/scala-2.10.
Now, the cluster can be configured and start following the guidelines for the original Spark.

Test and benchmarks for challenging the extended functionality (nested map, hierarchical representation
and distributed scheduling) can be found in this repository:

https://github.com/p01K/spark-tests

For building these examples:

• Create a lib directory and copy there the above created spark-assembly-*.jar file

• Build using SBT: sbt package

The examples can be run as Spark Applications by submitting it to the running spark master using the
spark-submit script. For simplifying the execution the submit.sh can be used. This script expects
as the first parameter the name of the submitting class followed by the parameters that should be passed to
each class. The first parameter that the class expects is the URI of the Spark master, for example:

./submit NestedFilter1 spark://localhost:7077

14

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

4.6 ASAP Operators Setup

4.6.1 Swan Operators Setup

The Swan operators reside in the following repository:

https://github.com/project_asap/asap_operators

To compile and run tests, in the top-level directory one can run the following command:

make test

For completing successfully the compiling step the following compiler should be used:

icc version 14.0.0 (gcc version 4.4.7 compatibility)

Moreover, the repository at:

https://github.com/project-asap/swan_tests

includes directions, guidelines, and configurations required to install LLVM, clang, and the Swan runtime
system.

4.6.2 Telecom Analytics Setup

The telecom analytics operators reside in the following repository:

https://github.com/project-asap/telecom-analytics/tree/develop

Currently, two use cases proposed in the scope of WP9 are implemented: the Peak detection and the
Sociometer.

The Peak detection consists of a three separate operators: Data Filter, Distribution Computation and
Peak Detection. All are implemented as spark applications in Scala. For building them:

• Copy the spark-assembly-*.jar file generated in 4.5 in the lib directory

• Build using SBT: sbt package

The documentation of these operators is publicly available at:

https://github.com/project-asap/telecom-analytics/blob
/current/docs/PeakDetection.md

The examples.PeakDetectionEx application illustrates the whole use case execution, and can be run
using the submit.sh script which undertakes to submit the application to the spark installation:

./submit.sh examples.PeakDetectionEx spark://localhost:7077

The Sociometer consists of three separate operators: User Profiling, Clustering and User Annotation.
All are implemented as spark application in Python. The documentation of these operators is located here.
They can run as spark applications using pyspark.

15

https://github.com/project-asap/telecom-analytics/blob/current/docs/Sociometer.md

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

4.6.3 Web Analytics Setup

The web analytics operators developed for the purposes of WP8 reside in the following repository:

https://github.com/project-asap/web-analytics

They are implemented in Python and make excessive use of popular Python libraries for machine learning
and scientific computing, such as: NumPy [14], pandas [15], sklearn, nltk, gensim The command.sh script
demonstrates a flow of execution involving several of these operators.

4.7 Visualization API Setup

The visualization API source code resides in the following repository:

https://github.com/project-asap/ewrt

Testing code and examples of use are in the repository at:

https://github.com/project-asap/statistical-tests

The API is written in Python and can be installed along with their dependencies using the Python Se-
tuptools [18]. The repository includes installation directions, a user guide, and example scripts.

4.8 Clusters

The ASAP prototype has been installed in the IMR and WIND clusters for the ASAP needs.

4.8.1 IMR Cluster

IMR cluster consists of 4 server-grade physical nodes. Each one of those is equipped with a 3rd generation
i5 CPU (@ 2.90 GHz) and 16GB of physical memory and an array of two HDDs on RAID-0. The operating
system is Debian 6 (squeeze) Linux. The cluster is equipped with Hadoop 2.6.0-cdh5.4.5.

4.8.2 WIND Cluster

WIND cluster consists of 4 server-grade nodes. Each one of those is equipped with a 24 Virtual CPUs and
24GB of memory. The operating system is Ubuntu 14.04 Linux. The cluster is equipped with Hadoop 2.7.1.

