

ASAP is funded by the European Commission DG-INFSO
Seventh Framework Programmed, Contract no.: 619706

Compute and Data Engine Modeling
Deliverable no.: 3.1

28/02/2015

D 3.1 – Compute and Data Engine Modeling 2 / 54

Deliverable Title Compute and Data Engine Modeling

Filename D3.1.docx
Author(s) K. Doka, N. Papailiou, C. Mantas,

D.Tsoumakos
Date 28-02-1015

Start of the project: 01/03/2014

Duration: 3 years
Project coordinator organization: FORTH

Deliverable title: Compute and Data Engine Modeling
Deliverable no.: 3.1

Due date of deliverable: 28/02/2015
Actual submission date: 28/02/2015

Dissemination Level

X PU Public

 PP Restricted to other programme participants (including the Commission Services)
 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable status version control

Version Date Author

0.1 16/01/2015 K. Doka

0.2 10/02/2015 K. Doka, N. Papailiou, C.
Mantas

1.0 15/02/2015 K. Doka, D. Tsoumakos
2.0 27/02/2015 K. Doka

D 3.1 – Compute and Data Engine Modeling 3 / 54

Abstract

This deliverable presents the design, architecture and methods in the current state of the
Intelligent Resource Scheduling (IReS) platform, which constitutes a core component of
ASAP and is responsible to i) model operator performance according to different engines
and their resources and ii) adaptively decide on which operator version to run based on the
optimization policy and the available engines. In this first period, attention has been given
towards defining the methodology and tools in order to model the performance and costs of
the different compute and data engines.

Keywords

Workflow optimization, modeling, profiling, benchmarking, compute engine, data store

D 3.1 – Compute and Data Engine Modeling 4 / 54

Table of Contents

Table of Contents .. 4

List of Figures .. 6

List of Tables.. 7

List of Abbreviations.. 7

1 Introduction .. 8

1.1 IReS Overview ..8
1.2 Purpose of the Document ..9
1.3 Document Structure ...9

2 Big Data Analytics Technologies and Platforms .. 11

2.1 Compute Models and Engines ..11
2.1.1 Hadoop Framework .. 12
2.1.2 Spark .. 12
2.1.3 Stratosphere/Flink .. 13
2.1.4 HAMA ... 13
2.1.5 Stream and Realtime Data Processing .. 14

2.2 DataStores ...15
2.2.1 HDFS... 16
2.2.2 Cassandra... 16
2.2.3 Hbase ... 17
2.2.4 ElasticSearch .. 17
2.2.5 MySQL.. 17
2.2.6 PostgreSQL .. 18
2.2.7 MonetDB... 18
2.2.8 Proprietary analytics PDMS... 18

2.3 Libraries and Big Data operations ..19
2.3.1 Query processing .. 19
2.3.2 Machine Learning ... 20

2.4 Workflow Management platforms ..22

3 The IReS Architecture.. 24
3.1.1 Job parsing module .. 25
3.2.1 Modeling Module .. 29
3.2.2 Profiling Module ... 29
3.2.3 Decision Making Module ... 30
3.2.4 Model Refinement Module ... 32
3.3.1 Enforcer Module ... 32

3.4 Workflows ...32
3.4.1 Profiling Workflow .. 32
3.4.2 Planning and Execution Workflow ... 34

3.5 IReS Interaction with other ASAP modules ...35

4 Compute and Data Engine Modeling... 38

4.1 State of the Art ..38
4.1.1 Benchmarks .. 38
4.1.2 Modeling... 39
4.1.3 Profiling .. 39

4.2 The IReS modeling approach ...40

D 3.1 – Compute and Data Engine Modeling 5 / 54

4.2.1 Black Box profiling... 40
4.2.2 Profiling challenges ... 41
4.2.3 Profiling approach ... 42
4.2.4 Adaptive sampling ... 42
4.2.5 Approximation models .. 43

4.3 Experimental evaluation ..44

5 Conclusion.. 49

References ... 50

D 3.1 – Compute and Data Engine Modeling 6 / 54

List of Figures
Figure 1 Architecture of the IReS platform..24

Figure 2 Workflow example: Simple join operation between two datasets26
Figure 3 Metadata description of dataset D1 ...26

Figure 4 Metadata description of dataset D2 ...27

Figure 5 Metadata description of the abstract join operator ...27

Figure 6 Metadata descriptions of the first materialized join operator28
Figure 7 Metadata descriptions of the second materialized join operator28

Figure 8 Complete graph of execution plans ..30

Figure 9 Metadata description of operator move ..31

Figure 10 The selected execution plan ...31
Figure 11 Profiling workflow ...33

Figure 12 Planning and execution workflow..34

Figure 13 Interaction of IReS with other ASAP modules ..35

Figure 14 Main profiling algorithm ..42
Figure 15 Profile functions for different operators ..45

Figure 16 Estimation accuracy for different sampling techniques ...47

D 3.1 – Compute and Data Engine Modeling 7 / 54

List of Tables
Table 1 Summary of runtime characteristics and potential use in ASAP....................................15

Table 2 Summary of data store characteristics and potential use in ASAP19
Table 3 Summary of machine learning and query processing libraries and applications 22

Table 4 High level external interface of the IReS platform ..37

List of Abbreviations

FS File System
IaaS Infrastructure as a Service
IReS Intelligent Resource Scheduler
ML Machine Learning
M/R MapReduce
NLP Natural Language Processing
RDBMS Relational Database Management System
SPJ Select-Project-Join
VM Virtual Machine

D 3.1 – Compute and Data Engine Modeling 8 / 54

1 Introduction

1.1 IReS Overview

Big data analytics have become a necessity in the majority of industries [1] , taking the
lead in risk assessment, business process effectiveness, market analysis, etc. [98] [2] .
Enabling engineers, analytics experts and scientists alike to tap the potential of vast
amounts of business-critical data has grown increasingly important. Such data analysis
demands a high degree of parallelism, in both storage and computation: Business
datacenters host huge volumes of data, stored over large numbers of nodes with
multiple storage devices and process them using thousands or millions of cores.

The demand for near-real-time, data-driven analytics has given rise to diverse execution
engines and data stores that target specific data and computation types (e.g., [11] [12]
[13] [21] [69] [96] , etc.). With the advent of virtualized computing, these platforms are
offered as a service by many IaaS providers, enabling a very wide deployment range. For
some of those engines there exist approaches in the literature that manage to optimize
their performance (e.g., [40] [41]) by automatically tuning a number of configuration
parameters. Yet, these schemes work on a single engine (mainly the Hadoop ecosystem),
merely considering specific data formats and query/analytics task types.

However, modern workflows have become increasingly long and complex [66] .
Specifically, workflows may include multiple data types (e.g., relational, key-value,
graph, etc.) generated from different resources. They are also executed under varying
constraints and policies (e.g., optimize for performance or cost, require different fault-
tolerance degrees, etc.). Finally, workflow operators can be greatly diverse, from simple
Select-Project-Join (SPJ) and data movement to complex NLP-, graph- or custom
business-related operations. There currently exists no single platform that can optimize
for this complexity [32] .

Sensing this trend, cloud software companies now offer software distributions in pre-
cooked VM images or as a service. These distributions incorporate different processing
frameworks, data stores and libraries to alleviate the burden of multiple installations
and configurations (e.g., [28] [46] [47] [82]). Yet, such multi-engine environments
lack a meta-scheduler that could automatically match tasks to the right engine(s)
according to multiple criteria, deploy and run them without manual intervention. A
recent attempt along this line [5] [4] focuses more on lower-level database operators,
emphasizing on their automatic translation from/to specific engines via an XML-based
language. Yet, this is a proprietary tool with limited applicability and extension
possibilities for the community.

To address multi-engine optimization, the ASAP project employs the Intelligent Multi-
Engine Resource Scheduler (IReS), an integrated, open source platform for managing,
executing and monitoring complex analytics workflows. Its goal is to provide adaptive,
cost-based and customizable resource management of the diverse execution and storage
engines available. Moreover, since the area of high performance analytics advances
daily, ASAP's goal is to present a repeatable process that will allow easy inclusion of
different technologies, if so desired. IReS includes a modeling framework that constantly
evaluates the cost, quality and performance of data and computational resources in

D 3.1 – Compute and Data Engine Modeling 9 / 54

order to decide on the most advantageous store, indexing and execution pattern
available.

To this direction, our system will be able to handle existing open-source execution
models (e.g., Map-Reduce, Bulk Synchronous Parallel) as well as state-of-the-art
centralized and distributed storage engines (RDBMSs, NoSQL, distributed file-systems,
etc.) in order to have a broad applicability and increased performance gains. IReS plans
to optimize workflows consisting of tasks that range from simple group-by, aggregation
or complex joins between different data sources to machine-learning tasks and queries
on graph data in combination with relational data. In the current implementation, the
system bases its operation on the following elements:

 A profiling and modeling engine that learns operator output per different engine
configuration. Outputs are collected via budget-constraint executed benchmarks.
The learned models are stored and utilized for the planning phase of the
workflow.

 A JSON-based metadata language that describes operators in abstract and
instantiated forms, enabling search and matching of operators that perform a
similar task in the planning phase.

 A decision-making and enforcing process that chooses among different
equivalent workflow execution plans (i.e., on different engines, resulting in
equivalent output) based on cost or performance and schedules the execution.

The resulting optimization is enhanced by any optimization effort within a single engine.
IReS is a fully open-source platform that targets both low (e.g., join, sort, etc.) as well as
high level (e.g., machine learning, graph processing) operators, treating them as black
boxes. The generic profiling/modeling method it relies upon allows for easy addition of
new operators and engines.

1.2 Purpose of the Document

The purpose of deliverable 3.1 is to describe the design, architecture and methods in the
current state of the IReS platform. The basic abilities of the IReS platform will be to i)
model operator performance according to different engines and their resources and ii)
adaptively decide on which operator version to run based on the optimization policy
and the available engines. In this first period, attention has been given towards defining
the methodology and tools in order to model the performance and costs of the different
compute and data engines.

1.3 Document Structure

D3.1 is structured as follows:

 Chapter 2 contains an overview of the state of the art tools for big data analysis.
The most commonly used tools are presented and their basic characteristics are
explained.

 Chapter 3 describes the architecture of the IReS platform, explaining the role of
each component and presents the main system workflows, namely the modeling
and the planning and execution workflows.

D 3.1 – Compute and Data Engine Modeling 10 / 54

 Chapter 5 presents in detail the methodology that will be followed to model the
various runtimes and data stores in terms of performance, cost or any user -
defined metric. Moreover, the chapter contains an experimental evaluation of the
proposed methodology.

 Chapter 5 concludes the deliverable.

D 3.1 – Compute and Data Engine Modeling 11 / 54

2 Big Data Analytics Technologies and Platforms

This chapter reviews existing technologies and platforms that deal with Big Data
analytics. This review aims at providing a thorough analysis on the characteristics of the
different runtimes and data stores so that an informed selection on the ones to be
supported by ASAP can be made. The list is by no means exhaustive, but rather
representative. Prominent examples for each of the pertinent system categories are
included. It contains the engines and data stores that are either already being used by
WIND and IMR in their current analytics workflows, or could possibly be considered for
usage in the ASAP use cases, namely Web Analytics and Telecommunication Analytics, as
described in deliverables D8.2 and D9.2 respectively.

