
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D7.3

ASAP System Prototype

WP 7 – Integration of the ASAP System

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 03 Feb 2017 P. Pratikakis, S. Papa-

giannaki, M. Chalkiadaki
Initial Version

0.2 23 Feb 2017 S. Papagiannaki,
M. Chalkiadaki

First Revision

0.3 28 Feb 2017 P. Pratikakis Second Revision, review
by K. Doka

Acknowledgement This project has received funding from the European Union’s 7th
Framework Programme for research, technological development and demonstration
under grant agreement number 619706.



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Executive Summary

This deliverable describes work done in WP7 during the third year of the ASAP project.
Work involves integrating features added to all modules during the second and third
years of the project, development of test cases, debugging, performance debugging,
development and integration of documentation for all modules and the system as a
whole, and evaluation on the ASAP system installation and operation on the actual
applications, in three different set-up (both virtual and silicon) cluster environments.

2



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Contents

1 Introduction 4
1.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview of Integrated System . . . . . . . . . . . . . . . . . . . . . . . 4

2 ASAP System Components 6
2.1 Intelligent, Multi-Engine Resource Scheduler (IReS) . . . . . . . . . . . 6
2.2 Workflow Management Tool (WMT) . . . . . . . . . . . . . . . . . . . . . 7
2.3 Asap Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 External Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 ASAP Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Visualization Component . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 ASAP Integration Summary 9

4 Prototype Setup 11
4.1 ASAP source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Unified Setup using Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Integration of System Components 13
5.1 Integration of WMT and IReS . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Modifications in IReS . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Integration of IReS and Yarn . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Integration of IReS and Analytics Engines . . . . . . . . . . . . . . . . . 20
5.4 Integration of IReS with WIND Application . . . . . . . . . . . . . . . . . 23
5.5 Integration of IReS and Swan . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Integration of Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Integrated Prototype 30
6.1 Cluster Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 VM Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Evaluation 33

3



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 Introduction

1.1 Task Description

This deliverable describes work performed within task T7.2 Integration Prototype “ASAP
System Prototype”, and task T7.3: Testing of the ASAP platform. The tasks integrate
modules developed in the other work packages, develop testing and evaluation for
the modules, assist with deployment in the two application use cases, and include
evaluation of the integrated system and individual modules, on usability, performance,
throughput, and scalability.

Task T7.2 integrates the technologies of the components from WP2, WP3, WP4,
WP5 and WP6, based on the overall architecture defined in D1.2, in order to execute
a subset of the use cases proposed in WP8 and WP9. The task produced a Virtual
Machine image set that integrates all ASAP modules as well as off-the-shelf analytics
engines and components, and facilitates deployment and use.

Task T7.3 tests the integrated platform and the individual components. It gives
continuous feedback to the application development and drives modifications to the
integrated tool, as well as to the individual components and services. During task
T7.2 we tested the functionality of the simple and more complex use cases devel-
oped in WP1 to verify the correctness of the integrated system. We also tested the
queries developed on the two applications using simple or reduced, heterogeneous
data stores. All of these tests are automated. We test and verify the correct function of
the integrated platform and evaluate it by deploying it on three different environments,
provided by WIND, IMR and FORTH.

1.2 Overview of Integrated System

The ASAP project focuses on (i) innovative methods and technologies and (ii) tools
and applications. Regarding methods and technology, we develop novel methods in
order to model cost and performance of multiple data stores and analytics execution
engines. Building on these, we perform automated job scheduling to multiple runtime
and data store technologies together with real-time tracking of intermediate results. To
deliver this technology to the end user, we couple it with state-of-the-art visualization
tools enabling both qualitative and quantitative monitoring of a job’s performance and
cost. The integrated technology enables fast, easy development and submission of
both simple and highly complex analytics tasks that take full advantage of the existing
resources according to user requirements. Overall, ASAP delivers open source tools
that can be used both separately and as an integrated system in order to provide effi-
cient execution and management of complex analytics tasks. This deliverable reports
on the work for the integration of all components into an integrated system.

Specifically, the main objectives of work package WP7 are:

• Ensure the integration of the contributions in WP2, WP3, WP4, WP5 and WP6.

4



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

• Coordinate development and delivery of the integrated modules based on the
research and development results in the different Research Areas.

• Ensure that these prototypes are used to integrate and coordinate the coherent
delivery of the ASAP system for its application in WP8 and WP9.

• Evaluate the end system.

5



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Figure 1: ASAP components

2 ASAP System Components

This section briefly describes the separate components of the ASAP system, depicted
along with their interactions, in Figure 1. Readers alreadly familiar with every module,
as reported in detail in the corresponding deliverables, can skip this section.

2.1 Intelligent, Multi-Engine Resource Scheduler (IReS)

The IReS platform, thoroughly described and implemented in the scope of WP3, tar-
gets the workflow optimization, examining alternative execution paths using various
underlying engine and operator implementations. Using its web interface the user can
define operators and datasets along with their properties and restrictions and store
them in a language understandable by the other ASAP components and specified in
WP5. Furthermore, it provides functionality for validating and executing workflows by
extending the Apache Kitten7 framework [2] in order to execute over YARN [1], apart
from separate operators, also workflows as a DAG of operators.

IReS is an open source1 web application that exposes its functionality to the rest
of the ASAP components through a RESTful API. It is implemented in Java using the
Jetty [11] servlet engine and the Jersey [10] RESTful Web service framework.

1https://github.com/project-asap/IReS-Platform

6

https://github.com/project-asap/IReS-Platform


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

2.2 Workflow Management Tool (WMT)

The WMT, described and implemented in the scope of WP5, provides full functionality
for designing, editing, analyzing and optimizing an abstract workflow. It interacts with
IReS for loading the registered operators and executing workflows via the RESTful API
the latter provides. Its Analysis and Optimization functionality can be invoked by web
actions that call the respective Python methods.

The WMT is an open source2 Javascript [5] Web application rendered behind an
Nginx [7] web server.

2.3 Asap Operators

In the scope of WP3 a number of popular analytics operations (TF/IDF, K-Means,
Word2Vec etc) are modeled and profiled in several runtimes (Hadoop [9], Weka [15],
Mahout [6]). In addition to this for the needs of the ASAP the following additional
operators have been implemented, registered and profiled by IReS:

• K-Means, TF/IDF and Word2Vec implementations for Swan, developed in the
scope of WP2.

