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Abstract

We describe a continuous classification process which constitutes one of the major use
cases of the MIGNIFY platform. We expose the requirements, the conceptual on-line classifi-
cation workflow and detail the operators. We then describe two implementations, the first one
running in centralized mode and the second one in distributed mode. These implementations
are integrated in ASAP as alternatives that can be selected at run-time based on the profiled
cost of the various operators and the execution context.

1 Introduction

The present deliverable covers the requirements, issues and technical specifications related to the
continuous execution of data processing workflows. We consider the practical context of MIGNIFY
workflows (or pipes) which combine functional blocks (or agents) for Web data collection, cura-
tion, classification and other analytic tasks. The workflow model has already been validated for
simple, linear workflows executed once. In the present deliverable, we extend the specifications to
consider more sophisticated workflows. In particular:

e we introduce periodic iteration, priorities and dependency constraints to model complex
analytic workflows;

e we develop a real-life use case of a continuous workflow that serves as a driving motivation
for collaborative work with our partners; the workflow implements an on-line classifier for
structured data extracted from the Web;

e we examined candidates for alternative implementations of the operators involved in the
workflow, and came up with two solutions, one, centralized, based on scikit-learn, and the
other one, distributed, on Spark-Mllib; implementation features and profiles are given.

This corresponds to strong practical needs for the MIGNIFY platform, and gives rise to some
intricate issues when it comes to determine when and how a workflow execution has to be triggered.
The MIGNIFY service we chose to focus on is called OUTWATCH, and relies on classification
methods applied to merchandising products and sales in e-marketplaces. Product descriptions are
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extracted from on-line marketplaces and classified in some category based on their description,
brand, product category, price and other features. Business-wise, this allows sales and marketing
teams to carry out price comparison of products more efficiently, and more generally to investigate
on-line offers in order to adjust their strategy accordingly. Such a BI tool can for instance help a
company to adapt its marketing campaign or to make informed strategical decision for its sales and
marketing department.

Due to the fast-paced dynamics of marketplaces, new products and new categories are intro-
duced very often, whereas existing ones may become obsolete. This determines the introduction
of continuous query execution in OUTWATCH, with two tightly associated computations.

1. The classification model needs to be adjusted based on new categories and obsolete ones;
since we cannot rebuild the model from past dataset, we must resort to on-line classification.

2. As soon as it is adjusted, the model is applied to incoming product descriptions to predict
their category.

We need, in principle, to (re-)execute OUTWATCH’s workflows as soon as some of the data
source adds new content. Ideally, the re-execution strategy should avoid any delay so as to always
present up-to-date information to the customers. In practice, the nature of our process requires the
workflow execution to be split in batches, i.e., a set of conditions regarding the properties of newly
collected data (size, but also freshness, distribution, etc.) triggers a new execution.

OUTWATCH agents are particularly complex. A same product showcased in different market-
places often presents a specific description. Use of different languages, encoding and structure
variations, presence of irrelevant texts are some of the factors that make the matching process non
trivial. It is also observed that the use of irrelevant text in a product description or sometimes
missing descriptions (which we use as a feature for product matching) makes the whole match-
ing process even more complicated. In order to address these challenges, OUTWATCH relies on
machine learning (ML) techniques encapsulated in agents and incorporated in the Web data pro-
cessing workflows. They constitute the most complex class of agents, from both a functional and
technical point of view. They are also the most time-consuming ones.

The structure of the deliverable is as follows. Section [2] presents the functional and technical
requirements of OUTWATCH and discusses the main challenges to address. Section [3] specifies
the service workflows and details the operators. Section [ covers implementation aspects and
evaluation of the operators. Finally, Section[5|describes ongoing work and Section [6|concludes the
deliverable.

2 OUTWATCH usecase

We now detail the use case of product matching workflow for marketplace.
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2.1 Catalog and product offers

The general goal of OUTWATCH is to build and maintain a catalog of product references, and to
discover product offers related to this catalog on public marketplaces.

