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Abstract 
 

This deliverable presents the design, architecture and methods in the current state of the 
Intelligent Resource Scheduling (IReS) platform, which constitutes a core component of 
ASAP and is responsible to i) model operator performance according to different engines 
and their resources and ii) adaptively decide on which operator version to run based on the 
optimization policy and the available engines. In this first period, attention has been given 
towards defining the methodology and tools in order to model the performance and costs of 
the different compute and data engines.   
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1 Introduction  

1.1 IReS Overview 

Big data analytics have become a necessity in the majority of industries  [1] , taking the 
lead in risk assessment, business process effectiveness, market analysis, etc.   [98]  [2] . 
Enabling engineers, analytics experts and scientists alike to tap the potential of vast 
amounts of business-critical data has grown increasingly important. Such data analysis 
demands a high degree of parallelism, in both storage and computation: Business 
datacenters host huge volumes of data, stored over large numbers of nodes with 
multiple storage devices and process them using thousands or millions of cores. 

The demand for near-real-time, data-driven analytics has given rise to diverse execution 
engines and data stores that target specific data and computation types (e.g.,  [11]  [12]   
[13]  [21]  [69]  [96] , etc.). With the advent of virtualized computing, these platforms are 
offered as a service by many IaaS providers, enabling a very wide deployment range. For 
some of those engines there exist approaches in the literature that manage to optimize 
their performance (e.g., [40]  [41] ) by automatically tuning a number of configuration 
parameters. Yet, these schemes work on a single engine (mainly the Hadoop ecosystem), 
merely considering specific data formats and query/analytics task types. 

However, modern workflows have become increasingly long and complex  [66] . 
Specifically, workflows may include multiple data types (e.g., relational, key-value, 
graph, etc.) generated from different resources. They are also executed under varying 
constraints and policies (e.g., optimize for performance or cost, require different fault-
tolerance degrees, etc.). Finally, workflow operators can be greatly diverse, from simple 
Select-Project-Join (SPJ) and data movement to complex NLP-, graph- or custom 
business-related operations. There currently exists no single platform that can optimize 
for this complexity [32] . 

Sensing this trend, cloud software companies now offer software distributions in pre-
cooked VM images or as a service. These distributions incorporate different processing 
frameworks, data stores and libraries to alleviate the burden of multiple installations 
and configurations (e.g.,  [28]  [46]  [47]  [82] ). Yet, such multi-engine environments 
lack a meta-scheduler that could automatically match tasks to the right engine(s) 
according to multiple criteria, deploy and run them without manual intervention. A 
recent attempt along this line  [5]  [4]  focuses more on lower-level database operators, 
emphasizing on their automatic translation from/to specific engines via an XML-based 
language. Yet, this is a proprietary tool with limited applicability and extension 
possibilities for the community. 

To address multi-engine optimization, the ASAP project employs the Intelligent Multi-
Engine Resource Scheduler (IReS), an integrated, open source platform for managing, 
executing and monitoring complex analytics workflows. Its goal is to provide adaptive, 
cost-based and customizable resource management of the diverse execution and storage 
engines available. Moreover, since the area of high performance analytics advances 
daily, ASAP's goal is to present a repeatable process that will allow easy inclusion of 
different technologies, if so desired. IReS includes a modeling framework that constantly 
evaluates the cost, quality and performance of data and computational resources in 
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order to decide on the most advantageous store, indexing and execution pattern 
available.  

To this direction, our system will be able to handle existing open-source execution 
models (e.g., Map-Reduce, Bulk Synchronous Parallel) as well as state-of-the-art 
centralized and distributed storage engines (RDBMSs, NoSQL, distributed file-systems, 
etc.) in order to have a broad applicability and increased performance gains. IReS plans 
to optimize workflows consisting of tasks that range from simple group-by, aggregation 
or complex joins between different data sources to machine-learning tasks and queries 
on graph data in combination with relational data. In the current implementation, the 
system bases its operation on the following elements: 

 A profiling and modeling engine that learns operator output per different engine 
configuration. Outputs are collected via budget-constraint executed benchmarks. 
The learned models are stored and utilized for the planning phase of the 
workflow. 

 A JSON-based metadata language that describes operators in abstract and 
instantiated forms, enabling search and matching of operators that perform a 
similar task in the planning phase. 

 A decision-making and enforcing process that chooses among different 
equivalent workflow execution plans (i.e., on different engines, resulting in 
equivalent output) based on cost or performance and schedules the execution.   

The resulting optimization is enhanced by any optimization effort within a single engine. 
IReS is a fully open-source platform that targets both low (e.g., join, sort, etc.) as well as 
high level (e.g., machine learning, graph processing) operators, treating them as black 
boxes. The generic profiling/modeling method it relies upon allows for easy addition of 
new operators and engines. 

1.2 Purpose of the Document 

The purpose of deliverable 3.1 is to describe the design, architecture and methods in the 
current state of the IReS platform. The basic abilities of the IReS platform will be to i) 
model operator performance according to different engines and their resources and ii) 
adaptively decide on which operator version to run based on the optimization policy 
and the available engines. In this first period, attention has been given towards defining 
the methodology and tools in order to model the performance and costs of the different 
compute and data engines.   

1.3 Document Structure 

D3.1 is structured as follows: 

 Chapter 2 contains an overview of the state of the art tools for big data analysis. 
The most commonly used tools are presented and their basic characteristics are 
explained. 

 Chapter 3 describes the architecture of the IReS platform, explaining the role of 
each component and presents the main system workflows, namely the modeling 
and the planning and execution workflows.  
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 Chapter 5 presents in detail the methodology that will be followed to model the 
various runtimes and data stores in terms of performance, cost or any user -
defined metric. Moreover, the chapter contains an experimental evaluation of the 
proposed methodology. 

 Chapter 5 concludes the deliverable. 
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2 Big Data Analytics Technologies and Platforms  

This chapter reviews existing technologies and platforms that deal with Big Data 
analytics. This review aims at providing a thorough analysis on the characteristics of the 
different runtimes and data stores so that an informed selection on the ones to be 
supported by ASAP can be made. The list is by no means exhaustive, but rather 
representative. Prominent examples for each of the pertinent system categories are 
included. It contains the engines and data stores that are either already being used by 
WIND and IMR in their current analytics workflows, or could possibly be considered for 
usage in the ASAP use cases, namely Web Analytics and Telecommunication Analytics, as 
described in deliverables D8.2 and D9.2 respectively. 

2.1 Compute Models and Engines 

What all distributed execution engines have in common is the ability to manipulate data 
loaded from and stored to a distributed file system. In particular, many of the popular 
systems use the Hadoop File System [44] as their basis (see Section 2.1.1). The basic 
assumption behind all these engines is that both storage and computation are delegated 
to a large number of clustered nodes in a manner that ensures progress and fault 
tolerance. Data is usually read from or written to the distributed file system but the 
memory of the nodes in the cluster or local storage can be used for storing intermediate 
results during the course of the computation. To this end, the most prevalent 
programming models are Map-Reduce and Bulk Synchronous Parallel model. 

Map-Reduce [34] is a programming model for processing and generating large data sets 
on a cluster. It uses a specific parallel and distributed algorithmic paradigm based on 
those two functions. It was originally developed by Google for the purpose of efficiently 
indexing the Web graph and computing PageRank. It is loosely based on the on the map 
and reduce functions used in functional programming but applies that paradigm to 
distributed computation. The user describes the computation as a series of Map and 
Reduce operations over key-value data. The map function generates intermediate key-
value results that the reduce function merges based on the intermediate key into the 
output of the operation. The framework manages the parallelization and distribution of 
the execution, the data transfers and communications in a fault tolerant manner. 

The M-R model has been proved largely successful for big data manipulations and has a 
number of implementations. The prevalent implementation of Map-Reduce is the one 
used in the Hadoop Framework. 

The Bulk Synchronous Parallel (BSP) model [100] was originally conceived as a 
bridge model between programming and hardware models for parallel computation, 
sitting between software and hardware. The Model actors were defined as follows: 

1. A number of components, each performing processing and/or memory functions; (i.e. 
processors) 

2. A router that delivers messages point to point between pairs of components; (i.e. 
network) 
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3. Facilities for synchronizing all, or a subset of, the components at regular intervals of L 
time units where L is the periodicity parameter. (i.e. barrier) 

The distributed computation in BSB is a sequence of supersteps. In each one of those 
supersteps the processors are allocated with tasks consisting of a mix of: 

a) local computations 

b) message transmissions (to other processors) 

c) message arrivals (from others) 

After L expires a global check is performed, in order to determine whether the all 
processors have completed the superstep. If that is so the machine will proceed to the 
next superstep. 

While BSP was proposed as a model for parallel processing, it is a good fit for distributed 
systems too. As such it was recently adopted by Google in the design of Pregel [67] . Its 
main advantage over the Map-Reduce model is that BSP is superior in handling graph-
based and iterative computations which are common in ML algorithms. 

The following subsections present the most popular implementations of the 
aforementioned models. Table 1 summarizes the main characteristics of the reviewed 
compute engines. 

2.1.1 Hadoop Framework 

Apache Hadoop is, mainly, a Map-Reduce based framework for big data manipulation. It 
comprises of a collection of open-source tools written in Java. Hadoop consists of 4 base 
modules and an ecosystem of tools built on top of those. The basic modules of Hadoop 
are: 

 Hadoop File System  [44] :  a distributed, user-space file system written in Java. 