• Web analytics operation implementations, developed in the scope of WP8.

• Peak detection and Sociometer implementations in Spark and Spark-Nested,
developed in the scope of WP9.

• Operators for dumping data in the visualization dashboard, developed in the
scope of WP9.

2.4 External Engines

For the execution of the operators listed in the previous section, ASAP uses Hadoop
[9] and more precilly HDFS [13], Mahout [6], Weka [15] and Spark ML-Lib [12] running
on Spark [16].

2.5 ASAP Engines

In addition, we use Swan [14], an experimental extension of Cilk [8] for operators writ-
ten to use a data-flow style of execution. Finally, we use the Spark-Nested framework
developed in WP4 for support of Spark applications that require nested transforma-
tions, hierarchical data representation and distributed scheduling.

2https://github.com/project-asap/workflow

7

https://github.com/project-asap/workflow


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

2.6 Visualization Component

The visualization component, subject of the WP6, consists of:

• The ASAP dashboard which collects, queries and visualizes data. The dash-
board is implemented using the D3 JavaScript library and it is hosted on a we-
bLyzard server.

• Open APIs for ingesting data in an Elasticsearch [3] installation. The Document
API is used for ingesting crawled Web documents (unstructured data) from WP8.
The Statistical Data API is used for ingesting the telecommunications data (struc-
tured data) produced by WP9.

8



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

3 ASAP Integration Summary

Intuitively, the life-cycle execution of a data analytics job in the scope of ASAP is sum-
marised in the following steps:

1. The Developer designs a primitive computation as an abstractor operator using
the IReS web interface.

2. The operator metadata, describing its semantics in the workflow description lan-
guage developed in WP5, are stored in the ASAP operator library that resides in
the IReS.

3. The Developer adds a number of data sources using the IReS web interface.

4. The data source metadata, describing its location in the workflow language de-
veloped in WP5, are stored in the ASAP operator library that resides in the IReS.

5. The Developer creates one or multiple implementations of the above operator,
following the programming model proposed in WP2.

6. The Developer using the IReS web interface, stores the above implementations
in the ASAP operator library as materialized operators.

7. The Developer updates the metadata describing the materialized operator’s se-
mantics in the workflow description language developed in WP5 by introducing
scripts for its execution automation.

8. The IReS profiler builds a cost model of the operator implementations and saves
them along with the materialized operator’s metadata.

9. The WMT, during the initialization process, loads the ASAP library by making the
respective request to the RESTful API of the IReS platformm.

10. The Workflow Designer, using the WMT web interface, designs a workflow by
combining the available data sources and operators.

11. The Workflow Designer, using the WMT web interface, can analyze and optimize
the workflow.

12. The Workflow Desinger, can save the workflow in the workflow language devel-
oped in WP5.

13. The User, using the WMT web interface, can load a existing workflow and initiate
the execution of the computation by making the respective request to the API of
the IReS platform.

14. The IReS platform schedules the workflow using the best possible execution
plan, based on the operator metadata and costs.

9



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

15. The IReS platform orchestrates the execution of the selected execution plan by
employing YARN for integrating with the various computing engines that lay un-
derneath (e.g. Swan or Spark Nested documented in WP4).

16. An operator can dump results to the Elasticsearch installation of the Visualization
component using the RESTful API introduced in WP6.

17. The User can see the intermediate or final computation results using the Visual-
ization Dashboard described in WP6.

10



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Repository Description
Work
Pack-
age

Collaborators

asap operators forked
from
hvdieren/asap operators

Swan Analytics
Operators WP2 hvdieren (QUB), Murphky(QUB)

IReS-Platform IReS WP3

npapa (ICCS), gsvic (ICCS),
vpapaioannou (ICCS), cmantas
(ICCS), kdoka (ICCS), polyvios
(FORTH)

Spark-Nested Spark Nested WP4
polyvios (FORTH), papagian
(FORTH), mhalkiad (FORTH), p01K
(FORTH)

workflow WMT WP5 maxfil (GENEVE)
weblyzard api forked from
weblyzard’s repository

Visualization
Web Services WP6

fabric-scripts Fabric scripts WP7 papagian (FORTH)

web-analytics Web analytics
application WP8 thanh-im (IMR), rigaux (IMR)

telecom-analytics
Telecom
analytics
application

WP9 papagian (FORTH), mhalkiad
(FORTH), mesosbrodleto (UNIPI)

Table 1: Github repositories

4 Prototype Setup

This section describes the final status of the integration. Spcecifically, we describe the
organization of code in repositories and provide brief directions on how one can deploy
the corresponding modules and the system as a whole. For more detailed and up-to-
date user guide and installation instructions, we refer the reader to the documentation
within the repositories described below. The documentation of all modules has also
been integrated and is available as a whole at the project website.

4.1 ASAP source code

The majority of the ASAP components are open source. We created a separate repos-
itory for each component, unified under a common project account in Github, or it has
been forked from a repository residing under another account (usually the main con-
tributor). Table 1 shows the respective Github repositories.

4.2 Unified Setup using Fabric

To simplify the installation of all the components and their continuous and smooth in-
tegration we have employed Fabric [4]: a Python library and command-line tool for
streamlining the use of SSH for application deployment or systems administration

11

https://github.com/project-asap/asap_operators
https://github.com/hvdieren/asap_operator
https://github.com/project-asap/IReS-Platform
https://github.com/project-asap/Spark-Nested
https://github.com/project-asap/workflow
https://github.com/project-asap/weblyzard_api
https://github.com/weblyzard/weblyzard_api
https://github.com/project-asap/fabric-scripts
https://github.com/project-asap/web-analytics
https://github.com/project-asap/telecom-analytics


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

tasks. Fabric tasks are typically methods that execute shell commands easily and
handle failures nicely.

Deliverable D7.2 describes the work done during the second year of the project
regarding continuous integration of installation and deployment. During the final year
of the project, we have augmented the work done in the second year with additional
use cases and tests, and also integrated the additional operators developed as alter-
native implementations within WP8 and WP9. Specifically, we developed alternative
implementations of the Sociometer and TF/IDF operators in Spark-Nesting and Swan
(described in detail in the corresponding Deliverables). These operators were inte-
grated with WMT, IReS, and the execution engines (Yarn, Spark-Nesting, Python/Py-
Spark) so that the ASAP applications partners can easily, or sometimes completely
transparently, integrate them in their workflows. This mainly amounted to metadata
description files that integrate each new operator with the available tools, together with
the development of “formatting” operators that need to transform data formats to the
formats accepted by each operator’s alternative implementations.