1. A Catalog is a tree of categories and sub-categories. An example of category is Coffee
machines, and a sub-category is Expresso machine. Any product that belongs to a sub-
category also belongs to its parent category. We aim at classifying at the sub-category level
for a better accuracy, and simply refer to it as ’category” in the following.

2. A product offer, abbreviated POFFER, is an on-line proposal to sale one or several items of a
product, with specific conditions (price, delivery, etc.).

If, for instance, some eMarketplace proposes 100 items of the coffee machine xxP34, at a given
price Y, this constitutes a product offer for product xxP34.

Figure 1: Ranking of product offers extracted from a large eCommerce site

Marketplaces constitute one of the most active and widespread economic activity on the Web,
and the number of sites that can be considered as MarketPlaces is countless. Beyond the largest
eCommerce companies, many small, community-oriented, web spots propose, in a dedicated fo-
rum, an exchange area where people can sell products and discuss their merits. The average evalu-
ation of a product is an important information, as it helps to evaluate its popularity on a given site
for comparison purposes. It can also be taken as an indirect indicator of the product sales. As an
illustration of the reports supplied by MIGNIFY, Fig. [[|shows a graph showing an histogram of the
product ranking from a large eCommerce site, built from the POFFER extraction.

At Internet Memory, we created a "Wep map” of classified sites that references hundreds of
thousands of such potential spots. Our crawler scans the pages and identifies those that contain lists
of products. We then, thanks to a semi-supervised approach, analyse the product page structure
and produce a wrapper apt at supporting structured data extraction to obtain a product offer record.
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Figure 2: POFFER collecting rate from a large eCommerce site

This mixes all kinds of product-related information, brand, type, price, textual description, user
comments. Needless to say, this information varies from one site to the other, in completeness,
accuracy, language, structure, etc.

The number of POFFER crawled per day depends on the size of the site on the one hand, and
on the crawl policy which is due to respect navigation and politness rules. Fig. 2] shows a graph
showing the crawl efficiency for a very large site, where the politeness is the limiting factor (i.e.,
we cannot get the whole site catalog in one day). In this specific case, we collect about 300K
POFFER per day. It takes about a week to obtain what we estimate to be the whole catalog (the site
claims to propose 5SM products, but we found many duplicates or almost-duplicates (a same book
in several formats) which are merged by our data pre-processing workflow.

Once a site has been crawled, we revisit it periodically. The so-called refreshment policy
depends on several factors and is decided by our crawl engineers. To state it briefly, what we
consider as the "golden” sites are continuously crawled, whereas less top-ranked market places are
visited with a varying periodicity, ranging from a week to a few months.

Overall, we currently collect about 4 millions of POFFER daily, and we expect to increase our
crawling rate constantly in a near future.
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Figure 3: The classification process

2.2 Product classification

Beyond the data extracted from the page, it would be an important added value for us to be able
to detect the category of the product, in order to supply our customers with a well-organized and
accurate report of the web activity related to their specific business area. We therefore decided
to undertake a study of a classification workflow apt at predicting a category from a POFFER
description.

The product matching operation, denoted PMATCH, consists in associating a POFFER with
a product category in the catalog. Given the description of an offer extracted from some e-
marketplace, we try to find the category it belongs to. Given these concepts, OUTWATCH aims
are twofold:

1. building and maintaining a product catalog covering the widest posible range of products
that can be sold in public marketplaces;

2. discovering, via continuous crawling and matching, the POFFERs that can be related to the
categories of the catalog.

We aim at building a large database where each POFFER is associated to one of the leaves of
the catalog. From this database we will build reports and aggregations for brands and eCommerce
companies. We will, for instance, report the list of POFFERs for a given category or sub-category,
along with statistical indicators built from the prices, location, sales period, etc.