 Hadoop YARN  [43]  Resource Manager:  YARN (Yet Another Resource 
Negotiator) is a cluster manager technology that tries to allow for multiple 
heterogeneous data processing engines to handle data and resources in a single 
platform. It provides consistency, security and data governance tools for the 
applications and libraries running on the Hadoop framework.  

 MapReduce: A Map-Reduce execution engine, based on YARN. Most of the tools of 
the Hadoop ecosystem are built on top of MapReduce and either try to simplify it 
or extend its basic functionality. 

Apart from these core modules most users use a number of open source tools by the 
Apache Project that use that basic framework. These include but are not limited to: Pig, 
Hive, HBase, Mahout and Spark. 

2.1.2 Spark 

Hadoop MapReduce is the de facto standard when it comes to big data analysis. 
However, two of its main design attributes make it unfit for interactive processing of 
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simple queries. The first one has to do with the fact that the user has to implement the 
queries in low level Java following the rather restrictive map-combine-reduce paradigm. 
And while this can be worked around with libraries such as Hive, which offer an 
abstraction for M/R, one cannot change the fact that MapReduce was designed for batch 
processing. This means that its main focus is processing datasets of unstructured data 
that are much larger than the main memory of the cluster. Because of that, MapReduce 
uses the disk-based file system to store intermediate results and is thus bound to the 
slower performance characteristics of secondary storage. It follows that interactive 
queries are not a good fit for it. Another example of analysis that is not a fast to 
implement in MapReduce is iterative processing. Many machine learning and graph -
based algorithms fall in that category. Since data needs to touch disk twice, after each 
map and reduce phase, running many iterations of a function over the data means 
incurring the cost of as many disk spills. 

However, none of those limitations is theoretically bound to datasets that can fit in the 
RAM available to the cluster. This is the motivation behind the development of Spark 
[21] . Spark is a much better fit for Hadoop for in-memory datasets. In those kinds of 
processing it offers execution times that are orders of magnitude faster  [39]  [88]  It also 
natively supports streaming data and SQL analysis. It is worth mentioning that Spark is 
available alongside MapReduce in most commercial Hadoop distributions. Spark is most 
commonly run over Hadoop but can also run standalone or, over Mesos. Data can be 
read from HDFS, the local file system, HBase, Cassandra and S3. The user can implement 
the data processing in Scala, Java, Python or SQL. It is also possible to issue interactive 
queries via the Scala or Python shells using a library of readily available operators. 
Despite being relatively new, a large number of inter operable data analytics libraries 
are built on top Spark and it increasingly preferred for big-data Machine Learning 
implementations (See Chapter. 2.3.2) 

2.1.3 Stratosphere/Flink 

Stratosphere  [24] was originally a research project with the ambitious goal of 
developing the next-generation Big Data Analytics Platform and addressing the 
shortcomings of Map-Reduce implementations. Since then it became an Apache 
"incubator" Project called Flink [9]  As a concept, Flink is similar to Spark in the sense 
that it is optimized for in-memory scalable data analytics and can provide realtime 
results as well as true streaming operation. Flink provides APIs in Scala and Java with 
Python and SQL counterparts under development. It also supports operations specific to 
Graph Processing with Spargel  [92] API, implementing the BSP programming model. 
Flink takes a more declarative approach to describing operations and aims to optimize 
the query execution in a manner similar to traditional DBMSs. It thus supports join 
algorithms that are automatically optimized as well as delta iterations processing. Flink 
also aims to allow the definition, optimization and execution of DAGs of operators.  

2.1.4 HAMA 

Apache Hama  [12]  (short for "Hadoop Matrix") is a pure BSP processing engine 
following a design principle similar to Google Pregel  [67] . It is thus most effective with 
streaming data processing and graph, network and matrix algorithms requiring iterative 
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computations. For such computations, HAMA promises a drastically improved 
performance compared to Hadoop and Mahout  [76] . 

2.1.5 Stream and Realtime Data Processing 

Stream processing frameworks serve the goal of handling data that arrive in real time as 
a stream of events. Common examples of such processing are aggregations, continuous 
queries, and pattern detection. This type of processing is relatively new and has been 
made a necessity by the APIs of Twitter and Facebook as well as large sensor networks 
which can provide a high Velocity (2.2) stream of events. There are a number of 
dedicated systems as well a number of Distributed Stream processing libraries that are 
built on top of existing computational engines like Hadoop and Spark. 

2.1.5.1 Apache Samza 

Apache Samza [104] is a distributed Stream processing framework built on top of 
Apache Hadoop YARN and Apache Kafka  [103]. Samza (as well as Kafka) is developed 
primarily by LinkedIn in order to provide elastic and fault-tolerant processing of its 
realtime feeds. 

2.1.5.2 Apache Spark Streaming: 

Spark's Streaming [77] is a library lets you use the same Spark code for batch processing 
and stream data. It uses the same Java and Scala API as batch jobs, provides fault 
tolerance and is tightly integrated with the rest of the Spark libraries.  

2.1.5.3 Druid 

Originally developed by Metamarket but later open-sourced, Druid [105] is also aimed at 
the storage and processing of realtime data. It assumes an append-only input and can 
provide efficient, lock-free, low latency ingestion and processing. It uses bitmap indexes 
for ad-hoc multi-dimensional filtering. Data can be kept in-memory or on disk in a 
column-oriented storage approach. 

 

Runtime Engines 
Type of 

Processing 
Good for Popularity 

Potential use 
in ASAP  

Hadoop 
Batch 

Disk based 

Batch 
processing of 
large datasets 

Facebook, Yahoo!, 
Amazon, Google, HP, 

eBay, etc. 

Web, 

Telecom 

Spark 
Batch, 

In-Memory 

Iterative jobs 
(ML, graph 

processing), 

Interactive 
analytics 

Yahoo!, Intel, 

Many startups 

Web, 

Telecom 
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Stratosphere/Flink 
Graph,  

BSP model 

Graph, iterative  
and streaming 

analytics 
Still in Research  

Web, 

Telecom 

Hama BSP model 
Iterative 

computations 
(graph, ML) 

Korean telecom, 

some universities... 

Web, 

Telecom 

Samza/Spark 
Streaming/ Druid 

Streaming 

Interactive 
processing of 
append-only 

streams 

LinkedIn, 
Metamarket, Netflix, 

Yahoo! 
Telecom 

Table 1 Summary of runtime characteristics and potential use in ASAP 

2.2 DataStores 

The basic layer of every data analytics system is the data storage system. Conventionally 
any organization would use a centralized Relational OLTP and OLAP system to store 
structured data on a local filesystem. 

With the rise of “big data” the storage needs web-scale datasets became beyond the 
scope of any centralized system. The challenges of handling data grew in at least 3 
aspects  [65] : 

 Volume: The sheer size of  the datasets in the cloud era makes it impossible to 
store and process effectively in centralized systems  

 Variety: Social applications, SaaS offerings and sensor data, logs are one of the 
few things that cannot fit in the relational model. 

 Velocity: The rate at which data is produced is an ever-growing challenge. 

Gradually, the need for a distributed file system became prevalent and the requirement 
for ACID assurances was relaxed in order to adapt to the new demands. 
A new range of distributed database systems was developed that abandoned full SQL 
support and compromised hard consistency goals for the sake of scalability to a large 
number of machines, high availability and partition tolerance.  The most commonly used 
systems in this category are open-source.  
We can roughly classify most of the available systems under the following categories  
(and combinations thereof). 

Distributed File Systems: Such block storage systems are usually ran on user-level and 
sacrifice POSIX compatibility in favor of the ability to provide high combined 
throughput, fault tolerance and ability to store large files despite residing on commodity 
hardware.  

Relational Databases: Traditional DBMSs are still widely used and have evolved to 
support a shared-nothing infrastructure and provide replication, sharding and 
scalability while still providing ACID compliance and support for SQL. 

NoSQL Databases: Such distributed systems usually utilize a different data model than 
that used in Relational Databases, do not fully support the full SQL standards and 
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operations and provide eventual consistency  [101] .  This category covers a large range 
of storage system models like: key-value, document, key-map, graph, column, time-
series. 

Proprietary Parallel Databases: Following the progress of CPU and network 
architectures, many proprietary DBMS vendors chose to try and offer scalability for their 
products by parallelizing their storage and execution to clustered resources. Parallel 
DBMS's offer improved processing and I/O performance by using multiple CPUs and 
disks. 

Column-Oriented databases: These types of systems forgo the common row-based 
storage for the stored data in favor of columnar storage. While this approach is not new, 
it was reintroduced recently with C-Store [95] (which later took shape as a product in 
the form of Vertica DBMS – see 0). Storing data in columns can be significantly faster in 
scenarios where aggregation operations and range queries are dominant. Another 
important value of column stores is that, due to its nature, it can allow a significant 
decrease in stored data when compression is used in the storage layer. As a result, 
column stores are a good fit for data warehousing and log storage/processing. A 
prominent example of columnar storage is MonetDB [69] . A column-based approach is 
also used in new NoSQL systems like Dremel [68]  and its open-source clone, Apache 
Drill  [8] , as well as Impala [59] . In those systems it was argued [109] to provide a 
significant increase in performance and decrease query latency. 