16

Chapter 5

Testing

We designed and use some tests to drive and evaluate the integration of ASAP modules into a working
prototype. These often consist of subsets of the use cases described in D1.3 that involve more than one
ASAP modules, along with a description of expected output and the requirements of each test.

5.1 Module Correctness Tests

Each partner has a number of unit tests to test their module.

5.1.1 IReS unit tests

The source code of IReS platform unit tests can be found at:

https://github.com/project-asap/IReS-Platform/blob/master/asap-platform/asap-client/src/test/java/gr/ntua/cslab/asap/client/Tests.java

The six unit tests for IReS platform are:

1. testCreateOperator: Create an operator object and test if its parameters are parsed and retrieved cor-
rectly.

2. testPutOperator: Create an operator object and insert it into the asap library using the rest client.

3. testRemoveOperator: Remove an operator from the asap library using the rest client.

4. testPutAndMatchOperator: Insert an abstract operator and check for its matching materialized opera-
tors.

5. testAddAbstractWorkflow: Insert an abstract workflow into the asap library using the rest client.

6. testMaterializeAbstractWorkflow: Materialize an abstract workflow according to a user defined policy.

17

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

5.1.2 Swan operators

The source code of the Swan operators unit tests can be found at: https://github.com/hvdieren/asap operators/tree/master/tests
The seven unit tests are:

1. tfidf unit test: This unit test reads a simple user workflow description (tfidf.json) describing the op-
erators, input and output datasets for calculating tfidf (term frequency inverse document frequency)
values for each word in a corpus of documents. The workflow compiler will generate Swan code based
on available operators as defined in the operators library (SwanMaterialised.json). The code will be
compiled and executed to produce ARFF output in file ”tfidf output.arff”. This output is compared
against a “good” version and any deviances are reported.

2. kmeans unit test: This unit test reads a simple user workflow description (kmeans.json) describing
the operators, input and output datasets for calculating k-means clustering from an ARFF text files
containing TF-IDF values for words in a corpus of documents. The workflow compiler will generate
Swan code based on available operators as defined in the operators library (SwanMaterialised.json).
The code will be compiled and executed to produce a text output file in ”kmeans output.txt”. This
output is compared against a “good” version and any deviances are reported.

3. tfidf and kmeans unit test: This unit test reads a workflow description which contains a combined
in-memory description of TF-IDF and K-means together. No output file is specified to TF-IDF and
no input file is specified to K-means as the intermediate data is reatained in-memory. The code will
be compiled and executed to produce a text output file in ”tfidf and kmeans output.txt”. This output
is compared against a “good” version and any deviances are reported. Timings gained from this
benchmark are indicative of benefits of potential in-memory workflow optimizations.

4. tfidf then kmeans unit test: This unit tests reads a workflow description which contains a 2-phased
transformation of a text dataset using TF-IDF “followed” by K-means. In contrast to “tfidf and
kmeans”, TF-IDF produces an output ARFF file which is specified as the input to K-means, when
they produces the clustering results in text file ”tfidf then kmeans output.txt”. As it is not benefiting
from in-memory optimisations it is expected to take a longer time to execute.

5. tfidf standalone benchmark: This unit test compiles a version of TF-IDF which uses a list and an
unordered map datastructure, for benchmark comparisons against other versions of TF-IDF which
use for example ordered map data structures. On execution it produces output in ARFF format
(test tfidf list umap.txt) which is compared against a “good” version and any deviances are reported.

6. kmeans standalone benchmark: This unit test compiles a standalone version of K-means using Swan
for benchmark comparisons. It produces output in text format (test kmeans.txt) which is compared
against a “good” version and any deviances are reported.

7. wc standalone benchmark: This unit test compiles a standalone version of Word Count using Swan for
benchmark comparisons. It produces output in text file listing of resulting word counts for a document
(test wc.txt) which is compared against a “good” version and any deviances are reported.