12



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

5 Integration of System Components

During the third year of the project, a lot of effort was spent to develop, test and
evaluate integration functionality between the individual ASAP modules. This section
presents the work done in FORTH for each pair of modules that interoperate in ASAP,
during the third year of the project.

5.1 Integration of WMT and IReS

The Workflow Management Tool (WMT) was modified in order to contact the IReS
external API and perform the following operations:

• load the defined datasets,

• load the defined abstract operators,

• design an abstract workflow using the above dataset and operators

• upload an abstract workflow in IReS so as to be ready to be materialized and
executed

• execute a workflow directly from the WMT

In order to accomplice the above tasks we performed a number of modifications in
both components. The following sections describe the modifications in each compo-
nent separately.

5.1.1 Modifications in IReS

Support for Cross-Origin requests User agents commonly apply same-origin re-
strictions to network requests. These restrictions prevent a client-side Web application
running from one origin from obtaining data retrieved from another origin, and also
limit unsafe HTTP requests that can be automatically launched toward destinations
that differ from the running application’s origin.

WMT and IReS are both web applications. So initially any request to IReS origi-
nated from WMT used to fail with Access Denied. Therefore IReS had to be equipped
it with CORS support according to Cross Origin Resource Sharing specification.3 IReS
has incorporated Jersey4 for its Web Services, therefore we selected jersey-cors-filter5

library for doing that. Briefly, this library provides a filter that wraps an HTTP request
and adds the some necessary headers to the HTTP response according to the above
specification. So, we modified IReS adding a dependency on that library and register-
ing the filter.

3https://www.w3.org/TR/cors/
4https://jersey.java.net/
5https://github.com/palominolabs/jersey-cors-filter

13

https://www.w3.org/TR/cors/
https://jersey.java.net/
https://github.com/palominolabs/jersey-cors-filter


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

HTTP
Method Path Java Method Description

GET /abstractOperators/{id}/ AbstractOperators.getApplicationInfo() Get abstract operator
description in JSON

GET /abstractWorkflows/id/ AbstractWorkflows.getDescription()
Get abstract
workflow description
in JSON

POST /abstractWorkflows/add/id/ AbstractWorkflows.addWorkflow() Upload an abstract
workflow

GET /datasets/json/id/ Datasets.getOperatorInfoJson() Get dataset
description in JSON

Table 2: IReS and WMT API modifications

API annotation for supporting Cross-Origin requests Once the filter was regis-
tered, the necessary resource methods (@GET, @POST, etc.) had to be annotated
with @Cors in order to send basic resource response headers and the respective
@OPTIONS methods with @CorsPreflight to send preflight request response head-
ers. Table 2 summarizes the parts of the API that were modified.

REST API extensions We extended the external API of IReS in order to provide
some extra functionality. Specifically, the initial API calls for listing of the existing
datasets and abstract operators return HTML code in text format that is not convenient
to be parsed. Therefore, we introduced two additional API calls that return the list of
the datasets and abstract operators respectively in JSON format. These methods are
also annotated with @Cors in order to send the proper resource response headers.
Moreover, integration lead to several issues being found and corrected in IReS, on
the workflow materialization and execution via the REST API. These modifications are
communicated to WP3 by being uploaded in the branch project-asap-patch-36 of
the IReS-Platform repository.

Modifications in WMT We extended WMT by introducing the following functionality:

• We added a new link “New abstract datastore” that is visible in the task board
when a dataset node is select in the graph and triggers an action for adding a
description in the selected dataset similar as the existing “Create new” link that
used to do the same for an operator:

6https://github.com/project-asap/IReS-Platform/tree/project-asap-patch-3

14

https://github.com/project-asap/IReS-Platform/tree/project-asap-patch-3


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

• We added functionality to request the list of the existing datasets in IReS and
place the results in the task board under the above “New abstract datastore” link
that permits the user to select among the existing datasets instead of creating a
new one:

15



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

• We added functionality for WMT to request the list of the existing abstract opera-
tors in IReS and place the results in the task board under the above “Create new”
link that permits the user to select among the existing abstract operators instead
of creating a new description:

• We added a new “Upload workflow” link in the navigation bar that uploads the
graph in IReS that is visible also in the above image.

These modifications were communicated to WP5 by being uploaded in the branch
integration7 of the WMT repository.

Workflow creation in WMT and uploading in IReS To demonstrate the integration
of WMT with IReS, we designed the WIND sociometer use case in the WMT and
uploaded it in IReS. We extended integration tests to include the following scenario.

Assuming that the description of the three abstract operators assembling the use
case (Wind User Profiling, Wind Kmeans, Wind Stereo Type Classification) and the
input dataset (dataset simulated) are defined in IReS as described in the ASAP doc-
umentation8, the steps are the following:

7https://github.com/project-asap/workflow/tree/integration
8https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#

creating-abstract-operators

16

https://github.com/project-asap/workflow/tree/integration
https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#creating-abstract-operators
https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#creating-abstract-operators


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1. Using a browser, navigate to the WMT Web UI.

2. From the navigation bar, click “New workflow” and provide a name, e.g., sociome-
ter, and press OK; the workflow board will be emptied.

3. In the left sidebar click “Add datastore”; an ellipse node will appear in the work-
flow board.

4. Click in the ellipse node; the taskboard will become visible in the sidebar.

5. Click “Add Task” in the sidebar; the link “New abstract datastore” as well as a list
with links for the existing datastores will appear below.

6. Select dataset simulated among the existing datastores; an ellipse node will
appear in the taskboard above. In addition to this the ellipse node in the workflow
board will get the datastore name (dataset simulated).

7. Click in the ellipse in the taskboard: the datastore metadata (e.g. engine, path)
will appear in the text area below.

8. In the left sidebar click “Add node”; a rectangular node will appear in the workflow
board.

9. Click in the rectangular node.

10. . Click “Add Task” in the sidebar; the link “Create new abstract operator” as well
as a list with links for the existing abstract operators will appear below.

11. . Select the Wind User Profiling among the existing datastores; a rectangular
node will appear in the taskboard above. In addition to this the rectangular node
in the workflow board will get the operator name (Wind User Profiling).

12. . Click in the rectangular in the taskboard: the operator metadata (e.g., number
of inputs, number of outputs, algorithm) will appear in the text area below.