The following subsections review the most prevalent data stores chosen from the 
aforementioned categories. Table 2 summarizes their characteristics and their possible 
use within ASAP. 

2.2.1 HDFS 

HDFS (short for "the HaDoop File System") is an open-source distributed file system 
developed as the basic layer of the Hadoop Framework. It is developed in Java, runs in 
userspace and shares some design principles with GFS [38] . 

The basic assumptions it is based on are the use of commodity hardware, scalability to a 
high number of nodes (each offering local computation and storage), redundancy for 
fault tolerance and the use of files that are typically large (GBs to TBs), immutable and 
sequentially read and written. HDFS is a part of the "core" Hadoop framework and is 
used by nearly all Apache projects (HBase, Hive, Mahout, Pig, Spark, Tez, ZooKeeper). 
 
Data in HDFS can be accessed from the native Java API or via any other language using 
the Thrift Protocol [22] . Clients for HDFS exist in C++, Perl, Python, Ruby, Erlang, 
Haskell, C# and PHP. There is also a command line interface and it can be browsed 
through the HDFS-UI web app over HTTP. 

2.2.2 Cassandra 

Apache Cassandra [7] is an Open-Source distributed NoSQL database written in Java that 
was originally built by Facebook by using Google’s BigTable  [27]  data model and 
Amazon’s Dynamo [35] architecture. Its purpose is handling large amounts of structured 
data spread out across a high number of commodity servers with no single point of 
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failure. It is possible for a single cluster to spawn multiple data-centers across 
geographic areas while offering high performance and availability as well as failure 
resilience.  

Cassandra uses its own query language, CQL  [30] , which is very similar to SQL but 
offers a subset of its functionalities. Moreover Cassandra is not ACID compliant but does 
support durable transactions and a tunable level of consistency. There is an API 
available through Thrift [22] and a native one in JAVA. 

Its main advantages are excellent scalability to hundreds of cluster nodes, high write 
throughput and read efficiency. 

Cassandra is the industry leader of NoSQL Databases and is used by large organizations 
such as Adobe, Comcast, eBay, Rackspace, Netflix, Twitter, and Cisco. 

2.2.3 Hbase 

Apache HBase is another non-relational distributed database developed in Java, which 
follows BigTable's design  [27] . HBase is a member of the Hadoop ecosystem and thus 
uses HDFS for storage in the same way BigTable uses GFS. HBase harvests the fault 
tolerance characteristics of HDFS. 

The best use case for HBase is storing sparse Data in large quantities with versioning. 
HBase offers high availability and random, real-time access over very large (e.g. web 
graph) tables. One of the main advantages of HBase is its tight integration with Hadoop 
MapReduce and another one is its near-lineal scalability to a large number of nodes. 
HBase uses its own query language that is not as rich as SQL or CQL and there are Thrift, 
REST and native java APIs availalbe. 

HBase has a wide industry adoption and is the second used NoSQL database. Companies 
that are using it include Adobe, Facebook, Twitter, and Yahoo!. 

2.2.4 ElasticSearch 

ElasticSearch  [52] is a standalone, open-source search server written in Java. Its core 
free-text search functionality is provided by Lucene  [49] , but Elastic search wraps this 
functionality in a simpler, API and provides sharding, clustering and replication of the 
Lucene indices. ES promises real-time text queries and analytics, multi-tenancy, and high 
availability. The client API is REST-ful with a JSON format but there are also clients for 
Perl, PHP, Python and Ruby while there is also compatibility with Hadoop. ElasticSearch 
is a part of ElasticSearch ELK Stack  [51]  for creating a search server. ELK also includes 
tools for encryption, managing time-based data, visualization of the results and 
monitoring of the cluster. 

2.2.5 MySQL 

MySQL  [71] , the most popular server-side relational DBMS, is developed in C and is 
open source. MySQL provides extensive SQL support, ACID compliance, and 
transactions.  With MySQL Cluster  [54] , it also offers the ability for automatic sharding 
and distributed operation with no single point of failure and good scalability 
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characteristics. Support is extensive with APIs available in virtually any programming 
language. 

2.2.6 PostgreSQL 

PosgreSQL [77] is an open source object-relational DBMS developed in C. It provides 
near full support for SQL, durable transaction and is ACID compliant. PostgreSQL has the 
ability of failure resilience through master-slave replication and can also serve reads 
from slaves. There are APIs available in C, C++, Java, Python, Perl, Tcl and ECPG. 
PostgreSQL has a strong market share as far as databases are concerned and is often 
preferred over MySQL due to some of the more advanced features it offers. MonetDB 

2.2.7 MonetDB 

MonetDB  [69]  is a column-oriented DBMS. It was created during the late 90's as a part 
of a research project and introduced many novel optimizations (e.g. for CPU caches). Its 
current, open-source form was introduced with version 4 in 2004. MonetDB provides 
extensive SQL support and has a JDBC client for Java, as well as clients for PHP, Python, 
Perl, Ruby and R. MonetDB does not have a significant commercial user base but is used 
in a number of academic projects. 

2.2.8 Proprietary analytics PDMS 

Vertica (HP): An implementation based on a grid-based, column-oriented storage 
approach was Vertica's database which is now a part of the HP Vertica “Dragline”  [57] 
platform. This vertical DBMS approach, was spawned from the C-Store [95]  research 
system, is mostly used for data warehousing and runs on grids of Linux commodity 
servers. It is also available as a hosted DBMS provisioned by and running on the Amazon 
Elastic Compute Cloud. It also integrates with Hadoop. Apart from Vertica’s analytics 
database, HP's platform includes Autonomy’s unstructured data analytics engine, IDOL 
10.5  [48] . The platform combines structured and unstructured data into a unified 
workflow. 

Greenplum: Pivotal Greenplum Database is another shared-nothing, MPP 
implementation of an OLAP system that is a part of Pivotal's cloud services portfolio 
with a focus on business intelligence and analytical processing. It adopts a hybrid 
row/column approach and promises lineal parallelization and also offers native Map -
Reduce in its parallel engine, support for HDFS as well as support for PL/Java, optimized 
C, and Java functions.  

Data Store 
Type of 

Data 
Good for Popularity 

Potential 
use in 
ASAP 

HDFS DFS 
sequential reads and 
writes of large files 
in a batch manner 

universal 
Web, 

Telecom 
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HBase 

NoSQL, 
column-
family 

oriented 

Write throughput 

Strong consistency 

Facebook, 

Adobe, Yahoo!, HP, 
etc. 

Web, 

Telecom 

Cassandra 

NoSQL, 
column-
family 

oriented 

Write  throughput, 
multi-datacenter 

configuration, error 
resilience 

Facebook, Yahoo!, 
Adobe, AoL, BestBuy, 
,Ebay, FedEx, GitHub 

+many more 

Web, 

Telecom 

ElasticSearch 
Indexed 

data 

Search engine 
capabilities 

(secondary indices) 

Wikimedia, Mozilla, 
Foursquare, etc. 

Web 

MySQL RDMS 
Centralized database 

storage with 
transactions 

Industry leader for 
relational storage 

Telecom 

PostgreSQL ORDMS 
Replicated database 

storage with 
transactions 

Skype, IMDB, LAMP, 
Apple, SourceForce 

Telecom 

MonetDB RDBS 

Append-only 
workload, 

aggregation 
operations 

Research Telecom 

Vertica/Greenplum P-RDMS 
Interactive SQL 
queries, OLAP 

commercial Web 

Table 2 Summary of data store characteristics and potential use in ASAP 

2.3 Libraries and Big Data operations 

In the last decade, with the rise of Cloud Computing and social networking, managing 
large, web-scales datasets became ever more important for creating novel products and 
applications. Big data analysis does not provide an excellent basis for commercial 
products, but is also crucial for developing business intelligence. With the prevalence of 
the Hadoop ecosystem a number of software solutions have emerged for covering that 
need. Broadly speaking we could split the various solutions in two groups. On the one 
hand there are the SQL-like query processing tools and on the other hand the Machine 
Learning libraries. A summary of the various tools can be found in Table 3 Summary of 
machine learning and query processing libraries and applications 

2.3.1 Query processing 

There has been a lot of industry and research effort dedicated on executing SQL or 
similar queries over Big-Data Analytics engines. Pig, Hive, Sawzall, Jaql and Tenzing fall 
in the category of offering SQL processing on top of Hadoop. Those systems impleme nt 
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SQL or SQL-like functionalities over the Map-Reduce model and are widely used by large 
enterprises in the industry. Spark SQL is a similar effort for Spark. These Query 
processing systems serve the purpose of allowing a user to express queries in a language 
that resembles SQL which is the most prevalent query language in the industry. 

2.3.1.1 Hive 

Hive [14]  is a framework allowing the execution SQL-like queries on data stored in 
HDFS. It is is an interface layer for Hadoop converting the user-provided query in 
"HiveQL" language into Map-Reduce jobs. Hive is often used as a user-friendly tool for 
data warehousing applications. Hive also uses a centrally located repository for storing 
metadata which is called "metastore". Hive was originally developed by Facebook but is 
now an Apache open-source project widely used in the industry from companies like 
Netflix. 