2.1 Compute Models and Engines

What all distributed execution engines have in common is the ability to manipulate data
loaded from and stored to a distributed file system. In particular, many of the popular
systems use the Hadoop File System [44] as their basis (see Section 2.1.1). The basic
assumption behind all these engines is that both storage and computation are delegated
to a large number of clustered nodes in a manner that ensures progress and fault
tolerance. Data is usually read from or written to the distributed file system but the
memory of the nodes in the cluster or local storage can be used for storing intermediate
results during the course of the computation. To this end, the most prevalent
programming models are Map-Reduce and Bulk Synchronous Parallel model.

Map-Reduce [34] is a programming model for processing and generating large data sets
on a cluster. It uses a specific parallel and distributed algorithmic paradigm based on
those two functions. It was originally developed by Google for the purpose of efficiently
indexing the Web graph and computing PageRank. It is loosely based on the on the map
and reduce functions used in functional programming but applies that paradigm to
distributed computation. The user describes the computation as a series of Map and
Reduce operations over key-value data. The map function generates intermediate key-
value results that the reduce function merges based on the intermediate key into the
output of the operation. The framework manages the parallelization and distribution of
the execution, the data transfers and communications in a fault tolerant manner.

The M-R model has been proved largely successful for big data manipulations and has a
number of implementations. The prevalent implementation of Map-Reduce is the one
used in the Hadoop Framework.

The Bulk Synchronous Parallel (BSP) model [100] was originally conceived as a
bridge model between programming and hardware models for parallel computation,
sitting between software and hardware. The Model actors were defined as follows:

1. A number of components, each performing processing and/or memory functions; (i.e.
processors)

2. A router that delivers messages point to point between pairs of components; (i.e.
network)

D 3.1 – Compute and Data Engine Modeling 12 / 54

3. Facilities for synchronizing all, or a subset of, the components at regular intervals of L
time units where L is the periodicity parameter. (i.e. barrier)

The distributed computation in BSB is a sequence of supersteps. In each one of those
supersteps the processors are allocated with tasks consisting of a mix of:

a) local computations

b) message transmissions (to other processors)

c) message arrivals (from others)

After L expires a global check is performed, in order to determine whether the all
processors have completed the superstep. If that is so the machine will proceed to the
next superstep.

While BSP was proposed as a model for parallel processing, it is a good fit for distributed
systems too. As such it was recently adopted by Google in the design of Pregel [67] . Its
main advantage over the Map-Reduce model is that BSP is superior in handling graph-
based and iterative computations which are common in ML algorithms.

The following subsections present the most popular implementations of the
aforementioned models. Table 1 summarizes the main characteristics of the reviewed
compute engines.

2.1.1 Hadoop Framework

Apache Hadoop is, mainly, a Map-Reduce based framework for big data manipulation. It
comprises of a collection of open-source tools written in Java. Hadoop consists of 4 base
modules and an ecosystem of tools built on top of those. The basic modules of Hadoop
are:

 Hadoop File System [44] : a distributed, user-space file system written in Java.

 Hadoop YARN [43] Resource Manager: YARN (Yet Another Resource
Negotiator) is a cluster manager technology that tries to allow for multiple
heterogeneous data processing engines to handle data and resources in a single
platform. It provides consistency, security and data governance tools for the
applications and libraries running on the Hadoop framework.

 MapReduce: A Map-Reduce execution engine, based on YARN. Most of the tools of
the Hadoop ecosystem are built on top of MapReduce and either try to simplify it
or extend its basic functionality.

Apart from these core modules most users use a number of open source tools by the
Apache Project that use that basic framework. These include but are not limited to: Pig,
Hive, HBase, Mahout and Spark.

2.1.2 Spark

Hadoop MapReduce is the de facto standard when it comes to big data analysis.
However, two of its main design attributes make it unfit for interactive processing of

D 3.1 – Compute and Data Engine Modeling 13 / 54

simple queries. The first one has to do with the fact that the user has to implement the
queries in low level Java following the rather restrictive map-combine-reduce paradigm.
And while this can be worked around with libraries such as Hive, which offer an
abstraction for M/R, one cannot change the fact that MapReduce was designed for batch
processing. This means that its main focus is processing datasets of unstructured data
that are much larger than the main memory of the cluster. Because of that, MapReduce
uses the disk-based file system to store intermediate results and is thus bound to the
slower performance characteristics of secondary storage. It follows that interactive
queries are not a good fit for it. Another example of analysis that is not a fast to
implement in MapReduce is iterative processing. Many machine learning and graph -
based algorithms fall in that category. Since data needs to touch disk twice, after each
map and reduce phase, running many iterations of a function over the data means
incurring the cost of as many disk spills.

However, none of those limitations is theoretically bound to datasets that can fit in the
RAM available to the cluster. This is the motivation behind the development of Spark
[21] . Spark is a much better fit for Hadoop for in-memory datasets. In those kinds of
processing it offers execution times that are orders of magnitude faster [39] [88] It also
natively supports streaming data and SQL analysis. It is worth mentioning that Spark is
available alongside MapReduce in most commercial Hadoop distributions. Spark is most
commonly run over Hadoop but can also run standalone or, over Mesos. Data can be
read from HDFS, the local file system, HBase, Cassandra and S3. The user can implement
the data processing in Scala, Java, Python or SQL. It is also possible to issue interactive
queries via the Scala or Python shells using a library of readily available operators.
Despite being relatively new, a large number of inter operable data analytics libraries
are built on top Spark and it increasingly preferred for big-data Machine Learning
implementations (See Chapter. 2.3.2)

2.1.3 Stratosphere/Flink

Stratosphere [24] was originally a research project with the ambitious goal of
developing the next-generation Big Data Analytics Platform and addressing the
shortcomings of Map-Reduce implementations. Since then it became an Apache
"incubator" Project called Flink [9] As a concept, Flink is similar to Spark in the sense
that it is optimized for in-memory scalable data analytics and can provide realtime
results as well as true streaming operation. Flink provides APIs in Scala and Java with
Python and SQL counterparts under development. It also supports operations specific to
Graph Processing with Spargel [92] API, implementing the BSP programming model.
Flink takes a more declarative approach to describing operations and aims to optimize
the query execution in a manner similar to traditional DBMSs. It thus supports join
algorithms that are automatically optimized as well as delta iterations processing. Flink
also aims to allow the definition, optimization and execution of DAGs of operators.

2.1.4 HAMA

Apache Hama [12] (short for "Hadoop Matrix") is a pure BSP processing engine
following a design principle similar to Google Pregel [67] . It is thus most effective with
streaming data processing and graph, network and matrix algorithms requiring iterative

D 3.1 – Compute and Data Engine Modeling 14 / 54

computations. For such computations, HAMA promises a drastically improved
performance compared to Hadoop and Mahout [76] .

2.1.5 Stream and Realtime Data Processing

Stream processing frameworks serve the goal of handling data that arrive in real time as
a stream of events. Common examples of such processing are aggregations, continuous
queries, and pattern detection. This type of processing is relatively new and has been
made a necessity by the APIs of Twitter and Facebook as well as large sensor networks
which can provide a high Velocity (2.2) stream of events. There are a number of
dedicated systems as well a number of Distributed Stream processing libraries that are
built on top of existing computational engines like Hadoop and Spark.

2.1.5.1 Apache Samza

Apache Samza [104] is a distributed Stream processing framework built on top of
Apache Hadoop YARN and Apache Kafka [103]. Samza (as well as Kafka) is developed
primarily by LinkedIn in order to provide elastic and fault-tolerant processing of its
realtime feeds.

2.1.5.2 Apache Spark Streaming:

Spark's Streaming [77] is a library lets you use the same Spark code for batch processing
and stream data. It uses the same Java and Scala API as batch jobs, provides fault
tolerance and is tightly integrated with the rest of the Spark libraries.

2.1.5.3 Druid

Originally developed by Metamarket but later open-sourced, Druid [105] is also aimed at
the storage and processing of realtime data. It assumes an append-only input and can
provide efficient, lock-free, low latency ingestion and processing. It uses bitmap indexes
for ad-hoc multi-dimensional filtering. Data can be kept in-memory or on disk in a
column-oriented storage approach.

Runtime Engines
Type of

Processing
Good for Popularity

Potential use
in ASAP

Hadoop
Batch

Disk based

Batch
processing of
large datasets

Facebook, Yahoo!,
Amazon, Google, HP,

eBay, etc.

Web,

Telecom

Spark
Batch,

In-Memory

Iterative jobs
(ML, graph

processing),

Interactive
analytics

Yahoo!, Intel,

Many startups

Web,

Telecom

D 3.1 – Compute and Data Engine Modeling 15 / 54

Stratosphere/Flink
Graph,

BSP model

Graph, iterative
and streaming

analytics
Still in Research

Web,

Telecom

Hama BSP model
Iterative

computations
(graph, ML)

Korean telecom,

some universities...

Web,

Telecom

Samza/Spark
Streaming/ Druid

Streaming

Interactive
processing of
append-only

streams

LinkedIn,
Metamarket, Netflix,

Yahoo!
Telecom

Table 1 Summary of runtime characteristics and potential use in ASAP

2.2 DataStores

The basic layer of every data analytics system is the data storage system. Conventionally
any organization would use a centralized Relational OLTP and OLAP system to store
structured data on a local filesystem.

With the rise of “big data” the storage needs web-scale datasets became beyond the
scope of any centralized system. The challenges of handling data grew in at least 3
aspects [65] :

 Volume: The sheer size of the datasets in the cloud era makes it impossible to
store and process effectively in centralized systems

 Variety: Social applications, SaaS offerings and sensor data, logs are one of the
few things that cannot fit in the relational model.

 Velocity: The rate at which data is produced is an ever-growing challenge.

Gradually, the need for a distributed file system became prevalent and the requirement
for ACID assurances was relaxed in order to adapt to the new demands.
A new range of distributed database systems was developed that abandoned full SQL
support and compromised hard consistency goals for the sake of scalability to a large
number of machines, high availability and partition tolerance. The most commonly used
systems in this category are open-source.
We can roughly classify most of the available systems under the following categories
(and combinations thereof).

Distributed File Systems: Such block storage systems are usually ran on user-level and
sacrifice POSIX compatibility in favor of the ability to provide high combined
throughput, fault tolerance and ability to store large files despite residing on commodity
hardware.

Relational Databases: Traditional DBMSs are still widely used and have evolved to
support a shared-nothing infrastructure and provide replication, sharding and
scalability while still providing ACID compliance and support for SQL.

NoSQL Databases: Such distributed systems usually utilize a different data model than
that used in Relational Databases, do not fully support the full SQL standards and

D 3.1 – Compute and Data Engine Modeling 16 / 54

operations and provide eventual consistency [101] . This category covers a large range
of storage system models like: key-value, document, key-map, graph, column, time-
series.

Proprietary Parallel Databases: Following the progress of CPU and network
architectures, many proprietary DBMS vendors chose to try and offer scalability for their
products by parallelizing their storage and execution to clustered resources. Parallel
DBMS's offer improved processing and I/O performance by using multiple CPUs and
disks.

Column-Oriented databases: These types of systems forgo the common row-based
storage for the stored data in favor of columnar storage. While this approach is not new,
it was reintroduced recently with C-Store [95] (which later took shape as a product in
the form of Vertica DBMS – see 0). Storing data in columns can be significantly faster in
scenarios where aggregation operations and range queries are dominant. Another
important value of column stores is that, due to its nature, it can allow a significant
decrease in stored data when compression is used in the storage layer. As a result,
column stores are a good fit for data warehousing and log storage/processing. A
prominent example of columnar storage is MonetDB [69] . A column-based approach is
also used in new NoSQL systems like Dremel [68] and its open-source clone, Apache
Drill [8] , as well as Impala [59] . In those systems it was argued [109] to provide a
significant increase in performance and decrease query latency.