13. In the left sidebar click “Add links”; select first the dataset simulated datastore in
the workflow board and then the Wind User Profiling operator in the workflow
board; an arrow from the datastore simulated to the Wind User Profiling will
appear in the workflow board.

14. In the left sidebar click “Add datastore”; an ellipse node will appear in the work-
flow board.

15. Click in the ellipse node.

16. Click “Add Task” in the sidebar and click “New abstract datastore” this time. Pro-
vide a name e.g., d1 in the prompt and press OK; If you click in the ellipse in the
taskboard: empty metadata will appear in the text area below because it is an
abstract datastore.

17



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Figure 2: Example Workflow test case

17. In the left sidebar click “Add links”; select first the Wind User Profing operator in
the workflow board and then the d1 dataset in the workflow board; an arrow from
the Wind User Profiling to the d1 datastore will appear in the workflow board.

18. Repeat steps 8-17 for the two successive operators (Wind Kmeans, Wind Stereo Type Classification)
in order to complete the workflow. The resulting graph appears in Figure 2.
Notice also that the Wind Stereo Type Classification has 2 inputs, the output
of the Wind User Profiling operator saved temporarily in d1 datastore and the
output or the Wind Kmeans operator saved temporarily in d2 datastore, therefore
there are two arrows from d1 and d2 destinated to this operator.

19. Click “Upload workflow” in the navigation bar; the workflow will be send to the
IReS and will appear in the tab of the Abstract Workflows of the IReS Web UI.

20. Follow the specific link and you will be navigated in the abstract workflow view,
depicted in the Figure 3. If the respective materialized operators exist the work-
flow can be materialized and executed as any other abstract workflow designed
in IReS as it is described in the ASAP documentation9.

9https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#

workflow-materialization

18

https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#workflow-materialization
https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#workflow-materialization


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Figure 3: Abstract Workflow View

5.2 Integration of IReS and Yarn

The IReS enforcer module is responsible for the execution of the generated optimal
workflow execution plan. It enforces the execution of each operator of the workflow
over the physical infrastructure. The enforcer module is built on top of Yarn resource
scheduler.

Integration with Yarn In order to be able to use Yarn as the underlying workflow
executor and scheduler, the enforcer module extends Cloudera Kitten, a framework
for the easy deployment of distributed applications running over Yarn. In our case, we
use Kitten to define the execution parameters of the operators, which can be either
distributed or centralized.

Container Allocation After the optimal plan generation by the multi-engine planner
the output workflow plan is sent to the enforcer module. Then, one Yarn container is
allocated as a master/resource manager node and one container for the execution of
each operator in the workflow. The execution of each operator takes place inside the
allocated container. After the successful operator execution the results are written at
the operator’s directory in HDFS and the container is being destroyed.

Configuration File Along with each operator definition, the corresponding .lua file
that describes how the operator will be executed is required. Specifically, the .lua

file contains information about the container resources (cores, memory), the execution
command, as well as the several possible files required by the operator to run. Figure 4

19



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 operator = yarn {

2 name = "LineCount",

3 timeout = 10000,

4 memory = 1024,

5 cores = 1,

6 container = {

7 instances = 1,

8 --env = base_env,

9 resources = {

10 ["count_lines.sh"] = {

11 file = "asapLibrary/operators/LineCount/count_lines.sh",

12 type = "file", -- other value: ’archive’

13 visibility = "application" -- other values: ’private’, ’public’

14 }

15 },

16 command = {

17 base = "./count_lines.sh"

18 }

19 }

20 }

Figure 4: Example operator description file in LUA

shows an example description for an operator that counts the lines of an input text file
using a bash script.

This file defines that this operator with name “LineCount” will be run inside a con-
tainer with 1024 MB of memory (line 4) and 1 core (line 5). The required file(resource,
line 5) is the “count lines.sh” script while the command that will be executed inside the
Yarn operator is “./count lines.sh” (line 17). All files included in the resources key will
be copied to the container before execution.

For the integration between IReS and Yarn, the “BasicLuaConf.lua” file inside the
asapLibrary directory needs to be properly set. Figure 5 shows a sample file that
describes the location of the Kitten .jar file (line 1) that the master node requires in
order to schedule the execution, the Yarn Classpath (line 3) as long as allocation of
the master node (operator key, line 18).

5.3 Integration of IReS and Analytics Engines

IReS follows an engine-agnostic approach for the integration with the underlying sys-
tems, allowing the easy addition of new engines and operators by the users.

Definition of Operator Engine To achieve easy integration with new engines, IReS
adopts an extensible metadata-framework which describes in a common way an oper-
ator using a set of mutual description parameters. These parameters are represented
with the Tree-Metadata Framework. Concretely, an operator can be characterized as

20



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 MASTER_JAR_LOCATION = "kitten-master-0.2.0-jar-with-dependencies.jar"

2
3 CP = "/opt/hadoop-2.7.0/etc/hadoop:.../opt/hadoop-2.7.0/share/hadoop/yarn/lib/*"

4
5 -- Resource and environment setup.

6 base_resources = {

7 ["master.jar"] = { file = MASTER_JAR_LOCATION }

8 }

9 base_env = {

10 CLASSPATH = table.concat({"${CLASSPATH}", CP, "./master.jar"}, ":"),

11 }

12
13 operator = yarn {

14 name = "Asap master",

15 timeout = 1000000000,

16 memory = 1024,

17 cores = 1,

18 nodes = "slave-1",

19 master = {

20 name = "Asap master",

21 env = base_env,

22 resources = base_resources,

23 command = {

24 base = "${JAVA_HOME}/bin/java -Xms64m -Xmx128m " ..

25 "com.cloudera.kitten.appmaster.ApplicationMaster",

26 args = { "-conf job.xml" },

27 }

28 }

29 }

Figure 5: Sample LUA file for setting operator properties

21



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 Constraints.Engine=Spark

2 Constraints.Output.number=1

3 Constraints.Input.number=1

4 Constraints.OpSpecification.Algorithm.name=LineCount

5 Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.UserFunction

6 Optimization.model.cost=gr.ntua.ece.cslab.panic.core.models.UserFunction

7 Optimization.outputSpace.execTime=Double

8 Optimization.outputSpace.cost=Double

9 Optimization.cost=1.0

10 Optimization.execTime=1.0

11 Execution.Arguments.number=2

12 Execution.Argument0=In0.path.local

13 Execution.Argument1=lines.out

14 Execution.Output0.path=$HDFS_OP_DIR/line.out

15 Execution.copyFromLocal=lines.out

16 Execution.copyToLocal=In0.path

Figure 6: Definition of Engine for an Operator

abstract in high level or materialized. In the second case, a materialized operator is
described by the aforementioned description tree which also includes the execution
engine in which the operator will run. Figure 6 presents a sample operator definition.
Line 1 (Constraints.Engine) defines the operator engine.