2.3.1.2 Pig 

Pig is system similar to Hive in the sense that it is an interface layer between a high level 
query language and Hadoop M-R jobs. The language used by Pig is called "Pig Latin" and 
is extendable by User Defined Functions which can be written in  Java, Python, 
JavaScript, Ruby or Groovy. In contrast with Hive, Pig allows for more data 
transformations and provides more control over the executed workflow. It is not 
uncommon for Pig and Hive to be used alongside despite the fact that their functionality 
is largely similar. Pig was originally developed by Yahoo! but is now  an Apache open-
source project. It is also widely used in the industry. 

2.3.1.3 SparkSQL [93]  

Spark SQL was developed as a unified query language for the Spark framework. It 
incorporates ETL (Extract-Transform-and-Load), SQL-like and Hive relational queries 
and Map-Reduce jobs in a single language. It also allows native Scala queries as well as 
access to externally stored data from existing RDDs [81] , Parquet  [18]  and JSON files. 
Spark has integrated APIs in Python, Scala and Java. It is also tightly integrated with Hive 
since it reuses the Hive frontend and metastore, providing full compatibility with 
existing Hive data, queries, and User Defined Functions. 

2.3.2 Machine Learning 

As the Hadoop ecosystem grows more mature, it is increasingly used for advanced 
analytics. In  particular, a good fit for its capabilities seems to be running Machine 
Learning operations on large text datasets. There exists ample research on this field and 
various projects have evolved to open-source implementation that are widely used. 
While Mahout, running on top of MapReduce is the most prominent one with an 
extensive set of available operations, MLlib over the faster Spark framework quickly 
catches up and seems likely to replace it. Newer tools, based on the BSP paradigm, also 
show a lot of promise for managing graph data. 
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2.3.2.1 Mahout 

Apache Mahout  [16] is an open source machine learning library, written in Java and 
built on top of Hadoop MapReduce. It offers distributed implementations for co mmon 
algorithms, primarily for clustering, classification and batch based collaborative 
filtering. Mahout can be run in a single node but all the operations will follow the Map-
Reduce paradigm.  Mahout is in active development but is already established in the 
Hadoop ecosystem. 

2.3.2.2 MLlib 

MLlib [20]  is library for Spark that offers implementations for common ML algorithms, 
tests and data generators. The available algorithms fall in the categories of binary 
classification, regression, clustering and collaborative filtering. Similarly to 
Mahout/MapReduce, MLlib uses the underlying engine of Spark just extending its 
available operators. MLlib is tightly integrated with Spark and is in active development. 
Like Spark itself MLlib is gaining traction over Mahout and MapReduce since it can 
provide more interactive operations. 

2.3.2.3 GraphX 

Spark's GraphX  [10] is a distributed analytics system for graph data. Following a similar 
motivation as Pregel [67] , GraphX expresses graph computations in the Spark 
framework.  Its goal is to “unify data-parallel and graph-parallel analytics”. As most 
implementations for Spark, GraphX focuses on in-memory computations and is efficient 
for iterative computations. The GraphX library implementation is a topic of active 
research  [104] . 

2.3.2.4 WEKA 

The Waikato Environment for Knowledge Analysis is an open source suite of ML 
algorithms implemented in Java  [103] . WEKA can be used standalone or as API in Java 
code. It has a very extended collection of tools for arithmetic and text processing. 
Namely, it offers algorithms in the areas of pre-processing, classification, regression, 
clustering, association rules, and visualization. WEKA is the default tool used by both 
academia and industry for centralized ML processing. 

2.3.2.5 OpenNLP 

Apache OpenNLP [17] is a toolkit for natural text ML processing. It features 
implementations for tokenization, sentence segmentation, part-of-speech tagging, 
named entity extraction, chunking, parsing, and co-reference resolution. It is often used 
as a building block for larger and more complex NLP projects 
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Runtime 
libraries 

Type of 
Processing 

Good for Popularity 
Potential use in 

ASAP 

MLlib distributed 
Machine Learning 
library over Spark 

Companies 
that use 
Spark 

Web, 

Telecom 

Mahout distributed 
Machine Learning  lib 
over Hadoop/Spark 

AOL, 
Foursquare, 

LinkedIn 

Web, 

Telecom 

WEKA centralized 
Machine Learning 

software written in 
Java 

Very popular 
Web, 

Telecom 

Hive distributed 

Query processing and 
data warehousing on 

top of Hadoop 
Mapreduce 

Netflix 
Web, 

Telecom 

Spark SQL distributed SQL over Spark 
Companies 

that use 
Spark 

Web, 

Telecom 

Pig distributed 
Query processing over 

Hadoop MapReduce 

Twitter, 
LinkedIn, 

AOL 

Web, 

Telecom 

Table 3 Summary of machine learning and query processing libraries and applications  

2.4 Workflow Management platforms 

The field of optimizing the execution of workflows over multiple execution engines is a 
relatively new field of research. There has already been a promising work in the form of 
HFMS but most available tools for workflow management are focused on a small set of 
scientific tasks executed locally. 

HFMS  [89]  builds on top of previous work on multi-engine execution optimization  [90] 
. On those platforms optimization occurs on two levels. Namely for single engine and 
multi-engine execution. The actual engines used are the Hadoop MapReduce distributed 
execution engine and a centralized PostgreSQL database. We believe that ASAP will 
leverage knowledge from those approaches and generalize it in a more all-around 
framework for multi-engine workflow optimization. 

Pegasus  [50] is a workflow management System that allows users to easily express 
multi-step computational tasks. The workflow it accepts as input is in the form of a DAG, 
where the tasks are represented as nodes and task dependencies as edges. This DAG is 
expressed in an XML file.  Pegasus offers APIs for Java, Python and Perl, offers support 
for MySQL, PostgreSQL, Oracle and Microsoft databases and can run on Amazon EC2 
infrastructure. 



 
 

 
D 3.1 – Compute and Data Engine Modeling 23 / 54 
 

Taverna  [56] is another management system for scientific workflows. It can that help 
user specify the group of tasks that constitute a scientific pipeline and orchestrate their 
execution by using several underlying tools. However Taverna's compatibility is limited 
to database available via JDBC  [53] , some proprietary tools and R programming 
language operations and does not support any distributed execution engines. 
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3 The IReS Architecture  

IReS focuses on highly efficient and user-customizable execution of analytics tasks (or 
workflows). This is made possible through the transparent modeling, monitoring and 
scheduling that involves different execution engines and storage technologies. Our 
system is able to execute all types of analytics workflows by adaptively choosing to 
execute each sub-part of the workflow to a (possibly different) deployed engine. The 
IReS platform assigns sub-tasks to the most advantageous technology(-ies) available and 
ensures resource and dataflow scheduling in order to enhance performance: If a single 
engine is used, enhancement will be achieved through optimized resource allocation and 
elasticity modeling (e.g., execute on more VMs, or on smaller cluster with larger main 
memory, etc.); if multiple ones are required, enhancements will relate both to single -
engine optimization and to workflow management that decides what is the best 
execution workflow and data-flow (e.g., execute sub-task 1 first, intermediate results 
should be stored on a NoSQL engine and then sub tasks 2 and 3 run in parallel, that write 
the final results to HDFS files). 

 

Figure 1 Architecture of the IReS platform 

The central notion behind the IReS platform is to create detailed models of the costs and 
performance characteristics of various analytics operations over multiple execution 
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engines. These models will then be used to intelligently match the user optimization 
policy with the available execution engines. 
 
The architecture of the IReS platform is depicted in Figure 1. IReS comprises of three 
layers, the interface, the optimizer and the executor layer. In the following we 
describe in more detail the role, functionality and internals of these layers and the most 
important modules of the platform.  

3.1 The Interface Layer 

The interface layer is the upper layer of the IReS platform, responsible for 
communicating with the workflow description language (defined in WP5) and the 
application UI in order to receive the input that is necessary for its operations. It 
comprises of the job parsing module, which extracts execution artifacts such as 
operators, data, their dependencies and accompanying metadata from the user-defined 
wokflow. Moreover, it validates the user-defined policy. All this information must be 
robustly identified, structured in a dependency graph and stored. The job parsing 
module is more thoroughly described in the following. 

3.1.1 Job parsing module 

This module takes as input the user-defined workflow, formulated in a dependency 
graph format and expressed in the workflow description language designed and 
implemented in T5.1. This language, which allows for various levels of abstraction, is 
described in detail in D5.1. Moreover, the module takes as input the user optimization 
parameters, which could translate to performance, cost, availability, etc. All this 
information is gathered and concisely described using a metadata framework that will 
facilitate the process of identifying the optimal workflow execution plan. 

The main challenge of defining such a workflow description metadata framework is the 
fact that it requires to be abstract at the user level. The user should be able to describe 
the data and operators that compound her workflow in a way as abstract as she desires. 
The IReS planner and workflow scheduler need to remove that abstraction, find all the 
alternative ways of materializing the workflow and select the most beneficial, according 
to the user-defined policy.  

Our proposed metadata framework describes data and operators. Data and operators 
can be either abstract or materialized. Abstract are the operators and datasets that are 
described partially or at a high level by the user when composing her workflow whereas 
materialized are the actual operator implementations and existing datasets, either 
provided by the user or residing in a repository. 

Both data and operators need to be accompanied by a set of metadata, i.e., properties 
that describe them and can be used to match  

(a) abstract operators to materialized ones and 
(b) data to operators.  