The assignment of a POFFER to a catalog is essentially a classification process, which infers,
from the POFFER description and the catalog model”, the category of the POFFER. Starting from a
training set which consists of a catalog and a set of labeled products, we build a model which is then
used for assigning a label (a category) to each unlabeled POFFER supplied by our crawler/wrapper.

9
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This process gives rise to two important issues. First, the catalog evolves constantly, and we
need to adapt the model according to this evolution (a task called on-line classification in Machine
Learning). Second, the PMATCH operation is difficult, because every vendor has his/her own way
in describing the product. Non-uniformity in description, usage of noisy description and different
languages add another level of complexity in the classification steps.

Handling continuous changes. New products are constantly proposed, and the catalog therefore
constantly needs to be updated in order to accurately reflect the state of the market. The matching
process is highly sensitive to these changes, as we need to maintain an up-to-date catalog of ref-
erences, along with product details. The model by which a new POFFER can be matched with the
catalog is therefore a continuously changing one.

Matching from partial and incomplete descriptions. Each marketplace typically maintains its
own catalog and offers. For instance, an e-marketplace like FNAC (http://www.fnac. fr)
has several million products and offers from thousands of vendors. The domain-specific web-
scrappers (tailor-made for e-commerce sites) that can extract relevant POFFER description from
the product pages hosted on e-commerce sites provide noisy and incomplete descriptions.

The text is often not grammatically well formed, i.e., different sellers often use different names
for the same attribute. Usage of different languages and usage of emoticons and other unicode
character in the product description add another level of complexity in the product matching and
disambiguation.

2.3 Online classification

Figure {| shows the (abstract) classification workflow of OUTWATCH. It relies on several operators
that will be described in details in the next sections. We focus for the time being on the general
process.

The input consists of POFFER descriptions supplied by the crawler / scrapper (not elaborated
here). Since the crawler operates continuously, we constantly get new POFFERs from this source.
In order to simulate a continuous execution, we split the input in batches. The actual reason for
batch processing is explained in the next section

In each batch, we distinguish two kinds of POFFER.

1. Training POFFERs. They come from a set of seed websites (e.g., FNAC, CDiscount, Amazon
etc.) which are considered reliable enough to provide a ground truth on the categories.
POFFER issued from these sites are labeled with a category taken from the seed website
itself.

2. Testing POFFERs. Product information extracted from other pages (other than the seed sites)
are considered as the festing dataset, which requires labeling.

10
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Figure 4: The OUTWATCH product matching workflow

Model building and updating. A model is initially built, and regularly updated, for each new
batch, from the training set. We resort to a supervised machine learning technique. The reason
for choosing the supervised learning was backed by the superiority of supervised learning over
unsupervised for generating high precision for classification result. However, it suffers from per-
formance bottleneck (for training and classifying) due to the high throughput of our dataset, which
is a serious limitation for OUTWATCH in production.

To mitigate these challenges, we have made few design decisions in OUTWATCH, such as
processing data in batches, serializing classification models or incrementally enriching models by
using on-line classification algorithms. It consists of updating an existing model by considering
a delta training dataset, as opposed to regular machine learning where the classification model is
built from an entire training set.

Continuous classification. New products continuously arrive through the crawler stream. In
principle, we are facing a never-ending classification process which takes each new POFFER as
it is delivered by the crawler/scrapper, and submits it to the workflow. However, in practice re-
peating the model building and classification processes on per product description arrival is not
a good solution since it adds additional performance overhead due to the I/O operations during
the classification steps. On the other hand, processing the data in batches helps to fit in-memory
the partial model trained on the training batches. Considering these aspects, in OUTWATCH we
leverage batch learning and testing rather than single/online learning/testing cycles.

Since the product catalog is not static, re-training time for a model is another important aspect
that we also considered while choosing the classification model in OUTWATCH. To address these
requirements, we have implemented a model builder using linear stochastic gradient descent (SGD)
algorithm with logarithmic loss function. The benefit of using SGD is to leverage the fact that the

11



ASAP D8.3

ASAP FP7 Project Continuous Query Prototype

gradient of the loss is estimated each sample at a time and the model is updated along the way
(using partial model fitting). SGD also allows batch (out-of-core) learning.