The following subsections review the most prevalent data stores chosen from the
aforementioned categories. Table 2 summarizes their characteristics and their possible
use within ASAP.

2.2.1 HDFS

HDFS (short for "the HaDoop File System") is an open-source distributed file system
developed as the basic layer of the Hadoop Framework. It is developed in Java, runs in
userspace and shares some design principles with GFS [38] .

The basic assumptions it is based on are the use of commodity hardware, scalability to a
high number of nodes (each offering local computation and storage), redundancy for
fault tolerance and the use of files that are typically large (GBs to TBs), immutable and
sequentially read and written. HDFS is a part of the "core" Hadoop framework and is
used by nearly all Apache projects (HBase, Hive, Mahout, Pig, Spark, Tez, ZooKeeper).

Data in HDFS can be accessed from the native Java API or via any other language using
the Thrift Protocol [22] . Clients for HDFS exist in C++, Perl, Python, Ruby, Erlang,
Haskell, C# and PHP. There is also a command line interface and it can be browsed
through the HDFS-UI web app over HTTP.

2.2.2 Cassandra

Apache Cassandra [7] is an Open-Source distributed NoSQL database written in Java that
was originally built by Facebook by using Google’s BigTable [27] data model and
Amazon’s Dynamo [35] architecture. Its purpose is handling large amounts of structured
data spread out across a high number of commodity servers with no single point of

D 3.1 – Compute and Data Engine Modeling 17 / 54

failure. It is possible for a single cluster to spawn multiple data-centers across
geographic areas while offering high performance and availability as well as failure
resilience.

Cassandra uses its own query language, CQL [30] , which is very similar to SQL but
offers a subset of its functionalities. Moreover Cassandra is not ACID compliant but does
support durable transactions and a tunable level of consistency. There is an API
available through Thrift [22] and a native one in JAVA.

Its main advantages are excellent scalability to hundreds of cluster nodes, high write
throughput and read efficiency.

Cassandra is the industry leader of NoSQL Databases and is used by large organizations
such as Adobe, Comcast, eBay, Rackspace, Netflix, Twitter, and Cisco.

2.2.3 Hbase

Apache HBase is another non-relational distributed database developed in Java, which
follows BigTable's design [27] . HBase is a member of the Hadoop ecosystem and thus
uses HDFS for storage in the same way BigTable uses GFS. HBase harvests the fault
tolerance characteristics of HDFS.

The best use case for HBase is storing sparse Data in large quantities with versioning.
HBase offers high availability and random, real-time access over very large (e.g. web
graph) tables. One of the main advantages of HBase is its tight integration with Hadoop
MapReduce and another one is its near-lineal scalability to a large number of nodes.
HBase uses its own query language that is not as rich as SQL or CQL and there are Thrift,
REST and native java APIs availalbe.

HBase has a wide industry adoption and is the second used NoSQL database. Companies
that are using it include Adobe, Facebook, Twitter, and Yahoo!.

2.2.4 ElasticSearch

ElasticSearch [52] is a standalone, open-source search server written in Java. Its core
free-text search functionality is provided by Lucene [49] , but Elastic search wraps this
functionality in a simpler, API and provides sharding, clustering and replication of the
Lucene indices. ES promises real-time text queries and analytics, multi-tenancy, and high
availability. The client API is REST-ful with a JSON format but there are also clients for
Perl, PHP, Python and Ruby while there is also compatibility with Hadoop. ElasticSearch
is a part of ElasticSearch ELK Stack [51] for creating a search server. ELK also includes
tools for encryption, managing time-based data, visualization of the results and
monitoring of the cluster.

2.2.5 MySQL

MySQL [71] , the most popular server-side relational DBMS, is developed in C and is
open source. MySQL provides extensive SQL support, ACID compliance, and
transactions. With MySQL Cluster [54] , it also offers the ability for automatic sharding
and distributed operation with no single point of failure and good scalability

D 3.1 – Compute and Data Engine Modeling 18 / 54

characteristics. Support is extensive with APIs available in virtually any programming
language.

2.2.6 PostgreSQL

PosgreSQL [77] is an open source object-relational DBMS developed in C. It provides
near full support for SQL, durable transaction and is ACID compliant. PostgreSQL has the
ability of failure resilience through master-slave replication and can also serve reads
from slaves. There are APIs available in C, C++, Java, Python, Perl, Tcl and ECPG.
PostgreSQL has a strong market share as far as databases are concerned and is often
preferred over MySQL due to some of the more advanced features it offers. MonetDB

2.2.7 MonetDB

MonetDB [69] is a column-oriented DBMS. It was created during the late 90's as a part
of a research project and introduced many novel optimizations (e.g. for CPU caches). Its
current, open-source form was introduced with version 4 in 2004. MonetDB provides
extensive SQL support and has a JDBC client for Java, as well as clients for PHP, Python,
Perl, Ruby and R. MonetDB does not have a significant commercial user base but is used
in a number of academic projects.

2.2.8 Proprietary analytics PDMS

Vertica (HP): An implementation based on a grid-based, column-oriented storage
approach was Vertica's database which is now a part of the HP Vertica “Dragline” [57]
platform. This vertical DBMS approach, was spawned from the C-Store [95] research
system, is mostly used for data warehousing and runs on grids of Linux commodity
servers. It is also available as a hosted DBMS provisioned by and running on the Amazon
Elastic Compute Cloud. It also integrates with Hadoop. Apart from Vertica’s analytics
database, HP's platform includes Autonomy’s unstructured data analytics engine, IDOL
10.5 [48] . The platform combines structured and unstructured data into a unified
workflow.

Greenplum: Pivotal Greenplum Database is another shared-nothing, MPP
implementation of an OLAP system that is a part of Pivotal's cloud services portfolio
with a focus on business intelligence and analytical processing. It adopts a hybrid
row/column approach and promises lineal parallelization and also offers native Map -
Reduce in its parallel engine, support for HDFS as well as support for PL/Java, optimized
C, and Java functions.

Data Store
Type of

Data
Good for Popularity

Potential
use in
ASAP

HDFS DFS
sequential reads and
writes of large files
in a batch manner

universal
Web,

Telecom

D 3.1 – Compute and Data Engine Modeling 19 / 54

HBase

NoSQL,
column-
family

oriented

Write throughput

Strong consistency

Facebook,

Adobe, Yahoo!, HP,
etc.

Web,

Telecom

Cassandra

NoSQL,
column-
family

oriented

Write throughput,
multi-datacenter

configuration, error
resilience

Facebook, Yahoo!,
Adobe, AoL, BestBuy,
,Ebay, FedEx, GitHub

+many more

Web,

Telecom

ElasticSearch
Indexed

data

Search engine
capabilities

(secondary indices)

Wikimedia, Mozilla,
Foursquare, etc.

Web

MySQL RDMS
Centralized database

storage with
transactions

Industry leader for
relational storage

Telecom

PostgreSQL ORDMS
Replicated database

storage with
transactions

Skype, IMDB, LAMP,
Apple, SourceForce

Telecom

MonetDB RDBS

Append-only
workload,

aggregation
operations

Research Telecom

Vertica/Greenplum P-RDMS
Interactive SQL
queries, OLAP

commercial Web

Table 2 Summary of data store characteristics and potential use in ASAP

2.3 Libraries and Big Data operations

In the last decade, with the rise of Cloud Computing and social networking, managing
large, web-scales datasets became ever more important for creating novel products and
applications. Big data analysis does not provide an excellent basis for commercial
products, but is also crucial for developing business intelligence. With the prevalence of
the Hadoop ecosystem a number of software solutions have emerged for covering that
need. Broadly speaking we could split the various solutions in two groups. On the one
hand there are the SQL-like query processing tools and on the other hand the Machine
Learning libraries. A summary of the various tools can be found in Table 3 Summary of
machine learning and query processing libraries and applications

2.3.1 Query processing

There has been a lot of industry and research effort dedicated on executing SQL or
similar queries over Big-Data Analytics engines. Pig, Hive, Sawzall, Jaql and Tenzing fall
in the category of offering SQL processing on top of Hadoop. Those systems impleme nt

D 3.1 – Compute and Data Engine Modeling 20 / 54

SQL or SQL-like functionalities over the Map-Reduce model and are widely used by large
enterprises in the industry. Spark SQL is a similar effort for Spark. These Query
processing systems serve the purpose of allowing a user to express queries in a language
that resembles SQL which is the most prevalent query language in the industry.

2.3.1.1 Hive

Hive [14] is a framework allowing the execution SQL-like queries on data stored in
HDFS. It is is an interface layer for Hadoop converting the user-provided query in
"HiveQL" language into Map-Reduce jobs. Hive is often used as a user-friendly tool for
data warehousing applications. Hive also uses a centrally located repository for storing
metadata which is called "metastore". Hive was originally developed by Facebook but is
now an Apache open-source project widely used in the industry from companies like
Netflix.

2.3.1.2 Pig

Pig is system similar to Hive in the sense that it is an interface layer between a high level
query language and Hadoop M-R jobs. The language used by Pig is called "Pig Latin" and
is extendable by User Defined Functions which can be written in Java, Python,
JavaScript, Ruby or Groovy. In contrast with Hive, Pig allows for more data
transformations and provides more control over the executed workflow. It is not
uncommon for Pig and Hive to be used alongside despite the fact that their functionality
is largely similar. Pig was originally developed by Yahoo! but is now an Apache open-
source project. It is also widely used in the industry.

2.3.1.3 SparkSQL [93]

Spark SQL was developed as a unified query language for the Spark framework. It
incorporates ETL (Extract-Transform-and-Load), SQL-like and Hive relational queries
and Map-Reduce jobs in a single language. It also allows native Scala queries as well as
access to externally stored data from existing RDDs [81] , Parquet [18] and JSON files.
Spark has integrated APIs in Python, Scala and Java. It is also tightly integrated with Hive
since it reuses the Hive frontend and metastore, providing full compatibility with
existing Hive data, queries, and User Defined Functions.

2.3.2 Machine Learning

As the Hadoop ecosystem grows more mature, it is increasingly used for advanced
analytics. In particular, a good fit for its capabilities seems to be running Machine
Learning operations on large text datasets. There exists ample research on this field and
various projects have evolved to open-source implementation that are widely used.
While Mahout, running on top of MapReduce is the most prominent one with an
extensive set of available operations, MLlib over the faster Spark framework quickly
catches up and seems likely to replace it. Newer tools, based on the BSP paradigm, also
show a lot of promise for managing graph data.

D 3.1 – Compute and Data Engine Modeling 21 / 54

2.3.2.1 Mahout

Apache Mahout [16] is an open source machine learning library, written in Java and
built on top of Hadoop MapReduce. It offers distributed implementations for co mmon
algorithms, primarily for clustering, classification and batch based collaborative
filtering. Mahout can be run in a single node but all the operations will follow the Map-
Reduce paradigm. Mahout is in active development but is already established in the
Hadoop ecosystem.

2.3.2.2 MLlib

MLlib [20] is library for Spark that offers implementations for common ML algorithms,
tests and data generators. The available algorithms fall in the categories of binary
classification, regression, clustering and collaborative filtering. Similarly to
Mahout/MapReduce, MLlib uses the underlying engine of Spark just extending its
available operators. MLlib is tightly integrated with Spark and is in active development.
Like Spark itself MLlib is gaining traction over Mahout and MapReduce since it can
provide more interactive operations.