Such properties include input data types and parameters of operators, location of data 
objects or operator invocation scripts, data schemata, implementation details, engines 
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etc. The metadata defined for each object have a generic tree format (JSON). To avoid 
restricting the user and allow for extensibility, the first levels of the metadata tree are 
predefined but users can add their ad-hoc subtrees to define their custom data or 
operators. Moreover, some fields (mostly the ones related to the operator and data 
requirements, located under the constraints field) are compulsory while the rest (i.e., 
known cost models, statistics etc.) are optional. Materialized data and operators need to 
have all their compulsory fields filled in with information. Abstract data and operators 
do not adhere to this rule. Apart from having empty fields, they can also support regular 
expressions (e.g., the * symbol under a field means that the abstract object matches 
materialized ones with any value of that field). 

 

Figure 2 Workflow example: Simple join operation between two datasets 

To describe the proposed language we will use the following example: The user has 2 
materialized datasets, one stored in HBase (D1) and one stored in MySQL (D2) and 
wants to perform a join operation on them. Figure 2 depicts the abstract workflow given 
by the user. Circles represent data objects while rectangles represent operators. Shaded 
shapes designate materialized objects. 

The metadata descriptions of D1 (designated as hbase_dataset) and D2 (sql_dataset) are 
depicted in Figure 3 and Figure 4 respectively. Since the datasets are materialized, all 
compulsory fields are populated. These fields include information about the data itself, 
such as the attributes of the dataset and their types, as well as engine specific information 
(which attribute is the HBase key, where is the dataset located, etc.). Under the optional 
optimization field, we place additional information that assists in the optimization of the 
workflow, in our case the dataset size and the number of records (unique_keys). 

 

Figure 3 Metadata description of dataset D1 
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Figure 4 Metadata description of dataset D2 

Let us consider the join operator on a single attribute of the above example. In its 
abstract form, the joinOp operator (see Figure 5) needs only define the minimum 
compulsory fields under the constraints key, namely the two input parameters, the 
condition under which they are joined, an output parameter and the description of the 
operation to performed.  
 

 

Figure 5 Metadata description of the abstract join operator 

Each of the input parameters and the output are abstract data_info objects with two 
attributes: "attr1" represents the field of the join predicate while "attr2" represents the 
second available field in each data_info object. The op_specification field of this operator 
specifies its operation, a single join algorithm, and defines the join condition (in this case 
an inner join).  

In short, the abstract join operator defines a format that any join operator implementing 
the specific functionality needs to follow.  

The materialized operators include, on top of that, all information required in order to 
perform the operation on an execution engine. In join_1 (see Figure 6), the operator 
executes the join over Hadoop; it thus includes Hadoop-specific information about the 
input, output and the engine. The inputs and output in this case have specific attribute 
types and an engine specification (under engine) containing the location of the data and 
information about their structure. The operator itself also has an engine specification 
(engine_specification) indicating its execution location. The example in Figure 7 
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describes join_2, which joins an HBase and a relational table and outputs the result to 
HDFS. It runs as a local java process. 

 

Figure 6 Metadata descriptions of the first materialized join operator 

 

 

Figure 7 Metadata descriptions of the second materialized join operator 

To discover the actual implementations that comply with the description of an abstract 
operator provided by the user, we employ a tree matching algorithm to make sure that 
all metadata constraints are met, i.e., compulsory fields are consistent. This is performed 
by the decision making module, described subsequently (Section 3.2.3). In our example, 
both join_1 and join_2 match join and are thus considered when constructing the 
optimized execution plan. 
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Apart from the compulsory fields, which are necessary for the matching of abstract to 
materialized operators, the metadata descriptions of the materialized joins both contain 
the optional optimization field, which holds additional information that assists in the 
optimization of the workflow. In the case of join_1, a cost function is provided by the 
developer of the operator while for join_2 the platform is instructed to create one by 
profiling over specific metrics (execution time and required ram). 

3.2 The Optimizer Layer 

The optimizer layer is the layer that performs all the necessary actions to optimize the 
execution of an analytics workflow with respect to the policy provided by the user. The 
core component of the optimizer is the decision making module, which determines in 
real-time the optimal execution plan. This entails deciding where each subtask is to be 
run, under what amount of resources provisioned, the plan for moving data to/from 
their current locations and between runtimes if more than one is chosen and defining 
the output destinations. Such a decision must rely on the characteristics of the analytics 
task in hand and the models of all possible engines. These models are produced b y the 
modeling module and stored in the model database. The initial model of an engine 
results from profiling and benchmarking operations over them in an offline manner, 
through the profiling module. This module directly interacts with the pool of physical 
resources and the monitoring layer in-between. While the workflow is being executed, 
the initial models are refined in an online manner by the model refinement module, using 
monitoring information of the actual run. Such monitoring information is kept in the 
IReS DB and is utilized by the decision making module as well, to enable real-time, 
dynamic adjustments of the execution plan based on current knowledge.  

In the following, each module is described in greater detail. 

3.2.1 Modeling Module 

This module is responsible for constructing models on a per operator-engine 
combination basis. The relevant literature review [83]  [23]  [109] has revealed that 
models already exist for a very limited number of operators and engines and some of 
them entail knowledge of the code to be executed. Contrarily, we treat materialized 
operators as "black boxes", assuming no prior knowledge of their internals, and model 
them using profiling in an offline mode, as well as machine learning over actual runs. 
The detailed modeling methodology used in ASAP is thoroughly described in Section 4. 

3.2.2 Profiling Module 

The profiling module functions in an operator-agnostic way, having no prior knowledge 
other than the profiler input parameters. These parameters fall into three categories: 

 Data specific parameters: These parameters describe the data to be used for the 
operator profiling, e.g., the type of data and its size. 

 Operator specific parameters: These parameters relate to the algorithm of the 
operator, e.g., the number of output clusters in k-means. 

 Resource specific parameters: These parameters define the resources to be 
tweaked during profiling, e.g., \#VMs, storage size, main memory, etc. 
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The output of each run is the profiled operator's performance (e.g., completion time) 
with each combination of the input parameter values for specific user -defined 
optimization metrics, such as cost in $ or I/O, latency, throughput, etc. Both the input 
parameters as well as the output metrics are given by the user/developer.  

The aim of the profiling module is to create a surrogate estimation model [105] , 
including neural networks, SVM, interpolation and curve fitting techniques, for each 
operator running over a specific engine. To that end,  we need to sample the operator 
function by running automated experiments for various values of each of the input 
parameters and measure the outputs. To create the most accurate surrogate within a 
budget of experiments, adaptive sampling techniques are adopted to select the 
combinations of values to be used as input of each run. The detailed profiling 
methodology is presented in the following section (Section 4). 

3.2.3 Decision Making Module 

This module is charged with the intelligent exploration of all the available execution 
plans and the discovery of the optimal execution plan according to the user defined 
optimization objectives. Initially, it transforms the abstract workflow representatio n 
into a materialized workflow graph that contains all the alternative paths of 
materialized operators that match the abstract workflow. To do so, for each abstract 
operator it searches the library of available materialized operators to find all matches. 
Our decision module uses an efficient tree matching algorithm to avoid unnecessary 
comparisons and follow the hierarchical structure of the tree-based metadata 
constrains, as described in Section 3.1.1. When all operator matches are discovered, the 
decision making module consults the input and output specifications of the materialized 
operators and adds the required move/transform operators. Those operators are 
needed in order to connect operators of different engines and input/output 
configurations and generate the final materialized workflow graph.  

Figure 8 depicts the complete  of all alternative execution plans for the simple join 
example of Figure 2 in section 3.1.1. To be able to match the join_1 operator, which joins 
two datasets over Hadoop and thus requires both its inputs in HBase, with the dataset 
D2 that resides in MySQL, a move operator must be added (depicted in dash line). As its 
metadata description in Figure 9 reveals, the move operator moves a dataset from 
MySQL to HBase. This operator is placed between D2 and join_1 to produce a data set 
(D'2) that complies with the input constraints of join_1. 

 

Figure 8 Complete graph of execution plans 
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Figure 9 Metadata description of operator move 

To find the optimal execution plan, our decision module uses a dynamic programming 
planner that explores the materialized workflow graph in order to find the plan that best 
matches the user optimization policy. To estimate operator performance metrics, our 
planner consults the Model DB that holds surrogate estimator models for each one of the 
materialized operators. In our current implementation, our planner can be configured to 
optimize one metric or a function of multiple performance metrics that the user  is 
interested in. We are currently investigating methods for optimizing multiple 
dimensions of performance metrics, like finding Pareto  frontier execution plans.     

For our running example, let's assume a user optimization policy which includes 
minimizing execution time while guaranteeing fault tolerance. The performance and 
fault tolerance estimation that derives from the IReS surrogate models designate the 
execution plan that better fits these criteria, marked in green in Figure 10. 

 

Figure 10 The selected execution plan 
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In the course of the workflow execution, the real-time monitoring information is fed 
back to the decision making module in order to take into account current running 
conditions and adapt accordingly. Moreover, our planner considers more than a single 
final plan to ensure that alternatives will exist in case of failures or other unpredictable 
circumstances without having to run the whole decision making process from scratch. 
These alternatives include the top-k (instead of the best) plans according to the user's 
optimization preferences or a sample of the multi-dimensional space covering different 
environments. 