Once the models are generated with the training set, the classifier acts on the testing set for
generating labels associated with them. Classifier takes as input (i) the model, which is generated
from the features and labels of training set, and (ii) the feature set from the testing data. It predicts
the label for the testing data point for which the label was either missing or ambiguous in the
original dataset.

2.4 Batches

In practice, the conceptually continuous processing scenario has to be decomposed in discrete,
repeated workflow executions (called runs in the following), which take as input batches (groups)
of products.

To overcome the performance bottleneck, in OUTWATCH we use out-of-core or external mem-
ory machine learning algorithms to process data that is too large to fit into a computer’s main
memory at once. However for such algorithm to work as expected, we also had to design mecha-
nism to efficiently fetch and access data stored in the hard drive. One of the strategy that we have
implemented in OUTWATCH is processing data in batches instead of one at-a-time or all at-a-time.

The batch Creator operator shuffles the data input, distributes it using stratified sampling
method [2] into predefined batches, and stores them in temporary memory. Each batch constitues
an input unit for the rest of the workflow. The benefits of having test and training sets in batches
are twofold; firstly for large training dataset it helps to fit the partial model trained from sample
batches in-memory, during testing it performs better since test data with similar features (similarity
pre-computed for optimization) can be classified within a single pass. Considering these aspects,
in OUTWATCH we leverage on batch learning and testing rather than single/online learning/testing
cycles.

Scheduling and managing the batches decomposition is currently not supported by the ASAP
execution model, and we therefore use an external ad-hoc scheduler. In the following we there-
fore focus on a single batch classification execution,, and discuss the creation and execution of
sequences of batches in the concluding remarks.

3 The workflow

We now focus on the processing of a single batch, and examine in detail the operators. The work-
flow involves two phases: feature extraction and classification. The first phase produces, from the
product description supplied by our wrappers, a set of features that describe a product offer and
support the measure of similarity with other offers. The second phase combines the creation/update
of the classification model, and the application of the model to the flow of product offers.

Several candidates for the features set have been considered. The tf/idf is a simple choice,

12
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easily implemented and readily available in ASAP. It leads, however, to a rather poor classifica-
tion precision (about 60%). We therefore evaluated a more sophisticated approach based on the
Word2Vec model, as originally proposed by Google. Word2Vec takes a text corpus as input and
produces the word vectors as output. It first constructs a vocabulary from the training text data
and then learns vector representation of words, present in the input corpus. The resulting word
vector model captures word-association features, i.e., co-occurence patterns for words along with
the context in the input text.

Using W2V requires a pre-processing step to build the Word2Vec model. This model is then
used for feature extraction during the second phase.

3.1 Pre-processing

Figure [5] shows the W2V preprocessing step. It takes as input Web data suplied by the crawler,
extracts a structured description of the products thanks to the web scrappers, processes textual
information (tokenization, stop-word removal, etc.) and finally produces a W2V model, i.e., es-
sentially, a matrix that associates to each token a vector of the token’s co-occurrences indicators.

@ ©) —
Web data Data Pre- W2V Model
scrapper processor Generator model
Figure 5: Preprocessing workflow: building the W2Vec model

3.1.1 Data preprocessor

This operator is responsible for preprocessing the raw data so that the following modules can
effectively use the data for an accurate model. We use the textual descriptions of a product (e.g.,
product name, product description, price, brand etc.) as deterministic features for classification.
Two of the natural language processing steps that we have exploited in our data preprocessing
step are: (1) Stemming and (2) Stop-word removal from the raw input text. In the current use
case of OUTWATCH, we implement our algorithms on the dataset (i.e., product catalog) extracted
from French marketplaces such as FNAC.com. CDiscount.fr etc. To handle efficiently the product
catalog data (such as product name, product description, etc.) for the classification purpose, we
have used language processing libraries that are fine-tuned to handle French language, such as
French stemmer implementation from the nltk.stem.snowball library, and stop words
for French.