2.3.2.3 GraphX

Spark's GraphX [10] is a distributed analytics system for graph data. Following a similar
motivation as Pregel [67] , GraphX expresses graph computations in the Spark
framework. Its goal is to “unify data-parallel and graph-parallel analytics”. As most
implementations for Spark, GraphX focuses on in-memory computations and is efficient
for iterative computations. The GraphX library implementation is a topic of active
research [104] .

2.3.2.4 WEKA

The Waikato Environment for Knowledge Analysis is an open source suite of ML
algorithms implemented in Java [103] . WEKA can be used standalone or as API in Java
code. It has a very extended collection of tools for arithmetic and text processing.
Namely, it offers algorithms in the areas of pre-processing, classification, regression,
clustering, association rules, and visualization. WEKA is the default tool used by both
academia and industry for centralized ML processing.

2.3.2.5 OpenNLP

Apache OpenNLP [17] is a toolkit for natural text ML processing. It features
implementations for tokenization, sentence segmentation, part-of-speech tagging,
named entity extraction, chunking, parsing, and co-reference resolution. It is often used
as a building block for larger and more complex NLP projects

D 3.1 – Compute and Data Engine Modeling 22 / 54

Runtime
libraries

Type of
Processing

Good for Popularity
Potential use in

ASAP

MLlib distributed
Machine Learning
library over Spark

Companies
that use
Spark

Web,

Telecom

Mahout distributed
Machine Learning lib
over Hadoop/Spark

AOL,
Foursquare,

LinkedIn

Web,

Telecom

WEKA centralized
Machine Learning

software written in
Java

Very popular
Web,

Telecom

Hive distributed

Query processing and
data warehousing on

top of Hadoop
Mapreduce

Netflix
Web,

Telecom

Spark SQL distributed SQL over Spark
Companies

that use
Spark

Web,

Telecom

Pig distributed
Query processing over

Hadoop MapReduce

Twitter,
LinkedIn,

AOL

Web,

Telecom

Table 3 Summary of machine learning and query processing libraries and applications

2.4 Workflow Management platforms

The field of optimizing the execution of workflows over multiple execution engines is a
relatively new field of research. There has already been a promising work in the form of
HFMS but most available tools for workflow management are focused on a small set of
scientific tasks executed locally.

HFMS [89] builds on top of previous work on multi-engine execution optimization [90]
. On those platforms optimization occurs on two levels. Namely for single engine and
multi-engine execution. The actual engines used are the Hadoop MapReduce distributed
execution engine and a centralized PostgreSQL database. We believe that ASAP will
leverage knowledge from those approaches and generalize it in a more all-around
framework for multi-engine workflow optimization.

Pegasus [50] is a workflow management System that allows users to easily express
multi-step computational tasks. The workflow it accepts as input is in the form of a DAG,
where the tasks are represented as nodes and task dependencies as edges. This DAG is
expressed in an XML file. Pegasus offers APIs for Java, Python and Perl, offers support
for MySQL, PostgreSQL, Oracle and Microsoft databases and can run on Amazon EC2
infrastructure.

D 3.1 – Compute and Data Engine Modeling 23 / 54

Taverna [56] is another management system for scientific workflows. It can that help
user specify the group of tasks that constitute a scientific pipeline and orchestrate their
execution by using several underlying tools. However Taverna's compatibility is limited
to database available via JDBC [53] , some proprietary tools and R programming
language operations and does not support any distributed execution engines.

D 3.1 – Compute and Data Engine Modeling 24 / 54

3 The IReS Architecture

IReS focuses on highly efficient and user-customizable execution of analytics tasks (or
workflows). This is made possible through the transparent modeling, monitoring and
scheduling that involves different execution engines and storage technologies. Our
system is able to execute all types of analytics workflows by adaptively choosing to
execute each sub-part of the workflow to a (possibly different) deployed engine. The
IReS platform assigns sub-tasks to the most advantageous technology(-ies) available and
ensures resource and dataflow scheduling in order to enhance performance: If a single
engine is used, enhancement will be achieved through optimized resource allocation and
elasticity modeling (e.g., execute on more VMs, or on smaller cluster with larger main
memory, etc.); if multiple ones are required, enhancements will relate both to single -
engine optimization and to workflow management that decides what is the best
execution workflow and data-flow (e.g., execute sub-task 1 first, intermediate results
should be stored on a NoSQL engine and then sub tasks 2 and 3 run in parallel, that write
the final results to HDFS files).

Figure 1 Architecture of the IReS platform

The central notion behind the IReS platform is to create detailed models of the costs and
performance characteristics of various analytics operations over multiple execution

D 3.1 – Compute and Data Engine Modeling 25 / 54

engines. These models will then be used to intelligently match the user optimization
policy with the available execution engines.

The architecture of the IReS platform is depicted in Figure 1. IReS comprises of three
layers, the interface, the optimizer and the executor layer. In the following we
describe in more detail the role, functionality and internals of these layers and the most
important modules of the platform.

3.1 The Interface Layer

The interface layer is the upper layer of the IReS platform, responsible for
communicating with the workflow description language (defined in WP5) and the
application UI in order to receive the input that is necessary for its operations. It
comprises of the job parsing module, which extracts execution artifacts such as
operators, data, their dependencies and accompanying metadata from the user-defined
wokflow. Moreover, it validates the user-defined policy. All this information must be
robustly identified, structured in a dependency graph and stored. The job parsing
module is more thoroughly described in the following.

3.1.1 Job parsing module

This module takes as input the user-defined workflow, formulated in a dependency
graph format and expressed in the workflow description language designed and
implemented in T5.1. This language, which allows for various levels of abstraction, is
described in detail in D5.1. Moreover, the module takes as input the user optimization
parameters, which could translate to performance, cost, availability, etc. All this
information is gathered and concisely described using a metadata framework that will
facilitate the process of identifying the optimal workflow execution plan.

The main challenge of defining such a workflow description metadata framework is the
fact that it requires to be abstract at the user level. The user should be able to describe
the data and operators that compound her workflow in a way as abstract as she desires.
The IReS planner and workflow scheduler need to remove that abstraction, find all the
alternative ways of materializing the workflow and select the most beneficial, according
to the user-defined policy.

Our proposed metadata framework describes data and operators. Data and operators
can be either abstract or materialized. Abstract are the operators and datasets that are
described partially or at a high level by the user when composing her workflow whereas
materialized are the actual operator implementations and existing datasets, either
provided by the user or residing in a repository.

Both data and operators need to be accompanied by a set of metadata, i.e., properties
that describe them and can be used to match

(a) abstract operators to materialized ones and
(b) data to operators.

Such properties include input data types and parameters of operators, location of data
objects or operator invocation scripts, data schemata, implementation details, engines

D 3.1 – Compute and Data Engine Modeling 26 / 54

etc. The metadata defined for each object have a generic tree format (JSON). To avoid
restricting the user and allow for extensibility, the first levels of the metadata tree are
predefined but users can add their ad-hoc subtrees to define their custom data or
operators. Moreover, some fields (mostly the ones related to the operator and data
requirements, located under the constraints field) are compulsory while the rest (i.e.,
known cost models, statistics etc.) are optional. Materialized data and operators need to
have all their compulsory fields filled in with information. Abstract data and operators
do not adhere to this rule. Apart from having empty fields, they can also support regular
expressions (e.g., the * symbol under a field means that the abstract object matches
materialized ones with any value of that field).

Figure 2 Workflow example: Simple join operation between two datasets

To describe the proposed language we will use the following example: The user has 2
materialized datasets, one stored in HBase (D1) and one stored in MySQL (D2) and
wants to perform a join operation on them. Figure 2 depicts the abstract workflow given
by the user. Circles represent data objects while rectangles represent operators. Shaded
shapes designate materialized objects.

The metadata descriptions of D1 (designated as hbase_dataset) and D2 (sql_dataset) are
depicted in Figure 3 and Figure 4 respectively. Since the datasets are materialized, all
compulsory fields are populated. These fields include information about the data itself,
such as the attributes of the dataset and their types, as well as engine specific information
(which attribute is the HBase key, where is the dataset located, etc.). Under the optional
optimization field, we place additional information that assists in the optimization of the
workflow, in our case the dataset size and the number of records (unique_keys).

Figure 3 Metadata description of dataset D1

D 3.1 – Compute and Data Engine Modeling 27 / 54

Figure 4 Metadata description of dataset D2

Let us consider the join operator on a single attribute of the above example. In its
abstract form, the joinOp operator (see Figure 5) needs only define the minimum
compulsory fields under the constraints key, namely the two input parameters, the
condition under which they are joined, an output parameter and the description of the
operation to performed.

Figure 5 Metadata description of the abstract join operator

Each of the input parameters and the output are abstract data_info objects with two
attributes: "attr1" represents the field of the join predicate while "attr2" represents the
second available field in each data_info object. The op_specification field of this operator
specifies its operation, a single join algorithm, and defines the join condition (in this case
an inner join).

In short, the abstract join operator defines a format that any join operator implementing
the specific functionality needs to follow.

The materialized operators include, on top of that, all information required in order to
perform the operation on an execution engine. In join_1 (see Figure 6), the operator
executes the join over Hadoop; it thus includes Hadoop-specific information about the
input, output and the engine. The inputs and output in this case have specific attribute
types and an engine specification (under engine) containing the location of the data and
information about their structure. The operator itself also has an engine specification
(engine_specification) indicating its execution location. The example in Figure 7

D 3.1 – Compute and Data Engine Modeling 28 / 54

describes join_2, which joins an HBase and a relational table and outputs the result to
HDFS. It runs as a local java process.

Figure 6 Metadata descriptions of the first materialized join operator

Figure 7 Metadata descriptions of the second materialized join operator

To discover the actual implementations that comply with the description of an abstract
operator provided by the user, we employ a tree matching algorithm to make sure that
all metadata constraints are met, i.e., compulsory fields are consistent. This is performed
by the decision making module, described subsequently (Section 3.2.3). In our example,
both join_1 and join_2 match join and are thus considered when constructing the
optimized execution plan.

D 3.1 – Compute and Data Engine Modeling 29 / 54

Apart from the compulsory fields, which are necessary for the matching of abstract to
materialized operators, the metadata descriptions of the materialized joins both contain
the optional optimization field, which holds additional information that assists in the
optimization of the workflow. In the case of join_1, a cost function is provided by the
developer of the operator while for join_2 the platform is instructed to create one by
profiling over specific metrics (execution time and required ram).

3.2 The Optimizer Layer

The optimizer layer is the layer that performs all the necessary actions to optimize the
execution of an analytics workflow with respect to the policy provided by the user. The
core component of the optimizer is the decision making module, which determines in
real-time the optimal execution plan. This entails deciding where each subtask is to be
run, under what amount of resources provisioned, the plan for moving data to/from
their current locations and between runtimes if more than one is chosen and defining
the output destinations. Such a decision must rely on the characteristics of the analytics
task in hand and the models of all possible engines. These models are produced b y the
modeling module and stored in the model database. The initial model of an engine
results from profiling and benchmarking operations over them in an offline manner,
through the profiling module. This module directly interacts with the pool of physical
resources and the monitoring layer in-between. While the workflow is being executed,
the initial models are refined in an online manner by the model refinement module, using
monitoring information of the actual run. Such monitoring information is kept in the
IReS DB and is utilized by the decision making module as well, to enable real-time,
dynamic adjustments of the execution plan based on current knowledge.

In the following, each module is described in greater detail.