3.2.4 Model Refinement Module 

Compute and data engine models are initially created during the offline modeling 
process, as described in section 3.2.1. These models are refined during the online 
modeling process, that is, during the actual runs of a workflow.  

3.3 The Executor Layer 

The executor layer is the layer that enforces the optimal plan over the physical 
infrastructure. It includes methods and tools that translate high level "start runtime with 
using x resources", "move data from site Y to Z" type of commands to a workflow of 
primitives as understood by the specific runtimes and storage engines. Moreover, it is 
responsible for ensuring fault tolerance and robustness through real-time monitoring.  
It's core module is the enforcer module, described in the next section. 

3.3.1 Enforcer Module 

The enforcer module undertakes the execution of the ensuing plan. First, the enforcer 
needs to validate the plan by checking the availability of resources and data, the load of 
the engines etc. After ensuring that everything is correct, it enforces the plan actions by 
translating the plan steps to standard, low-level API calls. Such actions might entail code 
and/or data shipment if necessary. In case of on-the-fly faults and failures an alternative 
plan will substitute the current.  

3.4 Workflows 

In this section, we present the functionality of our IReS platform by describing the major 
workflows involved. 

3.4.1 Profiling Workflow 

In order for our decision module to be able to estimate the performance of an operator, 
we need to obtain knowledge about the behavior of operators over different engines, 
resource configurations, input parameters, dataset sizes etc. This knowledge can be 
generated both from on-line learning, during the execution of different operators, as 
well as from offline profiling that automatically executes and monitors the operators 
using different resource and dataset configurations. The offline profiling process can 
help our decision module have a steeper learning curve and avoid planning errors for 
operators with unknown performance. 
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Figure 11 Profiling workflow 

Whenever a new materialized operator gets inserted in the IReS platform, the profiling 
workflow takes place, depicted in Figure 11. During profiling, a number of different 
operator configurations are selected, executed and monitored in order to identify the 
relationship between a specific configuration and the operator's performance metrics. 
All the user provided performance monitoring metrics are measured and evaluated in 
order for IReS to generate a knowledge base, Model DB, that can be used to facilitate the 
decision making process. The main challenge for the Profiling module is to intelligently 
choose the set of configurations to be profiled. 

Each operator execution has a respective cost both in time and money. Therefore, the 
Profiler attempts to tackle the problem of generating the most accurate profile within a 
user specified budget of experiments. 

More details and UML use case diagrams can be found in deliverable D1.2. 
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3.4.2 Planning and Execution Workflow 

This is the main workflow of the IReS platform, depicted in Figure 12. As mentioned in 
Section 3.1.1, the user provides an abstract description of the workflow she wants to 
execute. The first task of the IReS platform is to match the abstract operators present in 
the user provided abstract workflow with the materialized operators imported in the 
platform's operator library. The result of the operator matching process is the 
materialized  graph of the workflow that contains all the possible alternative execution 
plans that match with the abstract workflow plan. 

 

Figure 12 Planning and execution workflow 

When a new workflow execution is triggered the user can provide the optimization 
policy that she wants to enforce on its execution. This policy can consist of one or a 
function of multiple operator performance metrics like cost, execution time, etc. Then, 
the Decision Making module explores the materialized  graph of the workflow in order 
to find the plan that best matches to the user defined policy.  When the optimal plan is 
located, its execution is enforced by the Enforcer module. As mentioned in Section 3.2.3, 
apart from the optimal plan, IReS locates the top-k best plans in order to be able to fall 
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back to the execution of another plan. This can happen during the validation of the plan, 
when the Enforcer detects that the actual plan execution deviates largely from its 
expected execution. Lastly, IReS manages the elasticity of the underlying infrastructure 
by monitoring the utilization of the engine resources. Based on this monitoring 
information it can take decisions for allocating and de-allocating computing resources in 
order to improve the general execution of workflows and operators. 

More details and UML use case diagrams can be found in deliverable D1.2. 

3.5 IReS Interaction with other ASAP modules  
This section describes how the IReS platform interfaces with the rest of the ASAP system 
components, as defined in work packages 2-5.  

 

Figure 13 Interaction of IReS with other ASAP modules 

Figure 13 depicts the position of the IReS platform in the ASAP system and the points of 
interaction with the rest of the research work packages. There are 5 external modules 
that interact with the IReS platform: 

 The Workflow Description Language, which describes the user-defined 
workflow  
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 The User Interface, where the user defines her optimization policy.  
 The Monitoring module, which monitors the execution of the workflow over the 

system infrastructure, namely the processing engines and data stores. 

 The Online Adaptation module, which allows the user to change the parameters 
of a long running workflow without restarting the whole workflow computation. 

 The infrastructure itself, where the various parts of the workflow are deployed 
and executed. 

Thus, these are the 4 actors of the IReS platform. 

The following Table (Table 4) describes the ways in which IReS interacts with the above 
described external actors. The exact APIs are still under definition. 

Functionality Actors Description 

Add operator Workflow 
Description 
Language, User 
Interface 

The ASAP user can add operators along with their 
description using either the Workflow Description 
language or the ASAP User interface. 

Add dataset Workflow 
Description 
Language, User 
Interface 

The ASAP user can add datasets along with their 
description using either the Workflow Description 
language or the ASAP User interface. 

Add Abstract 
Workflow 

Workflow 
Description 
Language 

An abstract workflow is provided using the ASAP 
workflow description language. This abstract 
workflow contains abstract operators that match 
with several of the materialized operators already 
described and available in the IReS platform. 

Add 
optimization 
policy 

User Interface The user provides the optimization parameters of her 
workflow through the User Interface. 

Materialize/ 

Optimize 
workflow 

Workflow 
Description 
Language, User 
Interface, 
Online 
Adaptation 
module 

After the description of an abstract workflow the 
ASAP user can trigger its materialization and 
optimization phase using both the Workflow 
Description language and the ASAP User interface. 
The output of this procedure is a materialized 
workflow that contains all the possible execution 
paths that match with the abstract workflow. The 
IReS platform also handles the optimization of the 
workflow according to user specified policies. The 
Online Adaptation module can also trigger this 
method in order to retrieve information about the 
execution of multiple workflows using several 
policies. 

Execute Workflow After the materialization and optimization phases, 
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workflow Description 
Language, User 
Interface, 
Monitoring 
module, 
Infrastructure, 

the workflow is ready to be executed. The execution 
can be triggered by the ASAP user through both the 
Workflow Description language and the ASAP User 
interface. The execution of the required operators is 
scheduled and monitored by the IReS platform. 

Profile 
operator 

Workflow  
Description 
Language, User 
Interface 

The ASAP user can trigger the profiling of a described 
operator. The profiling loop executes the specified 
operator using different input specifications and 
monitors its user defined output parameters. During 
the profiling loop, the input/output data gathered are 
used to train surrogate estimator models for the 
operator. The data are also used to guide the adaptive 
sampling techniques proposed by our profiling 
system, in order to achieve the best estimation 
accuracy within a user specified budget of profiling 
experiments. 

Monitor 
workflow 

Monitoring 
module, 
Infrastructure, 
Online 
Adaptation 
module 

Throughout the execution of operators and 
workflows, the IReS platform uses the monitoring 
module to gather the user defined monitoring 
metrics. The metrics gathered are persistently stored 
and used to further train the surrogate estimator 
models of the operators. The metrics are also used by 
the Online Adaptation module to trigger changes on 
the workflow execution plan. 

Table 4 High level external interface of the IReS platform 
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4  Compute and Data Engine Modeling  
In this section, we present our approach on modeling and estimating the execution 
characteristics of specific engines and operators. In order for ASAP and the IReS 
platform to be able to decide on the engine and operator implementation that best fits a 
user defined workflow execution policy, we need a way to estimate performance metrics 
for different operators and engines. More specifically, this task undertakes the process 
of creating realistic, updatable and multi-dimensional models of the performance and 
cost of the different runtime and store technologies in order to be used by the 
scheduling algorithm for optimal workflow execution. The generated models should be 
able to estimate the effect of multiple dimensions on the performance and cost metrics 
of an operator. Such dimensions could be the type and complexity of the task/data to be 
run/stored, the amount of resources/storage available, the data/load skew, the 
architecture, the elastic properties, etc. The performance and cost metrics modeled 
should be user defined and extendable in order to allow the users to define the 
optimization policies that best suit their needs. Initial operator and engine models can 
be generated by running automated benchmarking experiments for different 
configurations.  The models should also be updated using performance measurements 
retrieved from the actual execution of operators on the IReS platform. 

4.1 State of the Art 

In this section, we present related work on techniques used for benchmarking, engine 
and runtime modeling as well as automated application profiling. 

4.1.1 Benchmarks 

HiBench [58]  is a Hadoop benchmark consisting of a collection of common Hadoop 
applications. It takes a hybrid approach, using partly the micro-benchmarks, included in 
the Hadoop package, and partly selected, common, real-world applications. Namely, it 
includes the indexing workload from the Nutch open-source search engine [61] , the 
PageRank, Bayesian Classification and K-means Clustering from the Mahout library [16]  
and the Join and Aggregation queries of the Hive performance benchmarks. As inputs, 
HiBench uses a dump of Wikipedia for PageRank and Classification, randomly generated 
data from statistic distributions for Clustering, and the inputs and queries defined in [3]  
for Hive Joins and Aggregation. 