Our W2V model generator takes as input the features extracted from the trained dataset. How-
ever, for a sufficiently large product database these textual features (the term-document frequency
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matrix) take a lot of buffer and application memory space, which becomes a performance bottle-
neck. To address this challenge, we have used other efficient data-structure for the feature storage.
Since this term-document feature matrix is highly sparse for large volume of data, we transform
this matrix to a hash table. In our current solution we rely on such feature hashing trick, similar to
what has established by Weinberger et al. in [6] for scalable machine learning.

3.1.2 W2V model generator

This W2V model generator is responsible for generating the learned model that maps each discrete
word id (0 through the number of words in the vocabulary) into a low-dimensional continuous
vector-space from their distributional properties observed in the input text corpus. Based on several
experiments, we chose to fix the parameters as follows. The dimensionality of the word
vectors is set to 200 and the window size parameter for skip-gram to 10. In case we want to run
this model building process in parallel, we set the thread’ parameter as 10. To make sure the
quality of the learned model (and to mitigate the risk of overfit or underfit for the model), we have
set the iteration parameter iter in our algorithm as 5.

Once the model is built, it is used for subsequent Word2Vec feature extraction phases for the
future input data.

3.2 The classification workflow

Figure [6] depicts the main, on-line, classification workflow. It represents the processing of one
batch. The workflow relies on several operators, each detailed in the following.

Classification
model
builder

wav
matrices for
training data

>
serialized
model

supervised
learned model

wav
. vector for Classification
processed training test data
@ results
data, test Data wav e
Data Pre- Classifier
scrapper processor Feature
Extractor
[__] feature extraction steps [ ] supervised classification steps

Figure 6: OUTWATCH workflow with Word2Vec as a feature extractor / processor
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3.2.1 W22V Feature Extractor

This operator is responsible for deriving word-vector representations for the input data (i.e., both
for the training and testing dataset). It analyses the input text, tokenizes it to find the terms, and
derives the feature vectors for each terms based on the W2V model. Once the feature vectors for
all the words in a text are derived, their values are aggregated and averaged to derive the feature
vector for the line.

These aggregated feature vectors are then used for building the classifier model.

3.2.2 Classification Model Builder

It takes as input the vectors against each line in the training set as produced by the W2V Feature
Extractor module, along with the label for the products (e.g., category) as present in the training set,
and learns a model by using multi-class machine learning algorithms (such as Stochastic gradient
descent logistic regression algorithms). Once the model is built, it is serialized and stored in a
persistent storage.

Due to the continuous nature of the input, and the constant changes affecting the products
catalog, products descriptions and products offers, the model needs to be constantly updated. We
therefore restrict our choice to on-line classifiers apt at adapting an existing model to fit a new
input batch.

3.2.3 Classifier

It takes as input the vectors against each line in the test set as produced by the W2V Feature
Extractor module, along with the serialized model, which was produced by the Classification
Model Builder and produces the labels for each of the line in the test dataset for which the labels
are not known.

4 Implementation: centralized and distributed workflows

We implemented two versions of the operators involved in the workflow. Essentially, a first set
of operators is based on the Python Scikit-learning library (http://scikit—-learn.org).
It cannot run in distributed mode but is adapted to small datasets, or as a backup solution if a
distributed computing environment is not available. The second version relies on Spark MILib,

4.1 Centralized implementation (Scikit)

The centralized implementation consists of a data-preprocessor, a word2vec model generator, a
word2vec feature extractor, a classification model builder and finally a classifier.

15
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4.1.1 Operators

Data pre-processor. The data pre-processor contains essentially a list of French stop words to
be removed in the text description. For stemming and other text pre-processing tasks, we also use
the SnowballStemmer of the NLTK package for Python.