18

https://github.com/hvdieren/asap_operators/tree/master/tests

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

5.1.3 Dashboard unit tests

The source code of Dashboard unit tests can be found at: https://github.com/weblyzard/statistical-tests
It contains the following tests:

1. Three examples for POST validation: The examples (valid observation.json, valid observation2.json,
valid observation3.json) are available due to the fact that one can upload JSON files that contain ob-
servations with different fields. The webLyzard API defines a set of required and optional fields.
The first example (valid observation.json) only contains required fields: id, uri, added date (indexing
date), date (observation/document date), indicator id, indicator name, value). Some examples of op-
tional fields are presented in the next example (valid observation2.json): target country, target type,
target location, etc.

2. Two examples for invalid POST: The examples (invalid observation.json, invalid observation2.json)
are available in order to highlight various types of errors. In the first example a fictional field (field
that does not exists in the required or optional sets of fields described in the webLyzard API) named
test error is defined which will make this test fail. The second example is expected to fail, as the id of
the observation is missing.

3. PUT test: This example (update observation.json) corresponds to an UPDATE statement. The ex-
pected output is a value of 2000 instead of 1000 for the first observation (id=1).

4. GET test: This test simply returns the data for a single observation.

5. DELETE test: This test simply deletes the data for a single observation.

5.1.4 Workflow Management Tool unit tests

The seven unit tests for the Workflow Management Tool are:

1. analyse: Compares the result with the presaved result in a file testwl-a.json.

2. save: Checks if save function generates a file with correct name.

3. execute: Checks if execute function saves a workflow in IReS format (correct folder and presence of
required files in it).

4. findNode: Checks if the found node with findNode function has correct id.

5. findTask: Checks if the found task with findTask function has correct id.

6. findEdge: Checks if the found edge with findEdge function has correct id.

7. dict2text: Compares its result with the presaved result.

19

https://github.com/weblyzard/statistical-tests

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

5.2 Integration Tests

Tests cases that challenge the interaction among the different ASAP components involve:

1. Integration of WMT and IReS: The WMT loads (using the IReS API) the available operators and
they appear under the Tasks in the down left side of the WMT web application. A dummy workflow
opened by the WMT can be executed over the IReS.

2. Integration of IReS and Swan: a dummy query that must be successfully started from within IReS and
return the expected results.

3. Integration of IReS and Spark : A dummy query that must be successfully started from within IReS
and return the expected results.

4. Integration of Telecom Analytics application with Visualization Tool: a dummy script that uploads
data to the visualization tool (using the weblyzard API) and they appear in the Visualization Dash-
board.

5.3 Jenkins

Test scripts for the test cases described above can currently run on demand. Ongoing work aims to extend
them in order to cover additional functionality as the components evolve and also to be configured to run
periodically and in automated way over Jenkins [9]. However, since many of the components have a web
interface, currently, some integration tests can only be performed manually. We are currently investigating
more sophisticated, automated test practices for the web-based tests.

We have installed Jenkins 2.6 for continuous integration of the separate ASAP components. It resides
in a machine connected to the FORTH’s private network. We have created jobs for building and testing
each component separately. Jobs are configured to run weekly and the build status is sent via email to the
developers of each component along with the build logs. For the components with elementary setup we
created “freestyle” Jenkins jobs, while for those having more complex workflows (IReS, Spark and Swan)
we used pipelines built with simple text scripts that use a Pipeline DSL (domain-specific language) based
on the Groovy programming language. For meeting the particular requirements of the above jobs we have
extended Jenkins by installing among others the following plugins:

1. ShiningPanda Plugin — https://wiki.jenkins-ci.org/display/JENKINS/ShiningPanda+Plugin — Jenk-
ins support with Python and virtualenv builder

2. NodeJS Plugin — https://wiki.jenkins-ci.org/display/JENKINS/NodeJS+Plugin — Jenkins integra-
tion for NodeJS and npm packages