3.2.1 Modeling Module

This module is responsible for constructing models on a per operator-engine
combination basis. The relevant literature review [83] [23] [109] has revealed that
models already exist for a very limited number of operators and engines and some of
them entail knowledge of the code to be executed. Contrarily, we treat materialized
operators as "black boxes", assuming no prior knowledge of their internals, and model
them using profiling in an offline mode, as well as machine learning over actual runs.
The detailed modeling methodology used in ASAP is thoroughly described in Section 4.

3.2.2 Profiling Module

The profiling module functions in an operator-agnostic way, having no prior knowledge
other than the profiler input parameters. These parameters fall into three categories:

 Data specific parameters: These parameters describe the data to be used for the
operator profiling, e.g., the type of data and its size.

 Operator specific parameters: These parameters relate to the algorithm of the
operator, e.g., the number of output clusters in k-means.

 Resource specific parameters: These parameters define the resources to be
tweaked during profiling, e.g., \#VMs, storage size, main memory, etc.

D 3.1 – Compute and Data Engine Modeling 30 / 54

The output of each run is the profiled operator's performance (e.g., completion time)
with each combination of the input parameter values for specific user -defined
optimization metrics, such as cost in $ or I/O, latency, throughput, etc. Both the input
parameters as well as the output metrics are given by the user/developer.

The aim of the profiling module is to create a surrogate estimation model [105] ,
including neural networks, SVM, interpolation and curve fitting techniques, for each
operator running over a specific engine. To that end, we need to sample the operator
function by running automated experiments for various values of each of the input
parameters and measure the outputs. To create the most accurate surrogate within a
budget of experiments, adaptive sampling techniques are adopted to select the
combinations of values to be used as input of each run. The detailed profiling
methodology is presented in the following section (Section 4).

3.2.3 Decision Making Module

This module is charged with the intelligent exploration of all the available execution
plans and the discovery of the optimal execution plan according to the user defined
optimization objectives. Initially, it transforms the abstract workflow representatio n
into a materialized workflow graph that contains all the alternative paths of
materialized operators that match the abstract workflow. To do so, for each abstract
operator it searches the library of available materialized operators to find all matches.
Our decision module uses an efficient tree matching algorithm to avoid unnecessary
comparisons and follow the hierarchical structure of the tree-based metadata
constrains, as described in Section 3.1.1. When all operator matches are discovered, the
decision making module consults the input and output specifications of the materialized
operators and adds the required move/transform operators. Those operators are
needed in order to connect operators of different engines and input/output
configurations and generate the final materialized workflow graph.

Figure 8 depicts the complete of all alternative execution plans for the simple join
example of Figure 2 in section 3.1.1. To be able to match the join_1 operator, which joins
two datasets over Hadoop and thus requires both its inputs in HBase, with the dataset
D2 that resides in MySQL, a move operator must be added (depicted in dash line). As its
metadata description in Figure 9 reveals, the move operator moves a dataset from
MySQL to HBase. This operator is placed between D2 and join_1 to produce a data set
(D'2) that complies with the input constraints of join_1.

Figure 8 Complete graph of execution plans

D 3.1 – Compute and Data Engine Modeling 31 / 54

Figure 9 Metadata description of operator move

To find the optimal execution plan, our decision module uses a dynamic programming
planner that explores the materialized workflow graph in order to find the plan that best
matches the user optimization policy. To estimate operator performance metrics, our
planner consults the Model DB that holds surrogate estimator models for each one of the
materialized operators. In our current implementation, our planner can be configured to
optimize one metric or a function of multiple performance metrics that the user is
interested in. We are currently investigating methods for optimizing multiple
dimensions of performance metrics, like finding Pareto frontier execution plans.

For our running example, let's assume a user optimization policy which includes
minimizing execution time while guaranteeing fault tolerance. The performance and
fault tolerance estimation that derives from the IReS surrogate models designate the
execution plan that better fits these criteria, marked in green in Figure 10.

Figure 10 The selected execution plan

D 3.1 – Compute and Data Engine Modeling 32 / 54

In the course of the workflow execution, the real-time monitoring information is fed
back to the decision making module in order to take into account current running
conditions and adapt accordingly. Moreover, our planner considers more than a single
final plan to ensure that alternatives will exist in case of failures or other unpredictable
circumstances without having to run the whole decision making process from scratch.
These alternatives include the top-k (instead of the best) plans according to the user's
optimization preferences or a sample of the multi-dimensional space covering different
environments.

3.2.4 Model Refinement Module

Compute and data engine models are initially created during the offline modeling
process, as described in section 3.2.1. These models are refined during the online
modeling process, that is, during the actual runs of a workflow.

3.3 The Executor Layer

The executor layer is the layer that enforces the optimal plan over the physical
infrastructure. It includes methods and tools that translate high level "start runtime with
using x resources", "move data from site Y to Z" type of commands to a workflow of
primitives as understood by the specific runtimes and storage engines. Moreover, it is
responsible for ensuring fault tolerance and robustness through real-time monitoring.
It's core module is the enforcer module, described in the next section.

3.3.1 Enforcer Module

The enforcer module undertakes the execution of the ensuing plan. First, the enforcer
needs to validate the plan by checking the availability of resources and data, the load of
the engines etc. After ensuring that everything is correct, it enforces the plan actions by
translating the plan steps to standard, low-level API calls. Such actions might entail code
and/or data shipment if necessary. In case of on-the-fly faults and failures an alternative
plan will substitute the current.

3.4 Workflows

In this section, we present the functionality of our IReS platform by describing the major
workflows involved.

3.4.1 Profiling Workflow

In order for our decision module to be able to estimate the performance of an operator,
we need to obtain knowledge about the behavior of operators over different engines,
resource configurations, input parameters, dataset sizes etc. This knowledge can be
generated both from on-line learning, during the execution of different operators, as
well as from offline profiling that automatically executes and monitors the operators
using different resource and dataset configurations. The offline profiling process can
help our decision module have a steeper learning curve and avoid planning errors for
operators with unknown performance.

D 3.1 – Compute and Data Engine Modeling 33 / 54

Figure 11 Profiling workflow

Whenever a new materialized operator gets inserted in the IReS platform, the profiling
workflow takes place, depicted in Figure 11. During profiling, a number of different
operator configurations are selected, executed and monitored in order to identify the
relationship between a specific configuration and the operator's performance metrics.
All the user provided performance monitoring metrics are measured and evaluated in
order for IReS to generate a knowledge base, Model DB, that can be used to facilitate the
decision making process. The main challenge for the Profiling module is to intelligently
choose the set of configurations to be profiled.

Each operator execution has a respective cost both in time and money. Therefore, the
Profiler attempts to tackle the problem of generating the most accurate profile within a
user specified budget of experiments.

More details and UML use case diagrams can be found in deliverable D1.2.

D 3.1 – Compute and Data Engine Modeling 34 / 54

3.4.2 Planning and Execution Workflow

This is the main workflow of the IReS platform, depicted in Figure 12. As mentioned in
Section 3.1.1, the user provides an abstract description of the workflow she wants to
execute. The first task of the IReS platform is to match the abstract operators present in
the user provided abstract workflow with the materialized operators imported in the
platform's operator library. The result of the operator matching process is the
materialized graph of the workflow that contains all the possible alternative execution
plans that match with the abstract workflow plan.

Figure 12 Planning and execution workflow

When a new workflow execution is triggered the user can provide the optimization
policy that she wants to enforce on its execution. This policy can consist of one or a
function of multiple operator performance metrics like cost, execution time, etc. Then,
the Decision Making module explores the materialized graph of the workflow in order
to find the plan that best matches to the user defined policy. When the optimal plan is
located, its execution is enforced by the Enforcer module. As mentioned in Section 3.2.3,
apart from the optimal plan, IReS locates the top-k best plans in order to be able to fall

D 3.1 – Compute and Data Engine Modeling 35 / 54

back to the execution of another plan. This can happen during the validation of the plan,
when the Enforcer detects that the actual plan execution deviates largely from its
expected execution. Lastly, IReS manages the elasticity of the underlying infrastructure
by monitoring the utilization of the engine resources. Based on this monitoring
information it can take decisions for allocating and de-allocating computing resources in
order to improve the general execution of workflows and operators.

More details and UML use case diagrams can be found in deliverable D1.2.

3.5 IReS Interaction with other ASAP modules
This section describes how the IReS platform interfaces with the rest of the ASAP system
components, as defined in work packages 2-5.

Figure 13 Interaction of IReS with other ASAP modules

Figure 13 depicts the position of the IReS platform in the ASAP system and the points of
interaction with the rest of the research work packages. There are 5 external modules
that interact with the IReS platform:

 The Workflow Description Language, which describes the user-defined
workflow

D 3.1 – Compute and Data Engine Modeling 36 / 54

 The User Interface, where the user defines her optimization policy.
 The Monitoring module, which monitors the execution of the workflow over the

system infrastructure, namely the processing engines and data stores.

 The Online Adaptation module, which allows the user to change the parameters
of a long running workflow without restarting the whole workflow computation.

 The infrastructure itself, where the various parts of the workflow are deployed
and executed.

Thus, these are the 4 actors of the IReS platform.

The following Table (Table 4) describes the ways in which IReS interacts with the above
described external actors. The exact APIs are still under definition.

Functionality Actors Description

Add operator Workflow
Description
Language, User
Interface

The ASAP user can add operators along with their
description using either the Workflow Description
language or the ASAP User interface.

Add dataset Workflow
Description
Language, User
Interface

The ASAP user can add datasets along with their
description using either the Workflow Description
language or the ASAP User interface.

Add Abstract
Workflow

Workflow
Description
Language

An abstract workflow is provided using the ASAP
workflow description language. This abstract
workflow contains abstract operators that match
with several of the materialized operators already
described and available in the IReS platform.

Add
optimization
policy

User Interface The user provides the optimization parameters of her
workflow through the User Interface.

Materialize/

Optimize
workflow

Workflow
Description
Language, User
Interface,
Online
Adaptation
module

After the description of an abstract workflow the
ASAP user can trigger its materialization and
optimization phase using both the Workflow
Description language and the ASAP User interface.
The output of this procedure is a materialized
workflow that contains all the possible execution
paths that match with the abstract workflow. The
IReS platform also handles the optimization of the
workflow according to user specified policies. The
Online Adaptation module can also trigger this
method in order to retrieve information about the
execution of multiple workflows using several
policies.

Execute Workflow After the materialization and optimization phases,

D 3.1 – Compute and Data Engine Modeling 37 / 54

workflow Description
Language, User
Interface,
Monitoring
module,
Infrastructure,

the workflow is ready to be executed. The execution
can be triggered by the ASAP user through both the
Workflow Description language and the ASAP User
interface. The execution of the required operators is
scheduled and monitored by the IReS platform.

Profile
operator

Workflow
Description
Language, User
Interface

The ASAP user can trigger the profiling of a described
operator. The profiling loop executes the specified
operator using different input specifications and
monitors its user defined output parameters. During
the profiling loop, the input/output data gathered are
used to train surrogate estimator models for the
operator. The data are also used to guide the adaptive
sampling techniques proposed by our profiling
system, in order to achieve the best estimation
accuracy within a user specified budget of profiling
experiments.

Monitor
workflow

Monitoring
module,
Infrastructure,
Online
Adaptation
module

Throughout the execution of operators and
workflows, the IReS platform uses the monitoring
module to gather the user defined monitoring
metrics. The metrics gathered are persistently stored
and used to further train the surrogate estimator
models of the operators. The metrics are also used by
the Online Adaptation module to trigger changes on
the workflow execution plan.