W2V Model generator. The word2vec model generator is called on the output of the data pre-
processor. We use the Python encapsulation gensinﬂ of the C W2V codeﬂ wrapped as an operator,
and configured as follows:

e size: 200 . The default vector’s size is 100. We double the size to keep more context
information.

e window: 10. The default size for skip-gram. It is the number of surrounding words for a
given word.

e negative: 0 the negative sampling is deactivated
e hs: 1 the hierarchical softmax is used for the training algorithm

e sample: le-5. the sub-sampling of frequent words. Since we have a small number of
words with a very high occurrence, we set this parameter to the lowest value recommended
by word2vec

e iter: 5 default number of iteration

e min-count: 10 all words that appear less than 10 times are removed

The model file is then saved in binary format.

Feature extraction. Gensim lets us reuse the model in the feature extractor component. In this
vectorization step, a product’s text description is split into individual words. Each word is then
converted into a numeric vector through word2vec model. Since text have varying length, we take
the average of all word vectors as the input to a classification algorithm. It is an usual practice
when we convert word2vec output into input for classification models.

Classification Model Builder. In the classification model builder, the SGDClassifier model from
scikit-learn permits us to train the logistic regression classifier in an incremental manner. The
’loss” parameter in SGDClassifier is set as ”log”, the number of iteration n_iter is 100, and the
regularization parameter alpha is 0.0001. The model updates with new batches of data using the
function partial_fit. When the training step finishes, the classification model is serialized to reuse
in the prediction component.

'"https://radimrehurek.com/gensim/models/word2vec.htmll
https://code.google.com/archive/p/word2vec/
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Figure 7: Pre-process Figure 8: W2V Model Builder

4.1.2 Profiling

We ran the ASAP profiling modules on these operators. Basically, they all exhibit an almost perfect
linear behavior with respect to the input size.

Fig. [7| shows the cost of the data pre-processing operator. It takes about 1/2 hour to process
300K POFFER in centralized mode. We recall that 300K POFFER is what we can get daily from a
single large eCommerce site. A machine would therefore be able to process about 12M POFFER
per day, which is sufficient in the moment, but might become a bottleneck in a near future.

Fig. [§|shows the cost of W2V model builder. It takes only Smns hour to build the W2V model
for a training set of 300K POFFER. Given that the W2V model is built off-line and can be used for
feature extraction during a period of days or even weeks, this constitutes a marginal part that does
not impact the classification use case.

The cost of the feature extraction operator and classifier (Figs. [9]to is similar to that of the
data pre-processing step. So, essentially, the same conclusions holds: a centralized implementation
is enough for the time being to face our daily input of POFFERs, but is likely to become a major
limitation as we will scale our crawling process. The classification model building performance lies
in the same. Once the model is built, the prediction (classifier) presents a much better throughput,
since about 10 mns suffice to classify our batch of 300K POFFERs.

To summarize this part of the study, a centralized implementation can handle the classification
workflow as long as the daily number of collected POFFERs remains below 10M. It is therefore
important to anticipate another solution, scaling to larger data flows.

4.2 Distributed implementation (Spark)

Spark’s MLIib has its own distributed implementation for the Word2Vec algorithm. Both training
a W2V model and vectorizing words using that model are supported. For large collections of doc-
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uments such a distributed implementation of those steps can be beneficial. We have implemented
both those steps in Spark’s MLIib, using its native Scala API.

4.2.1 Operators

W2V Model Generator. For a large input corpus we are training a W2V model using the top
dictionary terms. The output model is stored in HDFS in order to be re-used later, in the vectoriza-
tion step. Note here, that it is not theoretically possible to update a W2V model, as one needs the
whole text corpus to produce it.

Feature Extraction. Given a previously trained model, in this step we use that model in order to
vectorize a set of input documents. For aggregating the multiple word-vectors into a single vector
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representing the whole document, we take the mean of all the word vectors’ coordinates.