3. Make Plugin — https://wiki.jenkins-ci.org/display/JENKINS/CMake+Plugin — Jenkins support for
make projects

4. Maven Project Plugin — https://wiki.jenkins-ci.org/display/JENKINS/CMake+Plugin — Jenkins sup-
port for Maven jobs

20

https://wiki.jenkins-ci.org/display/JENKINS/ShiningPanda+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/NodeJS+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CMake+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Maven+Project+Plugin

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

5. sbt plugin — https://wiki.jenkins-ci.org/display/JENKINS/sbt+plugin — Jenkins support for sbt projects

6. Git Plugin — https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin — use of Git as a build SCM

21

https://wiki.jenkins-ci.org/display/JENKINS/sbt+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin

Bibliography

[1] Apache hadoop. https://hadoop.apache.org.

[2] Apache hadoop hdfs. http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[3] Apache hadoop yarn. https://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[4] Apache kitten. https://github.com/cloudera/kitten.

[5] Apache maven. http://maven.apache.org/.

[6] Elasticsearch. http://www.elasticsearch.org/.

[7] Fabric. http://www.fabfile.org.

[8] Javascript. http://javascript.com.

[9] Jenkins. http://jenkins-ci.org/.

[10] Jersey. https://jersey.java.net/.

[11] Jetty. http://eclipse.org/jetty/.

[12] Mahout. http://mahout.apache.org.

[13] Nginx. http://nginx.org.

[14] Numpy. http://www.numpy.org.

[15] pandas. http://pandas.pydata.org.

[16] Php-fpm. http://php-fpm.org.

[17] Sbt. http://www.scala-sbt.org.

[18] Setuptools. http://pythonhosted.org/setuptools/.

[19] Weka. http://weka.wikispaces.com.

[20] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Ran-
dall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In PPoPP, 1995.

22

https://hadoop.apache.org
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/cloudera/kitten
http://maven.apache.org/
http://www.elasticsearch.org/
http://www.fabfile.org
http://javascript.com
http://jenkins-ci.org/
https://jersey.java.net/
http://eclipse.org/jetty/
http://mahout.apache.org
http://nginx.org
http://www.numpy.org
http://pandas.pydata.org
http://php-fpm.org
http://www.scala-sbt.org
http://pythonhosted.org/setuptools/
http://weka.wikispaces.com

ASAP FP7 Project
ASAP D7.2

Integration Prototype “ASAP System Prototype v.2”

[21] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos. A unified scheduler for recursive and task-
based parallelism. In PACT, 2011.

23

Appendix A

WMT Setup Fabric example

@task
d e f i n s t a l l n p m () :

t r y :
run (” npm v e r s i o n ”)

e x c e p t :
sudo (” ap t−g e t i n s t a l l npm ”)

u s e r = os . e n v i r o n [’USER ’]
group = run (” g ro ups | c u t −d ’ ’ −f 1 ”)
wi th q u i e t () :

sudo (” chown −fR %s :% s ˜ / . npm ˜ / tmp ” % (use r , group))

@task
d e f i n s t a l l g r u n t () :

i n s t a l l g r u n t−c l i
sudo (” npm i n s t a l l −g g r u n t−c l i ”)
i f n o t e x i s t s (” / u s r / b i n / node ”) :

c r e a t e s y m bo l i c l i n k f o r n o d e j s
sudo (” l n −s / u s r / b i n / n o d e j s / u s r / b i n / node ”)

@task
d e f c o n f i g n g i n x () :

s i t e s a v a i l a b l e = ” / e t c / ng inx / s i t e s−a v a i l a b l e /% s ” % VHOST
s i t e s e n a b l e d = ” / e t c / ng inx / s i t e s−e n a b l e d /% s ” % VHOST
sudo (” echo \”%s\” > %s ” % (VHOST CONFIG , s i t e s a v a i l a b l e))
i f n o t e x i s t s (s i t e s e n a b l e d) :

sudo (” l n −s %s %s ” % (s i t e s a v a i l a b l e , s i t e s e n a b l e d))