Engine Monitoring and Fault Tolerance IReS monitors the underlying engines
to check when they are up and running in order to prevent possible execution er-
rors. In order for a materialized operator to be included in the planning and execu-
tion stages, the engine defined in “Constraints.Engine” key needs to be registered
to the system and also be up and running. Otherwise, IReS will not consider the
specific engine in the planning stage nor execution. The list of registered execution
engines as well as the status of each one can be seen by sending a GET request at
/clusterStatus/services path of the IReS web server, or by accessing the Cockpit
through the Web UI. Figure 7 shows a Cockpit with the running services list.

Integration with Engines The instructions for the execution of the operator in a
specific engine are defined inside the operator’s LUA script, described above. This
script includes the commands that will be executed inside the operator’s container,
as long as the required files such as execution scripts, binaries etc. Thus, for the
integration of IReS and any execution engine, the following conditions needs to be
satisfied:

1. The engine in which the operator will run needs to be accessible from all the
slave nodes of the underlying Yarn cluster. In case of centralized operators, the
required dependencies such as libraries, files etc needs to be available in every

22



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Figure 7: Cockpit View

node of the cluster either by installing the required packages or including them
as resources in the LUA file.

2. The operator’s LUA file needs to be set properly by containing all the required
files and the proper arguments that the container will execute.

3. The engine needs to be registered to IReS and also be up and running.

5.4 Integration of IReS with WIND Application

Running Pyspark applications The WIND operators are Pyspark applications that
have dependencies on NumPy10 and scikit-learn11 Python libraries. Instead of Scala/-

10http://www.numpy.org/
11http://scikit-learn.org/stable/index.html

23

http://www.numpy.org/
http://scikit-learn.org/stable/index.html


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

Java Spark applications that the code and its dependencies are packaged into JAR12

files and run in the same JVM in the case of PySpark applications an extra effort should
be put in order to manage the dependencies and making them available for the Python
jobs on the cluster13.

A choice would be to compile and distribute an EGG14 file for each application but
this often fails in the case of complex, compiled packages since a Python egg built
on a client host is specific to the client CPU architecture because of the required C
compilation.

The alternative chosen was to set up a virtual environment and install the required
Python packages on each host of the cluster and specify the path to the Python bina-
ries for the worker hosts to use by setting the PYSPARK PYTHON variable in spark-env.sh,
to point on the specific path.

In addition to this any python files needed to be distributed with the applications are
passed in the spark-submit script by setting appropriately the py-files argument.

Integration of WIND Operators The sociometer workflow classifies the users using
the presence of cellphone users and it identifies residents, commuters and visitors. It
consists of three operators, implemented in PySpark. For each operator, we created a
bash script for integration with IReS. The script set the necessary environmental vari-
ables and submits the PySpark application in Spark with the necessary arguments as
dictated by a description file we generated for each operator. The script and descrip-
tion files, as well as any other necessary resource for running the operator, is sent in
a tarball to IReS, using the respective API call15. When IReS receives them, it creates
the particular LUA script in order to run them.

Deliverables D1.3, D9.2, D9.3, and D9.4 describe the WIND application in detail.
The three operators we targeted in integrating the application are:

1. A User Profiling Operator that receives a given CDR dataset and a set of geo-
graphical regions and it returns the user profiles for each spatial region. The re-
sults are tuples that contains the following information: <region>, <user id>,<profile>.
The description file of the User profiling operator is shown in Figure 8. Accord-
ing to that description file, the operator has one input and one output, and the
engine is Spark. In addition to this the algorithm implemented by this operator
is “user profiling” and it has to be the same as it is defined in the respective
abstract operator. The seven input arguments are the path, IP and port where
Spark runs, the spatial region (argument3) which is a CSV file with the format of
the GSM tower id, and the starting and ending date for the analysis. The results
are stored in HDFS into several files in the directory profiles.

12https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
13https://www.cloudera.com/documentation/enterprise/5-5-x/topics/spark_python.html#

concept_qzp_p3s_b5__section_yqd_bjt_25
14http://peak.telecommunity.com/DevCenter/PythonEggs
15https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#

creating-materialized-operators-client-side-via-the-rest-api

24

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://www.cloudera.com/documentation/enterprise/5-5-x/topics/spark_python.html#concept_qzp_p3s_b5__section_yqd_bjt_25
https://www.cloudera.com/documentation/enterprise/5-5-x/topics/spark_python.html#concept_qzp_p3s_b5__section_yqd_bjt_25
http://peak.telecommunity.com/DevCenter/PythonEggs
https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#creating-materialized-operators-client-side-via-the-rest-api
https://project-asap.github.io/ASAP-documentation/ires_docs/install.html#creating-materialized-operators-client-side-via-the-rest-api