Classification Model Builder. MLIib has a rich feature-set with regards to classification. MLIib
uses a general Logistic Regression Model that can be trained with a number of algorithms. The
one we have opted for is an implementation of L-BFGS (Limited-memory BFGS). This uses an
approximation of the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm with
a capped memory footprint. BFGS is an iterative optimization algorithm that falls into the of
Quasi-Newton family of methods. The choice of this particular training method was chosen as
a best approach for multi-label classification. One of its advantages is that it allows updating a
previously formed (trained) model with new training data. We have implemented the training and
classification using the Python API of Spark’s MLIib.

Train a Logistic Regression Model: Using a set of labeled input data we train a Logistic Regres-
sion model that is stored in HDFS. The input format is the same as the ouput of the W2V
vectorization step. By default this step calculates the training error of the produced model
(the percentage of the training data that the model would predict wrongly). It is also possible
(by using an “evaluate” flag) that this step performs a cross-evaluation of the trained model
with 20% of the input data as a validation set.

Update a Logistic Regression Model: As a variation of the previous step, the user can provide an
“update” flag. In this case a previously stored LR Model is loaded from HDFS and updated
with new training Data.

Log. Regression Classifier: Using a previously calculated LR model, this step classifies an input
set of document vectors.

4.2.2 Profiling

The Spark operators have been profiled as well, and the results are summarized on Figs. [12]to[15]
in a distributed cluster with 10 nodes. They show that the expected advantages of a distribution
evaluation are confirmed for this particular workflow, an exception being the W2V model builder
for which the C Google code, that runs from a binary compiled executable, is very well optimized
and can handle large inputs very well.

First, partitioning the input pays off in terms of mere efficiency since operators like feature
extraction and classification can operate in parallel. So, even for reasonably small datasets (less
than 300K POFFER), we obtain much better performances. Second, and perhaps more importantly,
each operation appears to be almost linearly scalable, exhibiting a modest super-linear behavior in
ne the number of computing nodes. We can therefore safely envisage to scale up the number of
POFFER, as long as the necessary computing resources are available.
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The choice of a particular implementation, centralized or distributed, depends on the size of the
input which, in our case, is highly variables. We might, for instance, run the workflow occasionally
for a small marketplace dedicated to a particular class of product, in which case the centralized
solution appears to be efficient enough, and avoids to overload a cluster with tiny tasks. Generally,
if we consider a setting where the cluster could be smaller and the host running the centralized code
could be a, much faster, physical machine, with faster dedicated Disk interfaces, the performance
of the centralized implementation could be much better and the comparative advantage of the
distributed implementation smaller. As a rule of thumb, from these experiments, we can expect
that the centralized code would be faster for datasets up to 5-10K lines, which fits with flows of
POFFER issued from small, highly specific marketplaces. The ASAP optimizer and scheduler is
expected to be able to make an informed decision based on the contextual parameters.
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5 Ongoing work

We are currently working on several extensions of the platform functionalities, and on the integra-
tion of the use case with the ASAP dashboard.

5.1 Dashboard integration

Extracting and visualizing context information from the textual descriptions contained in the col-
lected POFFERs will result in a business intelligence tool that transforms noisy and unstructured
Web content streams into valuable repositories of actionable knowledgeﬂ In Year 3 of the ASAP
project, we will ingest textual POFFER descriptions by means of the Document API developed in
WP5, making the real-time stream of selected products online offerings available within the ASAP
dashboard to be complemented by time series data on average daily prices for a given product, up-
loaded via the Statistical Data API. The integration into the ASAP dashboard of WP5 will extend
price comparisons by (i) visualizing aggregated keywords computed from noisy textual descrip-
tions contained in the POFFERS collected from e-commerce sites such as FNAC and Amazon.com,
and (i1) identifying specific features that impact the perception of the product in online media cov-
erage, creating additional value for sales and marketing decision makers as the main target group
of business intelligence tools. We will focus on selected high-impact consumer goods such as
smartphones, digital cameras, or popular car models.

android

Figure 16: Keywords associated with Googles Nexus 5x (left) and Apples iPhone 6 (right)

Fig. [16| demonstrates the use of knowledge extraction techniques to compare product percep-
tions via aggregated keywords based on international news media coverage on Googles Nexus 5x
and Apples iPhone 6, respectively.