Table 4 High level external interface of the IReS platform

D 3.1 – Compute and Data Engine Modeling 38 / 54

4 Compute and Data Engine Modeling
In this section, we present our approach on modeling and estimating the execution
characteristics of specific engines and operators. In order for ASAP and the IReS
platform to be able to decide on the engine and operator implementation that best fits a
user defined workflow execution policy, we need a way to estimate performance metrics
for different operators and engines. More specifically, this task undertakes the process
of creating realistic, updatable and multi-dimensional models of the performance and
cost of the different runtime and store technologies in order to be used by the
scheduling algorithm for optimal workflow execution. The generated models should be
able to estimate the effect of multiple dimensions on the performance and cost metrics
of an operator. Such dimensions could be the type and complexity of the task/data to be
run/stored, the amount of resources/storage available, the data/load skew, the
architecture, the elastic properties, etc. The performance and cost metrics modeled
should be user defined and extendable in order to allow the users to define the
optimization policies that best suit their needs. Initial operator and engine models can
be generated by running automated benchmarking experiments for different
configurations. The models should also be updated using performance measurements
retrieved from the actual execution of operators on the IReS platform.

4.1 State of the Art

In this section, we present related work on techniques used for benchmarking, engine
and runtime modeling as well as automated application profiling.

4.1.1 Benchmarks

HiBench [58] is a Hadoop benchmark consisting of a collection of common Hadoop
applications. It takes a hybrid approach, using partly the micro-benchmarks, included in
the Hadoop package, and partly selected, common, real-world applications. Namely, it
includes the indexing workload from the Nutch open-source search engine [61] , the
PageRank, Bayesian Classification and K-means Clustering from the Mahout library [16]
and the Join and Aggregation queries of the Hive performance benchmarks. As inputs,
HiBench uses a dump of Wikipedia for PageRank and Classification, randomly generated
data from statistic distributions for Clustering, and the inputs and queries defined in [3]
for Hive Joins and Aggregation.

MalStone [25] , runs a custom analytics on automatically generated data. The authors
argue that web-scale analytics datasets are often proprietary and thus not available to
the general public. To tackle this challenge, they developed MalGen, synthetic data
generator, simulating multiple web sites' log files and web-user behavior. The
benchmark contains multiple implementations of classifiers and algorithms that try to
automatically detect web-user patterns and strange behaviors.

In MRBench [62] the authors try to create a custom version of the industry standard
decision support systems benchmark suite, TPC-H [29] , specifically for MapReduce
workloads. Their approach is to convert each of the 22 TPC-H queries into MR jobs, each
one consisting of several Map and Reduce steps. Apart from this, they also offer an
implementation of MRBench in Java for the Hadoop framework.

D 3.1 – Compute and Data Engine Modeling 39 / 54

In an approach similar to MRBench, the work presented in [70] also tries to run the
TPC-H suite on top of the Hadoop framework, with the difference that the authors re-
write the queries using the "Pig latin" [74] high level query language and use the Pig
system to translate them into a MapReduce workflow.

The approach in [108] is similar to the one in MRBench and [70] but this time the TPC-H
queries are executed using the Hive SQL implementation.

The work in [72] tests a modified subset of the TPC-H queries in the MongoDB NoSQL
database (6 of 22 queries). The results are presented in comparison with PostgreSQL
and show that MongoDB induces performance overheads when dealing with complex
analytic calculations.

4.1.2 Modeling

The work presented in [45] is an effort to describe the performance of a MapReduce job
execution using mathematical models. The authors state that the map and reduce phases
can also be further divided to more primitive sub-tasks. They leverage this fact in order
to analytically model dataflow and cost information at a fine granularity, using a set of
parameters based on the framework's configuration, the properties of the input data and
some cost factors. The paper defines mathematical formulas describing the performance
of each MR sub-task but lacks any experimental data arguing about the accuracy of any
of the parts of the model.

4.1.3 Profiling

Predicting the performance of applications running over virtualized resources is vividly
researched in the literature. In [85] , Kundu et al. proposed an iterative model training
technique for Neural Networks with which the authors managed to predict the
minimum possible Virtual Machine (concerning its resources) which would fulfill their
objectives with respect to the SLAs. An extension of this work [86] also utilized Support
Vector Machines for the same objective. Their work achieved highly accurate
predictions, however the authors did not address the problem of sampling the input
domain space, as we do in this work.

Furthermore, Iqbal et al. in [102] propose a method which, at first, identifies a workload
pattern and secondarily builds a model capable to predict the application’s capacity (the
number of requests it can serve without violating given constraints). This work focuses
on web applications and the prediction happens with regression models.

Similarly, Do et al. in [6] presented a profiling technique which utilizes the Canonical
Correlation Analysis, able to identify the relationship between the allocated resources
and the application performance. This work targets to predict the performance of a
newly allocated Virtual Machine when it is deployed in a specific host running other
Virtual Machines. Other works focus on predicting specific application metrics based on
I/O workload and access patterns such as [79] and [84] .

D 3.1 – Compute and Data Engine Modeling 40 / 54

4.2 The IReS modeling approach

In this section, we present the techniques used by the IReS platform in order to estimate
the performance and cost characteristics of different operators and engines. This
module lies behind project ASAP’s ability to provide optimized, adaptive and highly
extensible analytics execution. The main idea is to provide predictions for each
operator’s performance by actually running the operator in representative configuration
combinations. Using these measurements we can train surrogate estimator models that
can be used to approximate its performance for non-tested configurations. To do so, in a
generic and extendable way we propose a black box operator profiling framework.

4.2.1 Black Box profiling

In order to provide a generic operator-profiling framework, we follow the black box
profiling approach. According to this, we model each operator as a black bo x that has
user defined inputs and outputs. The input space of an operator can be also described as
its design space and contains all the parameters that affect its performance and need to
be varied in order to profile it. For example, the input space of an operator can contain
parameters like:

• platform runtime resources (e.g. number of VMs, number of CPUs, available RAM,
etc.)

• Data attributes (e.g. dataset size in GBs, type, distribution, etc.)
• Operator-specific parameters (e.g., the number of clusters in k-means, number of

iterations, accuracy, etc.)

As mentioned before, the input space of an operator is user defined, giving the users the
capability of defining the parameters that affect the operator’s performance. The user
should also give the type of each parameter in order for our profiling system to be able
to vary it and test different configuration automatically. For example, a parameter such
as the number of VMs is a discrete integer value that can have a minimum and maximum
value in order to prune the possible combinations. Concerning data input parameters,
like the dataset size or type, the user can provide a set of sample datasets or a dataset
generator that can be used in order to test various configurations.

The output space of an operator can also be described as its optimization space and
contains all performance/cost metrics that need to be approximated for the various
input configurations. For example, the output space of an operator can contain the
following metrics:

• Execution time
• Cost
• Accuracy of the result
• Throughput, latency
• Min, max and average CPU, memory consumption, etc

Our profiling framework is generic and allows the user to define the output parameters
that she wants to optimize for different operators. A new optimization parameter can be

D 3.1 – Compute and Data Engine Modeling 41 / 54

defined simply by giving a monitoring probe that can measure it when running the
operator.

4.2.2 Profiling challenges

The operator profiling is a process that allows the automated execution of operators and
monitors their behavior over representative input space configurations. The collected
information can form the basic knowledge used to train surrogate estimator models that
can approximate the operator’s behavior (the function that relates the
input/configuration space parameters with the output/optimization metrics).

The main challenge for the Profiler is to intelligently choose the set of profiled
configurations. For example, if we have an operator with 3 integer input parameters that
range from 1 to 10, there exist 103 different deployment configurations. Furthermore,
each execution of an operator has a respective temporal and monetary cost in order to
be sufficiently profiled. A brute force profiler would need to execute and monitor all
those configurations. In such case, the execution time of the profiler could be
exponential to the number of inputs, something which is not acceptable. ASAP’s Profiler
should be able to intelligently narrow down the field of profiling scenarios. Therefore,
the Profiler attempts to tackle the problem of generating the most accurate operator
profile within a user specified profiling budget of experiments.

The nature of operator profiling is clearly multi-objective, often requiring tradeoffs
between diverse and conflicting objectives. While the input parameters, design space, of
an application include the number of VMs, their RAM, their disk capacity etc., an
application user can be interested in various objectives such as cost, throughput, latency
etc. Therefore, the operator can be modeled as a function that maps the design space
(number of VMs, RAM, data size, operator parameters, etc.) to the user defined objective
space (cost, execution time, etc.). This function represents the operator’s profile. Our
Profiler will use targeted operator runs, according to a specified financial and time
budget, to provide a global surrogate approximation model of the operator’s profile
function that maps its design space to its optimization space.

Many engineering and science problems require expensive experiments or time
consuming simulations to generate sample points of the mapping between the input and
the output parameters of a system. In such cases, researchers have focused on building
accurate surrogate approximation models that, when properly constructed, can mimic
the behavior of the system while being computationally cheap to evaluate. Examples of
surrogate models include: Kriging models [91] , Splines [33] Artificial Neural Networks
[37] , Support Vector Machines [60] etc. The challenge here is how to generate a
surrogate model that is as accurate as possible over the domain of interest and at the
same time minimize the cost of the performed experiments. Since the system's response
behavior is not known upfront and the sample data points are too costly to obtain, the
main approach followed is the iterative adaptive sampling of the design space. Each data
point obtained is used to update the surrogate approximation model as well as the
sampling function. In each iteration, the sampling function selects the next sampling
point according to an estimation of its benefit to the surrogate approximation accuracy.
This technique is called importance or adaptive sampling and is also known as
sequential design.

D 3.1 – Compute and Data Engine Modeling 42 / 54

4.2.3 Profiling approach

In Algorithm 1, we provide the general methodology used to create a profile for a given
operator. The algorithm expects a valid operator/application description A followed by
an input domain D, representing the possible setups the operator can be executed with
and a list of surrogate models. The profiling process occurs iteratively: while the
termination condition is not fulfilled, the domain space is sampled, a new point p is
picked and the operator is executed according to p. The deployment produces an
optimization vector d, containing the measured outputs, which is then used to train in an
incremental manner all the available surrogate models. The output of the profiling
process is the surrogate model which achieves the highest accuracy, according to a user
specified metric.

Figure 14 Main profiling algorithm

The termination condition can vary. It can be a threshold of sampled points that, if
reached, the condition is true and the algorithm terminates. In other cases, it can be
related to the achieved accuracy: if the trained model achieves to predict the objective
function with error lower than a user defined threshold, the termination condition is
reached. As we will present in the following section, the nature of the termination
condition is directly entwined with the nature of the sampling algorithm.

4.2.4 Adaptive sampling

The sampling procedure occurs at the beginning of each profiling loop. The sampler
receives as input the domain space D of the operator, which is composed of all the
acceptable deployment points. Each point returned by the sampler is used for execution.
The operator’s output metrics are measured and then an approximation model is
trained using the acquired information.

There are many methodologies for sampling a multidimensional space. We can
categorize the methods we support in the following categories:

1. Static sampling, where the sampler needs no other information than the domain
space characteristics (dimensions and acceptable values) to pick the next sample

2. Adaptive sampling, where the sampler exploits the knowledge obtained by the
deployment of previously picked samples.

D 3.1 – Compute and Data Engine Modeling 43 / 54

The static approach does not take into consideration the operator’s performance .
Typical examples of static sampling are the Random sampler, that returns random
points and the Uniform sampler which constructs a multidimensional grid in the input
space D, and returns points belonging to the grid. We opt for an adaptive sampling
approach which exploits the knowledge obtained from each deployment/sample,
enabling the sampler to retrieve more samples in regions of the domain space D where
the performance appears to have fluctuations or the models have the maximum
estimation errors. Equivalently, an adaptive sampler favors areas of D where the
operator performance has the most deviations in order to use them to provide more
accurate approximation models.