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 Constraints.Input.number=1

2 Constraints.Output.number=1

3 Constraints.Engine=Spark

4 Constraints.OpSpecification.Algorithm.name=user_profiling

5 Execution.Output0.path=$AS_IShdfs\:///profiles

6 Execution.Arguments.number=7

7 Execution.Argument0=spark\://192.168.1.62\:7077

8 Execution.Argument1=/home/asap/asap/spark-final/

9 Execution.Argument2=Input0.path

10 Execution.Argument3=aree_roma.csv

11 Execution.Argument4=forth

12 Execution.Argument5=2016-03-01

13 Execution.Argument6=2016-03-31

14 Execution.command=./user_profiling.sh

15 Execution.memory=4096

16 Execution.cores=96

17 Optimization.execTime=1.0

Figure 8: Description of the User Profiling Operator

1 Constraints.Input.number=1

2 Constraints.Output.number=1

3 Constraints.Engine=Spark

4 Constraints.OpSpecification.Algorithm.name=kmeans

5 Execution.Arguments.number=7

6 Execution.Argument0=spark\://192.168.1.62\:7077

7 Execution.Argument1=/home/asap/asap/spark-final

8 Execution.Argument2=4g

9 Execution.Argument3=Input0.path

10 Execution.Argument4=forth

11 Execution.Argument5=2016-03-01

12 Execution.Argument6=2016-03-31

13 Execution.command=./clustering.sh

14 Execution.Output0.path=$AS_IShdfs\:///centroids

15 Execution.memory=4096

16 Execution.cores=96

17 Optimization.execTime=5.0

18 Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.UserFunction

19 Optimization.outputSpace.execTime=Double

Figure 9: Description of the MLlib k-means Operator

25



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 Constraints.Input.number=2

2 Constraints.Output.number=1

3 Constraints.Engine=Spark

4 Constraints.OpSpecification.Algorithm.name=stereo_type_classification

5 Execution.Arguments.number=8

6 Execution.Argument0=spark\://192.168.1.62\:7077

7 Execution.Argument1=/home/asap/asap/spark-final/

8 Execution.Argument2=2g

9 Execution.Argument3=Input0.path

10 Execution.Argument4=Input1.path

11 Execution.Argument5=forth

12 Execution.Argument6=2016-03-01

13 Execution.Argument7=2016-03-31

14 Execution.command=./classification.sh

15 Execution.memory=4096

16 Execution.cores=96

17 Execution.copyFromLocal=results

18 Optimization.execTime=1.0

19 Optimization.model.execTime=gr.ntua.ece.cslab.panic.core.models.UserFunction

20 Optimization.outputSpace.execTime=Double

Figure 10: Description of the Classification Operator

2. A Clustering Operator that uses K-means from Spark MLlib to identify the rep-
resentative profiles and returns typical calling behaviors with a label for each
behavior. Figure 9 shows the description file for the k-means operator. This de-
scription file states that this operator has one input and one output, and its engine
is Spark. The seven input arguments are the path, IP and port where Spark runs,
the profile dataset prefix (which can be any Hadoop-supported file system), the
region name featuring in the stored results, and the starting and ending date for
the analysis. The results of this operator are also stored into several HDFS files.

3. A Classification Operator that assigns each spatio-temporal user’s profile to the
closest representative profile based on a proper distance measure. It receives a
set of the user profiles and a set of labeled calling behaviors and it returns the
percentage of each label on each spatial region. Figure 10 shows the description
file of the classification operator. As above, the description file states that this
operator has two inputs and one output, and the engine is Spark. The eight input
arguments are the path, IP and port that Spark runs, the profile dataset prefix
(that can be any Hadoop-supported file system), the cluster dataset location,
and the starting and ending date for the analysis. The results of this operator are
stored into several local files. Note that this operator uses two inputs, both from
the output of the previous and the previous-to-previous operator in the workflow.

26



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

5.5 Integration of IReS and Swan

An implementation of k-means in Swan was added as an alternative for the MLlib k-
means operator, in the sociometer conceptual workflow. The Swan K-means operator
is a standalone executable compiled from C++ source code with support for Cilk ex-
tensions. This operator is always preferable to the distributed implementation when
the data can fit in a single node, as it is much faster than Spark. A prerequisite for
running Swan k-means is that LD LIBRARY PATH should include the location of the run-
time libraries of gcc5 (which is not the default compiler in all setups) and these runtime
libraries must physically exist at the same path location on all worker nodes within
the cluster. We solve this dependency issue by extending installation scripts, and
set LD LIBRARY PATH through a wrapper python script by calling the operating system’s
environment API. We generated the Swan k-means clustering operator in the IReS for-
mat using the executable, a description file similar to the ones above, a wrapper script
that solves any library dependencies, an invocation script that handles data formatting
and representation issues, so that the Swan k-means operator (as the Spark MLlib
k-means) satisfy the input and output data interface of the abstract k-means operator,
a tar file with all libraries required, and a LUA script (similar to the ones described
above) that registers each of these resouces with IReS. Specific to Swan, as there is
no other way to view error handling and logs, we generated a wrapper Web interface
that allows the user to monitor outputs and logs of the operator within the browser, as
with other execution engines.

5.6 Integration of Visualization

Visualization components were integrated in coordination with webLyzard, using the
WIND application to drive, test, and verify all functionality. Specifically, The Wind
Telecommunication use case is realized in modules, described in details Deliverables
D9.3 and D9.4, and includes a step of publication of the results to the WebLyzard
portal. In particular, the data flows are:

1. Geographic coordinates of the Areas.

2. Geographic coordinates of the POIs.

3. Distribution in time of the number of SMS and CALLS. Distributions in time of the
number of users having the Home for each area of the city.

4. Distribution in time of the number of users starting from an area of the city and
move to another area (O/D Matrix Area-Area).

5. Distribution in time of the number of users starting from an area of the city and
move to a specific POI (O/D Matrix Areas-POIs).

6. Distributions in time of the types of users for each area.

27



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

7. Distributions in time of the types of users for each POI Each distributions is trans-
mitted as absolute numbers and as deviation from typical values.

The publisher modules use the API provided by webLyzard. Testing of the modules
was done jointly with webLyzard and WIND. In order to use the API an account was
set up and a token was requested for each 8-hours session. Data was sent directly
to the webLyzard repositories in order to be visualized through the ASAP dashboard,
available through the ASAP webpage. The uploader scripts are based on the examples
provided together with the API, but the structure of the observations has been adapted
according to each case:

• No changes have been made to the Observation data structure from the we-
bLyzard API.

• The classes of the classification (Resident, Dynamic Resident, Visitor, etc.) are
introduced in description fields.

• For some of the datasets, results have only been available for specific areas;
therefore,instead of providing full geolocation coordinates only the area number
is added to the dataset.

• Depending on the dataset and use cases, several weeks or months of data have
been loaded at a time.

The datasets have been ingested in the webLyzard Platform through the Statistical
Data API. Each indicator (Sociometer, Call Data, etc.) has represented observations
collected during 2016. All of the datasets have been automatically converted in the
native webLyzard Platform’s Statistical Data format through a set of statistical publish-
ers (e.g., Sociometer Publisher). A minimal observation that will be sent to the API
includes an ID, a date, a description, a value and a location, whereas an indicator will
contain multiple observations. The early versions of the API are described in deliver-
able D6.3, the specification also being included in appendix C. The most up to date
specification and documentation can be always be found at a Swagger interface and
public point for the APIs16. In order to use the API, the users need to request an ac-
count for the API and make sure they request new keys for each day of work (e.g.,
every 8 hours).