@task
d e f i n s t a l l n g i n x () :

sudo (” ap t−g e t i n s t a l l ng inx ”)
c o n f i g n g i n x ()

@task
d e f s t a r t n g i n x () :

sudo (” ng inx −s r e l o a d ”)

@task
d e f t e s t w m t () :

c o n t e n t = run (” c u r l h t t p : / / l o c a l h o s t :% s ” % WMT PORT)
a s s e r t (” workflow ” i n c o n t e n t)

@task
d e f b o o t s t r a p w m t () :

i n s t a l l p r e r e q u i s i t e s
i n s t a l l n p m ()
i n s t a l l g r u n t ()

c l o n e and b u i l d wmt
i n s t a l l w m t ()
i n s t a l l n g i n x ()
s t a r t n g i n x ()

t e s t w m t ()

24

Appendix B

IReS Setup Fabric Task

@task
d e f b o o t s t r a p I R e S () :

d e f b u i l d () :
C o n d i t i o n a l b u i l d
i f n o t e x i s t s (” asap−p l a t f o r m / asap−s e r v e r / t a r g e t ”) :

f o r d i n (” p a n i c ” , ” c l o u d e r a−k i t t e n ” , ” asap−p l a t f o r m ”) :
w i th cd (d) :

run (” mvn c l e a n i n s t a l l −D s k i p T e s t s ”)

i n s t a l l m v n ()

c l o n e I R e S ()

wi th cd (IRES HOME) :
b u i l d ()
Update hadoop v e r s i o n
HADOOP PREFIX , HADOOP VERSION = c h e c k f o r y a r n ()
f o r f i n (’ asap−p l a t f o r m / pom . xml ’ , ’ c l o u d e r a−k i t t e n / pom . xml ’) :

c h a n g e x m l p r o p e r t y (” hadoop . v e r s i o n ” , HADOOP VERSION, f)
S e t IRES HOME i n asap−s e r v e r s c r i p t
r u n s c r i p t = ” asap−p l a t f o r m / asap−s e r v e r / s r c / main / s c r i p t s / asap−s e r v e r ”
c = run (” g rep \”ˆIRES HOME=\” %s | wc −l ” % r u n s c r i p t)
i f (c == ” 0 ”) : # on ly i f i t i s n o t a l r e a d y s e t

run (” sed −i ’ / # $IRES HOME=$ / a\IRES HOME=%s ’ %s ” % (IRES HOME ,
r u n s c r i p t))

f o r f i n (” core−s i t e . xml ” , ” yarn−s i t e . xml ”) :
sudo (” cp %s / e t c / hadoop /% s ”

” asap−p l a t f o r m / asap−s e r v e r / t a r g e t / con f / ” % (HADOOP PREFIX , f))
s t a r t I R e S ()
t e s t I R e S ()

25

FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D7.2
Integration Prototype “ASAP System

Prototype v.2”

WP 7 – Integation of the ASAP System

Nature: Report

Dissemination: Public

	Introduction
	Task Description

	ASAP Components
	Intelligent, Multi-Engine Resource Scheduler (IReS)
	Workflow Management Tool (WMT)
	Asap Operators
	Engines
	Visualization Component

	ASAP Integration Summary
	Prototype Setup
	ASAP source code
	Unified Setup using Fabric
	WMT Setup
	IReS Setup
	Spark Nested Setup
	ASAP Operators Setup
	Swan Operators Setup
	Telecom Analytics Setup
	Web Analytics Setup

	Visualization API Setup
	Clusters
	IMR Cluster
	WIND Cluster

	Testing
	Module Correctness Tests
	IReS unit tests
	Swan operators
	Dashboard unit tests
	Workflow Management Tool unit tests

	Integration Tests
	Jenkins

	WMT Setup Fabric example
	IReS Setup Fabric Task