For a business intelligence tool based on price comparisons, the temporal context is of partic-
ular importance. Fig.|l”7|focuses on this context dimension by showing time series data on three
products from the ’electric / hybrid car’ category BMW 13, Tesla Model X and Toyota Prius (left).
It also aggregates the longitudinal data to show relative share of coverage in international news
medi?émiddle), and uses a radar chart to convey brand personality based on the classification of
Aake

3Scharl, A., Weichselbraun, A., Gbel, M., Rafelsberger, W. and Kamolov, R. (2016). “Scalable Knowledge Ex-
traction and Visualization for Web Intelligence”, 49th Hawaii International Conference on System Sciences (HICSS-
2016). Kauai, USA: IEEE Press. 3749-3757

4Aaker, J. (1997). “Dimensions of Brand Personality”, Journal of Marketing Research, 34(3): 347-356. (1997)
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BrWiZ Tesla Modal § Tovota Prius

Figure 17: Time series, share of coverage and brand personality (BMW i3, Tesla Model X, Toyota
Prius)

5.2 Batches

The decomposition of the input in batches transforms the conceptual continuous execution in a
practical sequence of “static” executions, one for each batch. The ASAP workflow model requires
an explicit triggering of an execution. In the MIGNIFY context, although we are able to run a
delta-computation that only considers the products newly collected with respect to the previous
execution, there is no ”scheduler” that could automatically decide on the appropriate moment to
run a workflow. Relying on a human decision jeopardizes the ability of the system to provide
timely results.

We can therefore envisage an evolution of the workflow mechanism that can automatically
detect conditions (based on predefined rules) to trigger new (re-)execution of a workfow on a
specific input. The scheduler should be invoked by pushing the (re-)execution instruction, e.g., for
new every new data/batch arrival, It should trigger the execution monitoring tool to (re-)execute
a workflow. Conversely, the scheduler would also pull some system information to trigger a (re-
)execution. Triggering rules for (re-)execution can be of types:

1. Time-window based batch processing.
2. Frequency-based batch processing.
3. Other business rules based batch processing.

In summary, we can identify the need of a model and language for defining rules for continuous
executions of workflows. This also gives rise to the need of run-time monitoring the rules for
triggering a new execution.
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6 Conclusion

We studied in this task a much more sophisticated workflow that the simple linear sequential one
implemented during the first year of the project. Motivated by some important requirements from
the MIGNIFY OUTWATCH service, the workflow takes the form of a tree. After a common rooted
branch, two separated computations take place:

1. The model is updated thanks to the new incoming labeled data (i.e., data taken from a seed
site).

2. The updated model is used by the classifier.

This provides a simple but representative example of some features which were absent from use
cases we had to deal with so far. First, the workflow exhibits a priority among edges (branches in
general): the model has to be updated from the current batch before application of the classifier to
the very same batch. Second, there is a dependency from one branch to the other: the classification
should not start until the updated model has been produced and distributed. In general, this shows
the need to introduce scheduling information in the workflow model to capture the semantics of
the whole operation coordination.

We successfully identified several possible implementation choices for the workflow, imple-
mented the operators and evaluated their individual performance thanks to the profiling facility of
ASAP. This confirms that both solutions may be relevant, depending on the context (size of the
input, available resources). At the time of writing, we are working on a full integration of these
operators with the rest of the ASAP components (user interface, scheduler / monitor). We will
evaluate the benefit of a high-level specification coupled with an automatic selection of the execu-
tion setting during the last year of the project, with the goal to come up with an industrial solution
apt at saving human and computing resources in the management of our services.
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