Several examples of uploading data to the Statistical Data API can be found on a
public GitHub repository17:

The examples include:

1. A script for uploading data to the API.

2. Several bash scripts that demonstrate how to use each API endpoint (e.g., adding/re-
moving observations or inidcators, modifying observations, adding/deleting en-
tire datasets).

16https://api.weblyzard.com/doc/ui/
17https://github.com/weblyzard/statistical-tests

28

https://api.weblyzard.com/doc/ui/
https://github.com/weblyzard/statistical-tests


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

3. A description of the conventions that need to be followed when preparing the
datasets that need to be visualized (e.g., naming conventions, content conven-
tions)

4. Details about troubleshooting (e.g., what to do if the token expires or if you use
old versions of Ubuntu).

This repository has been used by WIND in order to create the statistical publishers
for all datasets from this project. Each publisher has been successfully tested and the
data was uploaded to the the webLyzard repositories.

The visualization components have also been published on a GitHub repository18.
The visualizations presented in this repository are part of the webLyzard Visualization
API that is used for fast integration of visualizations into the webLyzard dashboards.

The repository contains:

1. Bower components for several modules:

• Basic charts

• Line charts

• An advanced geomap.

2. Examples for integrating a visualization into a dashboard.

3. An API reference documentation.

4. Documentation and how-to guides for troubleshooting.

Both the Statistical Data API and the Visualization API are part of the webLyzard
API, which also includes a Document API (for uploading text documents and anno-
tations) and a Search API (for searching through documents and statistical observa-
tions).

In addition to the open source visualization modules, a complete ASAP dash-
board19 that leveraged the webLyzard ecosystem was developed.

The creation of the dashboard was strongly influenced by our two use cases (WIND
and IMR) and therefore included components to visualize both statistical data and
news/social media. The dashboard also uses all the visualization components that are
already available on GitHub. Data from the two use cases that was already ingested
in the webLyzard Platform via the APIs can also be visualized with the latest version
of the dashboard.

18https://github.com/weblyzard/infovyz
19https://asap.weblyzard.com

29

https://github.com/weblyzard/infovyz
https://asap.weblyzard.com


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

6 Integrated Prototype

6.1 Cluster Deployment

The ASAP prototype has been installed in the IMR and WIND clusters, and has been
maintained and upgraded for the duration of WP7. FORTH has also installed the ASAP
integrated prototype in a new cluster used in the evaluation of WP4, as described in
Deliverable D4.3. The IMR cluster was reset in the third year of the project, so that IMR
engineers that were not previously involved in WP7 could start with a clean cluster and
use the documentation to install all modules of the platform. This process generated
a lot of feedback and lead to major improvements in the installation scripts and the
documentation of individual modules as well as the ASAP system as a whole.

6.2 VM Deployment

FORTH has created a number of virtual machines to assist with deployment, where a
second phase of “fresh installation” was applied, with more cases added and issues
solved in the documentation and installation scripts. FORTH has used the VM images
produced to quickly deploy the ASAP platform in two internal clusters of machines, one
a low-level cluster used for teaching courses at the University of Crete, and another
high-end cluster of machines used for heavy analytics workloads. We have created
two flavor images: one for the master and one for the worker nodes in the cluster.
Using these flavors, FORTH instantiated a number of VMs running over its physical
private cluster. Below we describe in more detail the process of integration in the VM.

The physical private cluster consists of 5 machines each equipped with 40 cores
and 256 GB of memory, 500GB SSD drive, running CentOS 7. We have installed and
configured Hadoop HDFS 2.6.4 on the cluster.

VM deployment: From Cluster to ASAP System We have deployed an analytics
cluster with the integreated ASAP VM over this physical cluster, using QEMU KVM,
one VM for hosting the ASAP master (asap-master) and 5 VMs for hosting the ASAP
workers (asap-worker-N). The asap-master allocates 12 cores and 50GB of physical
memory while the workers allocate 20 cores and 50GB of physical memory. However,
these numbers can easily be adjusted in order to allocate more or less resources as
it is described in VM Management. The VMs are connected to the FORTH private
network using a public bridge. Therefore we had to create a network bridge in each
physical machine in order to share its ethernet device with its VMs.

Networking We had also to set up all three nodes so they can smoothly ssh to each
other by updating the /etc/hosts file in all the hosts so as to contain the machine IPs
and enabling public/private ssh authorization for passwordless ssh access.

30



ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

ASAP-master flavor image The asap-master image was created using libvirt

virt-install20 tool by an Ubuntu 16.04.1 LTS image passed as a virtual CD-ROM
device. It was also setup to connect to the network via the bridge mentioned in the
previous paragraph and to run a VNC server that listens on a specific port and having
a specific password (12345).21

After the Ubuntu installation we installed and configured the following software:

• Java OpenJDK 8.

• Apache Hadoop YARN 2.7.1 configured for running a namenode, a resource
manager and a historyserver.

• The Spark-Nesting22 master, developed in WP4.

• IReS-Platform, developed in WP3 (project-asap-patch-323 branch).

• WMT (integration24 branch).

• Swan runtime25, gcc5 runtime libraries, and Swan K-Means executable wrapped
into an ASAP operator, as described in this deliverable.

• Python 2.7, pip26 and virtual environment27 with all the required python packages
used by the use cases (numpy, sklearn etc).

• Squid28 proxy server for accessing remotely the Web UI of the running services.

• IReS monitoring tools.

ASAP-worker flavor image The ASAP-worker image was also created using libvirt
virt-install tool by an Ubuntu 16.04.1 LTS image passed as a virtual CD-ROM device.
It was also setup to connect to the network via the bridge mentioned in the previous
paragraph and to run a VNC server that listens on a specific port and having a specific
password (12345).

After the Ubuntu installation was completed the following software was installed
and configured:

• Java OpenJDK 8.
20http://wiki.libvirt.org/page/VM_lifecycle
21This assists with quickly deploying a virtual cluster which, however should not be exposed to the

internet.
22https://github.com/project-asap/spark01
23https://github.com/project-asap/IReS-Platform/tree/project-asap-patch-3
24https://github.com/project-asap/workflow/tree/integration
25https://github.com/project-asap/swan_runtime
26https://pypi.python.org/pypi/pip/
27https://pypi.python.org/pypi/virtualenv
28https://help.ubuntu.com/lts/serverguide/squid.html

31

http://wiki.libvirt.org/page/VM_lifecycle
https://github.com/project-asap/spark01
https://github.com/project-asap/IReS-Platform/tree/project-asap-patch-3
https://github.com/project-asap/workflow/tree/integration
https://github.com/project-asap/swan_runtime
https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/virtualenv
https://help.ubuntu.com/lts/serverguide/squid.html


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

• Apache Hadoop YARN 2.7.1 configured for running a datanode and a namenode.