4.2.5 Approximation models

When a new sample is picked by the sampler and executed, the performance metrics are
stored and given as input to an approximation model. The training set of the model
consists of the chosen samples along with their output values. After the training process
is finished, the model will be able to approximate the objective function for the entire
space D. There exist many methodologies for approximating an unknown function. We
can categorize them in two major categories: regression based techniques and
classification techniques. Algorithms on the former category create an analytical form of
the objective function. The classification techniques, on the other hand, do not target to
create an analytical function but to classify the points of the domains space in classes.
These objects are treated in a similar manner, indicating that the same properties stand
for objects in the same class.

In our approach, we utilize the approximation models offered by WEKA [103] , an open
source data mining software which implements a variety of machine learning
algorithms. Specifically, the supported approximation techniques are the following:

• Gaussian Process, that approximates the objective function using Gaussian
distributions

• Multilayer Perceptron, that represents a typical neural network with many
hidden layers and neurons

• Linear Regression (Least Median Squares), that implements the methodology
introduced at [75]

• Bagging, that executes classification as described in [63]
• Random SubSpace, that constructs a decision tree using the approach

presented at [97]
• Regression by Discretization, that enforces regression over a discretized

domain of the input space
• RBF Network, which trains a Radial Basis Function Network, as presented at

[31]

The accuracy of each one of the aforementioned models is highly affected from the
configuration of the model and the nature of the objective function. For example, a linear
hyper- plane will be approximated faster using a linear regression method. On the
contrary a complex surface which has spikes and valleys is more likely to be
approximated more accurately using a non-linear approach. All the available models are

D 3.1 – Compute and Data Engine Modeling 44 / 54

trained in parallel by the system, and the model which achieves the best accuracy is
eventually chosen.

4.3 Experimental evaluation

To evaluate the performance of our Profiler, we have selected a set of distributed
analytics operators that are deployed over large scale virtualized resources. The first
benchmark application is TeraSort [73] , a well-known benchmark that sorts a set of key
values. We test it with datasets of 10M up to 50M key-values (1GB to 5GB of data
respectively) and run the TeraSort in Hadoop clusters with different number of nodes
and different number of cores per node. The second operator is a BSP-based
implementation of PageRank [64] , a well-known graph algorithm implemented over the
Apache Hama framework. We utilize 50K to 100K node graphs, each of which has at
most 50 outgoing edges and execute PageRank over different cluster sizes as above.
Finally, the third operator is a BSP implementation of the Single Source Shortest Path
(SSSP) algorithm [87] implemented for the Apache Hama framework. For SSSP, we
create synthetic graphs consisting of 50k up to 500k vertices and at most 50 edges per
node.

D 3.1 – Compute and Data Engine Modeling 45 / 54

Figure 15 Profile functions for different operators

The running times for various deployment configurations of all the three benchmark
applications is given in Figure 15. We provide the execution time of the Terasort
benchmark with regard to the size of the cluster and the dataset size (measured in
millions of key-values). It is obvious that the execution time is inversely proportional to
the cluster size and proportional to the dataset size. Furthermore, for large clusters we
notice that the execution time decreases less rapidly, because the communication
overheads affect more the overall execution time.

The execution time for both PageRank and SSSP are also shown in Figure 15. PageRank
has a similar behavior to the Terasort case. SSSP, on the other hand, presents a slightly
different behavior in terms of scalability. Specifically, when more nodes are added to the
Hama cluster, the execution time remains unaffected for smaller dataset sizes (e.g., 50k

D 3.1 – Compute and Data Engine Modeling 46 / 54

nodes). For larger datasets it decreases, but less rapidly than in the other cases. This is
due to the larger number of supersteps executed by SSSP. Specifically, for our datasets,
each SSSP job requires about 25–30 Hama supersteps while PageRank requires only a
third of them. As a consequence, SSSP needs more sequential steps thus more time for
synchronization between the BSP workers. Thus, due to this cost, the addition of more
workers does not greatly benefit SSSP.

One of the greatest factors that affect the performance of our Profiler is the sampling
rate. This is defined as the ratio between the number of the chosen points and the total
number of acceptable deployments. Lower sampling rates lead to fewer chosen points,
offering the classifiers less knowledge for the objective function (the performance of the
application). We use the coefficient of determination R2 [80] to quantify the accuracy of
the profiling methods. R2 declares the degree in which a classifier fits the original data. It
is calculated as follows:

2

2

2
1

i i

i

i

i

y f

R
y y

Where: yi are the real performance values, fi are the predicted values and y is the mean

of the observed data. The closer
2

R gets to 1, the better the performed approximation.

In our experiments,
2

R was calculated taking into consideration all the available points

(sampled or not), thus
2

R indicates the accuracy of our models in the entire domain
space. Simultaneously, we also utilize the Mean Absolute Error metric which is defined
as:

1
i i

i

M AE y f
n

Where: i, fi and yi have the same notation as before. Both metrics have been evaluated
for the entire input space, including both the points picked during the sampling phase
and the rest of the points in order to capture the resemblance between the
approximated and the objective function in the entire domain space. In the general case
this will not be possible, since the performance will only be given in the sampled points;
In those cases the metrics will be evaluated using only the deployed points.

For this experiment, we applied the sampling methodologies presented in the previous
section and trained all the available approximation models with the chosen points along
with the respective performance values for different sampling rates. In Figure 16we
provide the accuracy level of the best model for each sampling rate for all three
applications using the coefficient of determination. The best model is defined as the
model that presents the highest coefficient of determination. We also provide the Mean
Absolute Error for each application.

D 3.1 – Compute and Data Engine Modeling 47 / 54

Figure 16 Estimation accuracy for different sampling techniques

In our results, we notice that the most accurate models present slightly different
behavior for each one of the three applications. In all of them, it is obvious that an
increase in the Sampling Rate leads to higher accuracy. This result is expected, since
higher sampling rate means that more points are picked, thus the model will obtain
more knowledge for the objective function. However, in many cases this might not be
the case: The sampler may pick more points but if they are not representative ones, th ey
may mislead the model and eventually, this may cause lower accuracy. For example, this
is the case for Terasort, when increasing the sampling rate from 0.125 to 0.15 for the
Uniform sampler. More points are chosen, but very few of them are picked in the regions
where the execution time is high, thus the model cannot make more accurate
predictions. This behavior is avoided using the Adaptive Sampler, since it constantly
checks the ranges with the steepest differences and favors them, leading the models to
identify those regions faster.

However, when the Sampling Rate is relatively low, this behavior could also mislead the
models, as seen in the Terasort case. Specifically, because of the first phase of the
Adaptive algorithm, where the border points are returned, the models may eventually
achieve worse accuracy than the one achieved with the Uniform sampler which, again,
picks more points in the intermediate region and enables the models to make more

D 3.1 – Compute and Data Engine Modeling 48 / 54

accurate predictions. In any case, we observe that the difference in accuracy is
acceptable while, eventually, for bigger sampling rates the Adaptive sampler
outperforms the Uniform sampler. In the PageRank case, we notice that the Adaptive
Sampler outperforms the rest of the samplers for most rates, whereas in the SSSP case,
the surface which is to be approximated resembles a linear hyperplane. This enables the
regression techniques to accurately approximate it with a relatively small number of
points. This also explains the smaller increase observed in accuracy and the reason for
which the models achieve high accuracy with the lowest sampling rates (something not
observed in the previous applications).

The Random sampler is not included in the MAE figures, since it had the worst
performance (between 100 and 80 for Terasort, 30 to 25 for Pagerank and 60 to 50 for
SSSP). It is obvious once again that increasing the sampling rate leads to lower MAE,
thus higher accuracy. It is also obvious that the rate with which MAE is decreasing
tightly coupled with the form and the nature of the objective function. Specifically, in the
Terasort and SSSP cases MAE decreases almost linearly with sampling rate; On the other
hand PageRank appears to stabilize MAE decrease very soon. The reason for this is that
the performance of PageRank appears to have more oscillations than the other
applications. This makes it harder for the models to capture this behavior and,
eventually, increasing the sampling rate does not benefit the model. This is a very
interesting phenomenon: when the performance of the application oscillates (because of
its nature, the virtualization overhead, etc.), the threshold for which increasing the
sampling rate creates more accurate models is decreasing.

In conclusion, the provided models in cooperation with the sampling methods enable
the system to create an accurate profile of the application even when the sampling rate
is less than 10% of the points of the domain space. At the same time, the profiling
process is quite fast: Even when the Sampling Rate is 20%, the total time spent in
training the models does not take more than 1.5 seconds. The input space of our
experiments consists of 135 discrete points for the Terasort case and 162 points for the
SSSP and Pagerank cases. Thus sampling with 20% of these spaces leads to 27 and 32
points respectively. Thus the training time of our models is less than 1.5 seconds when
there exist 32 points for training. This is the time needed to successfully train all the
available models. The time needed to deploy and run an operator dominates the
profiling process and its typical duration is in the order of minutes. Finally, in more
complex cases where the Input Space consists of thousands or tens of thousands of
points a Sampling Rate of 20% is prohibitive. In such complex cases, our adaptive
sampling approach can approximate the objective function with the best accuracy,
within a user defined budget of experiments.

D 3.1 – Compute and Data Engine Modeling 49 / 54

5 Conclusion

This deliverable describes the architecture of the IReS platform, the core component of
the ASAP project that is responsible for managing, executing and monitoring complex
analytics workflows. Its goal is to provide adaptive, cost-based and customizable
resource management of the diverse execution and storage engines available. Moreover,
since the area of high performance analytics advances daily, ASAP's goal is to present a
repeatable process that will allow easy inclusion of different technologies, if so desired.

IReS incorporates a modeling framework that constantly evaluates the cost, quality and
performance of data and computational resources in order to decide on the most
advantageous store, indexing and execution pattern available. The methodology of the
runtime and data store modeling process has been thoroughly described and an initial
evaluation has been presented in order to showcase its efficacy.

D 3.1 – Compute and Data Engine Modeling 50 / 54

References

 [1] 84% Of Enterprises See Big Data Analytics Changing Their Industries' Competitive
Landscapes In The Next Year . Forbes Magazine, 2014.

 [2] A. Pariyani, U. G. Oktem, and D. L. Grubbe. Process risk assessment uses big data, 06-
03-2013. http://bit.ly/1vDlTVk.

 [3] A. Pavlo, A. Rasin, S. Madden, M. Stonebraker, D. DeWitt, E. Paulson, L. Shrinivas, and
D. J. Abadi. “A Comparison of Approaches to Large-Scale Data Analysis”, SIGMOD,
June, 2009

 [4] A. Simitsis, K. Wilkinson, and P. Jovanovic. xPAD: A Platform for Analytic Data Flows.
In ACM SIGMOD 2013.

 [5] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu. HFMS: Managing the Lifecycle and
Complexity of Hybrid Analytic Data Flows. In ICDE. IEEE, 2013.

 [6] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B. Zhou. Profiling applications
for virtual machine placement in clouds. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 660–667. IEEE, 2011.