MalStone [25] , runs a custom analytics on automatically generated data. The authors 
argue that web-scale analytics datasets are often proprietary and thus not available to 
the general public. To tackle this challenge, they developed MalGen, synthetic data 
generator, simulating multiple web sites' log files and web-user behavior. The 
benchmark contains multiple implementations of classifiers and algorithms that try to 
automatically detect web-user patterns and strange behaviors. 

In MRBench [62]  the authors try to create a custom version of the industry standard 
decision support systems benchmark suite, TPC-H [29] , specifically for MapReduce 
workloads. Their approach is to convert each of the 22 TPC-H queries into MR jobs, each 
one consisting of several Map and Reduce steps. Apart from this, they also offer an 
implementation of MRBench in Java for the Hadoop framework. 
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In an approach similar to MRBench, the work presented in [70]  also tries to run the 
TPC-H suite on top of the Hadoop framework, with the difference that the authors re-
write the queries using the "Pig latin" [74] high level query language and use the Pig 
system to translate them into a MapReduce workflow.  

The approach in [108] is similar to the one in MRBench and [70] but this time the TPC-H 
queries are executed using the Hive SQL implementation.  

The work in [72]  tests a modified subset of the TPC-H queries in the MongoDB NoSQL 
database (6 of 22 queries). The results are presented in comparison with PostgreSQL 
and show that MongoDB induces performance overheads when dealing with complex 
analytic calculations. 

4.1.2 Modeling 

The work presented in  [45] is an effort to describe the performance of a MapReduce job 
execution using mathematical models. The authors state that the map and reduce phases 
can also be further divided to more primitive sub-tasks. They leverage this fact in order 
to analytically model dataflow and cost information at a fine granularity, using a set of 
parameters based on the framework's configuration, the properties of the input data and 
some cost factors. The paper defines mathematical formulas describing the performance 
of each MR sub-task but lacks any experimental data arguing about the accuracy of any 
of the parts of the model. 

4.1.3 Profiling 

Predicting the performance of applications running over virtualized resources is vividly 
researched in the literature. In [85] , Kundu et al. proposed an iterative model training 
technique for Neural Networks with which the authors managed to predict the 
minimum possible Virtual Machine (concerning its resources) which would fulfill their 
objectives with respect to the SLAs. An extension of this work  [86] also utilized Support 
Vector Machines for the same objective. Their work achieved highly accurate 
predictions, however the authors did not address the problem of sampling the input 
domain space, as we do in this work.  

Furthermore, Iqbal et al. in  [102] propose a method which, at first, identifies a workload 
pattern and secondarily builds a model capable to predict the application’s capacity (the 
number of requests it can serve without violating given constraints). This work focuses 
on web applications and the prediction happens with regression models.  

Similarly, Do et al. in  [6]  presented a profiling technique which utilizes the Canonical 
Correlation Analysis, able to identify the relationship between the allocated resources 
and the application performance. This work targets to predict the performance of a 
newly allocated Virtual Machine when it is deployed in a specific host running other 
Virtual Machines. Other works focus on predicting specific application metrics based on 
I/O workload and access patterns such as  [79] and  [84] .  
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4.2 The IReS modeling approach 

In this section, we present the techniques used by the IReS platform in order to estimate 
the performance and cost characteristics of different operators and engines. This 
module lies behind project ASAP’s ability to provide optimized, adaptive and highly 
extensible analytics execution. The main idea is to provide predictions for each 
operator’s performance by actually running the operator in representative configuration 
combinations. Using these measurements we can train surrogate estimator models that 
can be used to approximate its performance for non-tested configurations. To do so, in a 
generic and extendable way we propose a black box operator profiling framework. 

4.2.1 Black Box profiling  

In order to provide a generic operator-profiling framework, we follow the black box 
profiling approach. According to this, we model each operator as a black bo x that has 
user defined inputs and outputs. The input space of an operator can be also described as 
its design space and contains all the parameters that affect its performance and need to 
be varied in order to profile it. For example, the input space of an operator can contain 
parameters like: 

• platform runtime resources (e.g. number of VMs, number of CPUs, available RAM, 
etc.) 

• Data attributes (e.g. dataset size in GBs, type, distribution, etc.) 
• Operator-specific parameters (e.g., the number of clusters in k-means, number of 

iterations, accuracy, etc.) 

As mentioned before, the input space of an operator is user defined, giving the users the 
capability of defining the parameters that affect the operator’s performance. The user 
should also give the type of each parameter in order for our profiling system to be able 
to vary it and test different configuration automatically. For example, a parameter such 
as the number of VMs is a discrete integer value that can have a minimum and maximum 
value in order to prune the possible combinations. Concerning data input parameters, 
like the dataset size or type, the user can provide a set of sample datasets or a dataset 
generator that can be used in order to test various configurations. 

The output space of an operator can also be described as its optimization space and 
contains all performance/cost metrics that need to be approximated for the various 
input configurations. For example, the output space of an operator can contain the 
following metrics: 

• Execution time 
• Cost  
• Accuracy of the result 
• Throughput, latency 
• Min, max and average CPU, memory consumption, etc 

Our profiling framework is generic and allows the user to define the output parameters 
that she wants to optimize for different operators. A new optimization parameter  can be 
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defined simply by giving a monitoring probe that can measure it when running the 
operator.  

4.2.2 Profiling challenges 

The operator profiling is a process that allows the automated execution of operators and 
monitors their behavior over representative input space configurations. The collected 
information can form the basic knowledge used to train surrogate estimator models that 
can approximate the operator’s behavior (the function that relates the 
input/configuration space parameters with the output/optimization metrics). 

The main challenge for the Profiler is to intelligently choose the set of profiled 
configurations. For example, if we have an operator with 3 integer input parameters that 
range from 1 to 10, there exist 103 different deployment configurations. Furthermore, 
each execution of an operator has a respective temporal and monetary cost in order to 
be sufficiently profiled. A brute force profiler would need to execute and monitor all 
those configurations. In such case, the execution time of the profiler could be 
exponential to the number of inputs, something which is not acceptable. ASAP’s Profiler 
should be able to intelligently narrow down the field of profiling scenarios. Therefore, 
the Profiler attempts to tackle the problem of generating the most accurate operator 
profile within a user specified profiling budget of experiments. 

The nature of operator profiling is clearly multi-objective, often requiring tradeoffs 
between diverse and conflicting objectives. While the input parameters, design space, of 
an application include the number of VMs, their RAM, their disk capacity etc., an 
application user can be interested in various objectives such as cost, throughput, latency 
etc. Therefore, the operator can be modeled as a function that maps the design space 
(number of VMs, RAM, data size, operator parameters, etc.) to the user defined objective 
space (cost, execution time, etc.). This function represents the operator’s profile. Our 
Profiler will use targeted operator runs, according to a specified financial and time 
budget, to provide a global surrogate approximation model of the operator’s profile 
function that maps its design space to its optimization space.  

Many engineering and science problems require expensive experiments or time 
consuming simulations to generate sample points of the mapping between the input and 
the output parameters of a system. In such cases, researchers have focused on building 
accurate surrogate approximation models that, when properly constructed, can mimic 
the behavior of the system while being computationally cheap to evaluate. Examples of 
surrogate models include: Kriging models  [91] , Splines  [33] Artificial Neural Networks  
[37] , Support Vector Machines  [60]  etc. The challenge here is how to generate a 
surrogate model that is as accurate as possible over the domain of interest and at the 
same time minimize the cost of the performed experiments. Since the system's response 
behavior is not known upfront and the sample data points are too costly to obtain, the 
main approach followed is the iterative adaptive sampling of the design space. Each data 
point obtained is used to update the surrogate approximation model as well as the 
sampling function. In each iteration, the sampling function selects the next sampling 
point according to an estimation of its benefit to the surrogate approximation accuracy. 
This technique is called importance or adaptive sampling and is also known as 
sequential design. 
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4.2.3 Profiling approach 

In Algorithm 1, we provide the general methodology used to create a profile for a given 
operator. The algorithm expects a valid operator/application description A followed by 
an input domain D, representing the possible setups the operator can be executed with 
and a list of surrogate models. The profiling process occurs iteratively: while the 
termination condition is not fulfilled, the domain space is sampled, a new point p is 
picked and the operator is executed according to p. The deployment produces an 
optimization vector d, containing the measured outputs, which is then used to train in an 
incremental manner all the available surrogate models. The output of the profiling 
process is the surrogate model which achieves the highest accuracy, according to a user 
specified metric. 

 

Figure 14 Main profiling algorithm 

The termination condition can vary. It can be a threshold of sampled points that, if 
reached, the condition is true and the algorithm terminates. In other cases, it can be 
related to the achieved accuracy: if the trained model achieves to predict the objective 
function with error lower than a user defined threshold, the termination condition is 
reached. As we will present in the following section, the nature of the termination 
condition is directly entwined with the nature of the sampling algorithm. 

4.2.4 Adaptive sampling 

The sampling procedure occurs at the beginning of each profiling loop. The sampler 
receives as input the domain space D of the operator, which is composed of all the 
acceptable deployment points. Each point returned by the sampler is used for execution. 
The operator’s output metrics are measured and then an approximation model is 
trained using the acquired information. 