• Spark-Nesting worker, developed in WP4.

• Swan runtime, gcc5 runtime libraries, and Swan K-Means executable wrapped
into an ASAP operator, as described in this deliverable.

• Python 2.7, pip and virtual environment with all the required python packages
used by the use cases (numpy, sklearn etc).

• IReS monitoring tools.

VM cloning In order to instantiate more than one VMs from the same ASAP-worker
image we converted the existing image in qcow2 format using qemu-img, we changed
it to read-only and we created a new image for each VM by invoking the qemu-img
command with the backing file option in order to to base its copy on the read-only
image. That way each VM has 50GB of disk space but its actual image size is consid-
erably smaller.

Resizing cores and memory During the evaluation step we tried several configura-
tions for the VMs. Therefore we changed:

• the number of virtual cores using the libvirt virsh setvcpus29 command

• the maximum number of virtual cores using the libvirt virsh setvcpus command
and by passing the –maximum argument

• the memory allocated using the libvirt virsh setmem30 command

• the maximum memory allocated using the libvirt virsh setmaxmem31 command

Resizing Disk In addition to this we varied the size of disk image per VM. For doing
so, we created a new image with the desirable size using truncate. Then we resized
the image using the libguestfs virt-resize32 with the –expand argument in order to copy
the old image to the new one and extend one of its partitions to fill the extra space.
Then we edited the VM description xml to point to the new image and started the
VM. Finally, from inside the VM we extended the logical volume using lvextend33 and
enlarged the unmounted file system located on the device using resize2fs34.

29https://libvirt.org/sources/virshcmdref/html/sect-setvcpus.html
30https://libvirt.org/sources/virshcmdref/html/sect-setmem.html
31https://libvirt.org/sources/virshcmdref/html/sect-setmaxmem.html
32http://libguestfs.org/virt-resize.1.html
33https://linux.die.net/man/8/lvextend
34https://linux.die.net/man/8/resize2fs

32

https://libvirt.org/sources/virshcmdref/html/sect-setvcpus.html
https://libvirt.org/sources/virshcmdref/html/sect-setmem.html
https://libvirt.org/sources/virshcmdref/html/sect-setmaxmem.html
http://libguestfs.org/virt-resize.1.html
https://linux.die.net/man/8/lvextend
https://linux.die.net/man/8/resize2fs


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

1 worker 3 workers 4 workers 5 workers
Spark MLlib k-means 1:33:24 35:17 33:10 28:43

Swan k-means 1:41:36 1:34:29 1:10:48 1:03:53

Table 3: Experimental evaluation for WIND workflow

Dataset Loading We use the simulated dataset provided by WIND to configure and
test the VM deployment. Initially, the WIND simulated dataset (30 GB) was stored
in an NFS disk that was also mounted in each VM and from there they were copied
into HDFS running in the VMs. However, this consumes too much space that would
be better used by the computations; Since the physical and the virtual machines are
in the same private network, the solution finally adopted was to store the data in the
HDFS running in the physical machines and the applications running in the VM access
them via the network. As the physical machines running HDFS were also hosting the
VMs, locality “hides” the addition virtual network traffic to a great extent.

7 Evaluation

As an integration test, we evaluated 2 scenarios of the WIND sociometer workflow,
using two different implementations of k-means, the second operator in the work-
flow (Spark MLlib k-means35 and Swan k-means, described in Deliverable D2.3). We
quickly deployed different virtual clusters on the physical FORTH cluster, with one to
five Spark worker nodes on corresponding worker flavor VMs. Each worker flavor VM
has 20 cores and 48 GB of total memory. The VMs are not overprovisioned, so that
virtual resources amount to physical resources as closely as possible.

Table 3 presents the results for the whole workflow.

35https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.

clustering.KMeans

33

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans
https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans


ASAP FP7 Project

ASAP D7.3

ASAP System Prototype

References

[1] Apache hadoop yarn. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[2] Apache kitten. https://github.com/cloudera/kitten.

[3] Elasticsearch. http://www.elasticsearch.org/.

[4] Fabric. http://www.fabfile.org.

[5] Javascript. http://javascript.com.

[6] Mahout. http://mahout.apache.org.

[7] Nginx. http://nginx.org.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime
system. In PPoPP, 1995.

[9] Apache hadoop. http://hadoop.apache.org/.

[10] Jersey. https://jersey.java.net/.

[11] Jetty. http://eclipse.org/jetty/.

[12] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
MLlib: Machine learning in apache spark. Journal of Machine Learning Research,
17(34):1–7, 2016.

[13] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[14] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos. A unified scheduler for
recursive and task-based parallelism. In PACT, 2011.

[15] Weka. http://weka.pentaho.com/.

[16] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, pages 2–2. USENIX Association, 2012.

34

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/cloudera/kitten
http://www.elasticsearch.org/
http://www.fabfile.org
http://javascript.com
http://mahout.apache.org
http://nginx.org
http://hadoop.apache.org/
https://jersey.java.net/
http://eclipse.org/jetty/
http://weka.pentaho.com/


FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D7.3

ASAP System Prototype

WP 7 – Integration of the ASAP System

Nature: Report

Dissemination: Public


	Introduction
	Task Description
	Overview of Integrated System

	ASAP System Components
	Intelligent, Multi-Engine Resource Scheduler (IReS)
	Workflow Management Tool (WMT)
	Asap Operators
	External Engines
	ASAP Engines
	Visualization Component

	ASAP Integration Summary
	Prototype Setup
	ASAP source code
	Unified Setup using Fabric

	Integration of System Components
	Integration of WMT and IReS
	Modifications in IReS

	Integration of IReS and Yarn
	Integration of IReS and Analytics Engines
	Integration of IReS with WIND Application
	Integration of IReS and Swan
	Integration of Visualization

	Integrated Prototype
	Cluster Deployment
	VM Deployment

	Evaluation