 [7] Apache Cassandra, http://cassandra.apache.org/
 [8] Apache Drill, http://drill.apache.org/
 [9] Apache Flink, http://flink.apache.org/

 [10] Apache GraphX, https://spark.apache.org/graphx/
 [11] Apache Hadoop. http://hadoop.apache.org/
 [12] Apache Hama, https://hama.apache.org/
 [13] Apache HBase. http://hbase.apache.org/
 [14] Apache Hive, https://hive.apache.org/
 [15] Apache Kafka, http://kafka.apache.org/
 [16] Apache Mahout, http://mahout.apache.org/
 [17] Apache OpenNLP, https://opennlp.apache.org/
 [18] Apache Parquet, http://parquet.incubator.apache.org/documentation/latest/
 [19] Apache Samza, http://samza.apache.org/
 [20] Apache Spark MLlib,https://spark.apache.org/mllib/
 [21] Apache Spark, https://spark.apache.org/
 [22] Apache Thrift, https://thrift.apache.org/
 [23] B. Sharma, T. Wood, and C. R. Das. Hybridmr: A hierarchical mapreduce scheduler for

hybrid data centers. In ICDCS. IEEE, 2013.
 [24] Battré, Dominic, et al. "Nephele/PACTs: a programming model and execution

framework for web-scale analytical processing." Proceedings of the 1st ACM
symposium on Cloud computing. ACM, 2010.

 [25] Bennett, Collin, et al. "Malstone: towards a benchmark for analytics on large data
clouds." Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2010.

 [26] Brewer, Eric. "Pushing the cap: Strategies for consistency and availability." Computer
45.2 (2012): 23-29.

 [27] Chang, Fay, et al. "Bigtable: A distributed storage system for structured data." ACM
Transactions on Computer Systems (TOCS) 26.2 (2008): 4.

 [28] Cloudera Distribution CDH 5.2.0.
http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-5-2-0.html.

 [29] Council, Transaction Processing Performance. "TPC-H benchmark specification."
Published at http://www. tcp. org/hspec. html (2008).

http://drill.apache.org/
https://spark.apache.org/graphx/
https://hive.apache.org/
http://mahout.apache.org/

D 3.1 – Compute and Data Engine Modeling 51 / 54

 [30] CQL, https://cassandra.apache.org/doc/cql/CQL.html
 [31] D. S. Broomhead and D. Lowe. Radial basis functions, multi-variable functional

interpolation and adaptive networks. Technical report, DTIC Document, 1988.
 [32] D. Tsoumakos and C. Mantas. The Case for Multi-Engine Data Analytics. In Euro-Par

2013: Parallel Processing Workshops. Springer, 2014.
 [33] De Boor, Carl, et al. A practical guide to splines. Vol. 27. New York: Springer-Verlag,

1978.
 [34] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.
 [35] DeCandia, Giuseppe, et al. "Dynamo: amazon's highly available key-value store." ACM

SIGOPS Operating Systems Review. Vol. 41. No. 6. ACM, 2007.
 [36] elasticsearch. http://www.elasticsearch.org/overview/elasticsearch/.
 [37] Funahashi, Ken-Ichi. "On the approximate realization of continuous mappings by

neural networks." Neural networks 2.3 (1989): 183-192.
 [38] Ghemawat, S., Gobioff, H., & Leung, S. T. (2003, October). The Google file system. In

ACM SIGOPS operating systems review (Vol. 37, No. 5, pp. 29-43). ACM.
 [39] Gu, Lei, and Huan Li. "Memory or Time: Performance Evaluation for Iterative

Operation on Hadoop and Spark." High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference on.
IEEE, 2013.

 [40] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A
Self-tuning System for Big Data Analytics. In CIDR, 2011.

 [41] H. Lim, H. Herodotou, and S. Babu. Stubby: A Transformation-based Optimizer for
Mapreduce Workflows. VLDB, 2012.

 [42] Hadoop Distributed File System. http://hadoop.apache.org/docs/r1.2.1/hdfs
design.html.

 [43] Hadoop YARN, http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

 [44] HDFS, http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
 [45] Herodotou, Herodotos, and Shivnath Babu. "Profiling, what-if analysis, and cost-

based optimization of MapReduce programs." Proceedings of the VLDB Endowment
4.11 (2011): 1111-1122.

 [46] heroku add-ons. https://addons.heroku.com/.
 [47] Hortonworks Sandbox 2.1. http://hortonworks.com/products/hortonworks-

sandbox/.
 [48] http://h10120.www1.hp.com/expertone/datacard/Exam/HP0-A105
 [49] http://lucene.apache.org/core/
 [50] http://pegasus.isi.edu/
 [51] http://www.elasticsearch.org/overview/
 [52] http://www.elasticsearch.org/overview/elasticsearch
 [53] http://www.oracle.com/technetwork/java/javase/jdbc/
 [54] http://www.oracle.com/us/products/mysql/mysqlcluster/overview/index.html
 [55] http://www.pivotal.io/big-data/pivotal-greenplum-database
 [56] http://www.taverna.org.uk
 [57] http://www.vertica.com/hp-vertica-products/dragline/
 [58] Huang, Shengsheng, et al. "The HiBench benchmark suite: Characterization of the

MapReduce-based data analysis." Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on. IEEE, 2010.

http://h10120.www1.hp.com/expertone/datacard/Exam/HP0-A105
http://www.elasticsearch.org/overview/
http://www.oracle.com/technetwork/java/javase/jdbc/
http://www.oracle.com/us/products/mysql/mysqlcluster/overview/index.htm
http://www.taverna.org.uk/

D 3.1 – Compute and Data Engine Modeling 52 / 54

 [59] Impala, http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html

 [60] Joachims, Thorsten. "Making large scale SVM learning practical." (1999).
 [61] Khare, Rohit, et al. "Nutch: A flexible and scalable open-source web search engine."

Oregon State University 1 (2004): 32-32.
 [62] Kim, Kiyoung, et al. "Mrbench: A benchmark for mapreduce framework." Parallel and

Distributed Systems, 2008. ICPADS'08. 14th IEEE International Conference on. IEEE,
2008.

 [63] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
 [64] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. 1999.
 [65] Laney, Douglas. "3D data management: Controlling data volume, velocity and

variety." META Group Research Note 6 (2001).
 [66] M. Ferguson. Architecting a big data platform for analytics. A Whitepaper Prepared

for IBM, 2012.
 [67] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., & Czajkowski,

G. (2010, June). Pregel: a system for large-scale graph processing. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data (pp. 135-
146). ACM.

 [68] Melnik, Sergey, et al. "Dremel: interactive analysis of web-scale datasets."
Proceedings of the VLDB Endowment 3.1-2 (2010): 330-339.

 [69] Monetdb. https://www.monetdb.org/.
 [70] Moussa, Rim. "TPC-H benchmarking of Pig Latin on a Hadoop cluster."

Communications and Information Technology (ICCIT), 2012 International
Conference on. IEEE, 2012.

 [71] MySQL, www.mysql.com
 [72] N. Rutishauser, "TPC-H applied to MongoDB: How a NoSQL database performs," 25

February 2012, supervised by: Prof. Dr. Michael BÖhlen, Amr Noureldin.
 [73] O. OMalley. Terabyte sort on apache hadoop. Yahoo, available online at:

http://sortbenchmark. org/Yahoo-Hadoop.pdf,(May), pages 1–3, 2008.
 [74] Olston, Christopher, et al. "Pig latin: a not-so-foreign language for data processing."

Proceedings of the 2008 ACM SIGMOD international conference on Management of
data. ACM, 2008.

 [75] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. 1987.
 [76] PageRank Benchmark test 0.6.4 vs 0.6.3

http://wiki.apache.org/hama/Benchmarks#PageRank_Benchmark_test_0.6.4_vs_0.6.
3

 [77] PostgreSQL, http://www.postgresql.org/
 [78] Postgresql. http://www.postgresql.org/.
 [79] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner. Predictive performance

modeling of virtualized storage systems using optimized statistical regression
techniques. In Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, pages 283–294. ACM, 2013.

 [80] R. G. D. Steel and J. H. Torrie. Principles and procedures of statistics: with special
reference to the biological sciences. 1960.

 [81] RDD, http://spark.apache.org/docs/1.2.0/quick-start.html
 [82] Running Databases on AWS. http://aws.amazon.com/running_databases/.
 [83] S. Babu. Towards automatic optimization of mapreduce programs. In ACM

symposium on Cloud computing, 2010.

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.mysql.com/

D 3.1 – Compute and Data Engine Modeling 53 / 54

 [84] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick. Io performance
prediction in consolidated virtualized environments. In ACM SIGSOFT Software
Engineering Notes, volume 36, pages 295– 306. ACM, 2011.

 [85] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta. Modeling virtualized
applications using machine learning techniques. ACM SIGPLAN Notices, 47(7):3–14,
2012.

 [86] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Application performance modeling
in a virtualized environment. In High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, pages 1–10. IEEE, 2010.

 [87] S. Pettie. Single-source shortest paths. Encyclopedia of Algorithms, pages 847–849,
2008.

 [88] Shahrivari, Saeed. "Beyond Batch Processing: Towards Real-Time and Streaming Big
Data." Computers 3.4 (2014): 117-129.

 [89] Simitsis, Alkis, et al. "HFMS: Managing the lifecycle and complexity of hybrid analytic
data flows." Data Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 2013.

 [90] Simitsis, Alkis, et al. "Optimizing analytic data flows for multiple execution engines."
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. ACM, 2012.

 [91] Simpson, Timothy W., et al. "Kriging models for global approximation in simulation-
based multidisciplinary design optimization." AIAA journal 39.12 (2001): 2233-
2241.

 [92] Spargel, http://flink.apache.org/docs/0.6-incubating/spargel_guide.html
 [93] Spark SQL, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
 [94] SPARKSTREAMING, https://spark.apache.org/streaming/
 [95] Stonebraker, Mike, et al. "C-store: a column-oriented DBMS." Proceedings of the 31st

international conference on Very large data bases. VLDB Endowment, 2005.
 [96] Stratosphere Project. http://stratosphere.eu/.
 [97] T. K. Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.
 [98] The Power of Combining Big Data Analytics with Business Process Workflow. CGI

Whitepaper, 2013.
 [99] TPC-H benchmark. http://www.tcp.org/hspec.html.

 [100] Valiant, Leslie G. "A bridging model for parallel computation." Communications o f the
ACM 33.8 (1990): 103-111.

 [101] Vogels, Werner. "Eventually consistent." Communications of the ACM 52.1 (2009): 40-
44.

 [102] W. Iqbal, M. N. Dailey, and D. Carrera. Black-box approach to capacity identification
for multi-tier applications hosted on virtualized platforms. In Cloud and Service
Computing (CSC), 2011 International Conference on, pages 111–117. IEEE, 2011.

 [103] WEKA, http://weka.wikispaces.com
 [104] Xin, Reynold S., et al. "GraphX: Unifying data-parallel and graph-parallel analytics."

arXiv preprint arXiv:1402.2394 (2014).
 [105] Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and future

challenges. Swarm and Evolutionary Computation, 2011.
 [106] YAGO2s: A High-Quality Knowledge Base. http://www.mpi-

inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/.

https://spark.apache.org/streaming/

D 3.1 – Compute and Data Engine Modeling 54 / 54

 [107] Yang, Fangjin, et al. "Druid: a real-time analytical data store." Proceedings of the
2014 ACM SIGMOD international conference on Management of data. ACM, 2014.

 [108] Yuntao Jia. “Running the TPC-H Benchmark on Hive”,
https://issues.apache.org/jira/secure/attachment/12416257/TPC-
H_on_Hive_2009-08-11.pdf. 2009

 [109] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo. Automated profiling and resource
management of pig programs for meeting service level objectives. In Conference on
Autonomic computing. ACM, 2012.