There are many methodologies for sampling a multidimensional space. We can 
categorize the methods we support in the following categories:  

1. Static sampling, where the sampler needs no other information than the domain 
space characteristics (dimensions and acceptable values) to pick the next sample 

2. Adaptive sampling, where the sampler exploits the knowledge obtained by the 
deployment of previously picked samples. 
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The static approach does not take into consideration the operator’s performance . 
Typical examples of static sampling are the Random sampler, that returns random 
points and the Uniform sampler which constructs a multidimensional grid in the input 
space D, and returns points belonging to the grid. We opt for an adaptive sampling 
approach which exploits the knowledge obtained from each deployment/sample, 
enabling the sampler to retrieve more samples in regions of the domain space D where 
the performance appears to have fluctuations or the models have the maximum 
estimation errors. Equivalently, an adaptive sampler favors areas of D where the 
operator performance has the most deviations in order to use them to provide more 
accurate approximation models.  

4.2.5 Approximation models 

When a new sample is picked by the sampler and executed, the performance metrics are 
stored and given as input to an approximation model. The training set of the model 
consists of the chosen samples along with their output values. After the training process 
is finished, the model will be able to approximate the objective function for the entire 
space D. There exist many methodologies for approximating an unknown function. We 
can categorize them in two major categories: regression based techniques and 
classification techniques. Algorithms on the former category create an analytical form of 
the objective function. The classification techniques, on the other hand, do not target to 
create an analytical function but to classify the points of the domains space in classes. 
These objects are treated in a similar manner, indicating that the same properties stand 
for objects in the same class. 

In our approach, we utilize the approximation models offered by WEKA  [103] , an open 
source data mining software which implements a variety of machine learning 
algorithms. Specifically, the supported approximation techniques are the following: 

• Gaussian Process, that approximates the objective function using Gaussian 
distributions 

• Multilayer Perceptron, that represents a typical neural network with many 
hidden layers and neurons 

• Linear Regression (Least Median Squares), that implements the methodology 
introduced at  [75]  

• Bagging, that executes classification as described in  [63]  
• Random SubSpace, that constructs a decision tree using the approach 

presented at  [97]  
• Regression by Discretization, that enforces regression over a discretized 

domain of the input space 
• RBF Network, which trains a Radial Basis Function Network, as presented at  

[31]  

The accuracy of each one of the aforementioned models is highly affected from the 
configuration of the model and the nature of the objective function. For example, a linear 
hyper- plane will be approximated faster using a linear regression method. On the 
contrary a complex surface which has spikes and valleys is more likely to be 
approximated more accurately using a non-linear approach. All the available models are 
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trained in parallel by the system, and the model which achieves the best accuracy is 
eventually chosen. 

4.3 Experimental evaluation 

To evaluate the performance of our Profiler, we have selected a set of distributed 
analytics operators that are deployed over large scale virtualized resources. The first 
benchmark application is TeraSort [73] , a well-known benchmark that sorts a set of key 
values. We test it with datasets of 10M up to 50M key-values (1GB to 5GB of data 
respectively) and run the TeraSort in Hadoop clusters with different number of nodes 
and different number of cores per node. The second operator is a BSP-based 
implementation of PageRank [64] , a well-known graph algorithm implemented over the 
Apache Hama framework. We utilize 50K to 100K node graphs, each of which has at 
most 50 outgoing edges and execute PageRank over different cluster sizes as above. 
Finally, the third operator is a BSP implementation of the Single Source Shortest Path 
(SSSP) algorithm [87] implemented for the Apache Hama framework. For SSSP, we 
create synthetic graphs consisting of 50k up to 500k vertices and at most 50 edges per 
node. 
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Figure 15 Profile functions for different operators 

The running times for various deployment configurations of all the three benchmark 
applications is given in Figure 15. We provide the execution time of the Terasort 
benchmark with regard to the size of the cluster and the dataset size (measured in 
millions of key-values). It is obvious that the execution time is inversely proportional to 
the cluster size and proportional to the dataset size. Furthermore, for large clusters we 
notice that the execution time decreases less rapidly, because the communication 
overheads affect more the overall execution time. 

The execution time for both PageRank and SSSP are also shown in Figure 15. PageRank 
has a similar behavior to the Terasort case. SSSP, on the other hand, presents a slightly 
different behavior in terms of scalability. Specifically, when more nodes are added to the 
Hama cluster, the execution time remains unaffected for smaller dataset sizes (e.g., 50k 
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nodes). For larger datasets it decreases, but less rapidly than in the other cases. This is 
due to the larger number of supersteps executed by SSSP. Specifically, for our datasets, 
each SSSP job requires about 25–30 Hama supersteps while PageRank requires only a 
third of them. As a consequence, SSSP needs more sequential steps thus more time for 
synchronization between the BSP workers. Thus, due to this cost, the addition of more 
workers does not greatly benefit SSSP. 

One of the greatest factors that affect the performance of our Profiler is the sampling 
rate. This is defined as the ratio between the number of the chosen points and the total 
number of acceptable deployments. Lower sampling rates lead to fewer chosen points, 
offering the classifiers less knowledge for the objective function (the performance of the 
application). We use the coefficient of determination R2  [80] to quantify the accuracy of 
the profiling methods. R2 declares the degree in which a classifier fits the original data. It 
is calculated as follows: 
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Where: yi are the real performance values, fi are the predicted values and y  is the mean 

of the observed data. The closer 
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R  gets to 1, the better the performed approximation. 

In our experiments, 
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R indicates the accuracy of our models in the entire domain 
space. Simultaneously, we also utilize the Mean Absolute Error metric which is defined 
as: 
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Where: i, fi and yi have the same notation as before. Both metrics have been evaluated 
for the entire input space, including both the points picked during the sampling phase 
and the rest of the points in order to capture the resemblance between the 
approximated and the objective function in the entire domain space. In the general case 
this will not be possible, since the performance will only be given in the sampled points; 
In those cases the metrics will be evaluated using only the deployed points. 

For this experiment, we applied the sampling methodologies presented in the previous 
section and trained all the available approximation models with the chosen points along 
with the respective performance values for different sampling rates. In Figure 16we 
provide the accuracy level of the best model for each sampling rate for all three 
applications using the coefficient of determination. The best model is defined as the 
model that presents the highest coefficient of determination. We also provide the Mean 
Absolute Error for each application.  
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Figure 16 Estimation accuracy for different sampling techniques 

In our results, we notice that the most accurate models present slightly different 
behavior for each one of the three applications. In all of them, it is obvious that an 
increase in the Sampling Rate leads to higher accuracy. This result is expected, since 
higher sampling rate means that more points are picked, thus the model will obtain 
more knowledge for the objective function. However, in many cases this might not be 
the case: The sampler may pick more points but if they are not representative ones, th ey 
may mislead the model and eventually, this may cause lower accuracy. For example, this 
is the case for Terasort, when increasing the sampling rate from 0.125 to 0.15 for the 
Uniform sampler. More points are chosen, but very few of them are picked in the  regions 
where the execution time is high, thus the model cannot make more accurate 
predictions. This behavior is avoided using the Adaptive Sampler, since it constantly 
checks the ranges with the steepest differences and favors them, leading the models to 
identify those regions faster. 

However, when the Sampling Rate is relatively low, this behavior could also mislead the 
models, as seen in the Terasort case. Specifically, because of the first phase of the 
Adaptive algorithm, where the border points are returned, the models may eventually 
achieve worse accuracy than the one achieved with the Uniform sampler which, again, 
picks more points in the intermediate region and enables the models to make more 
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accurate predictions. In any case, we observe that the difference in accuracy is 
acceptable while, eventually, for bigger sampling rates the Adaptive sampler 
outperforms the Uniform sampler. In the PageRank case, we notice that the Adaptive 
Sampler outperforms the rest of the samplers for most rates, whereas in the SSSP case, 
the surface which is to be approximated resembles a linear hyperplane. This enables the 
regression techniques to accurately approximate it with a relatively small number of 
points. This also explains the smaller increase observed in accuracy and the reason for 
which the models achieve high accuracy with the lowest sampling rates (something not 
observed in the previous applications). 

The Random sampler is not included in the MAE figures, since it had the worst 
performance (between 100 and 80 for Terasort, 30 to 25 for Pagerank and 60 to 50 for 
SSSP). It is obvious once again that increasing the sampling rate leads to lower MAE, 
thus higher accuracy. It is also obvious that the rate with which MAE is decreasing 
tightly coupled with the form and the nature of the objective function. Specifically, in the 
Terasort and SSSP cases MAE decreases almost linearly with sampling rate; On the other 
hand PageRank appears to stabilize MAE decrease very soon. The reason for this is that 
the performance of PageRank appears to have more oscillations than the other 
applications. This makes it harder for the models to capture this behavior and, 
eventually, increasing the sampling rate does not benefit the model. This is a very 
interesting phenomenon: when the performance of the application oscillates (because of 
its nature, the virtualization overhead, etc.), the threshold for which increasing the 
sampling rate creates more accurate models is decreasing.  

In conclusion, the provided models in cooperation with the sampling methods enable 
the system to create an accurate profile of the application even when the sampling rate 
is less than 10% of the points of the domain space. At the same time, the profiling 
process is quite fast: Even when the Sampling Rate is 20%, the total time spent in 
training the models does not take more than 1.5 seconds. The input space of our 
experiments consists of 135 discrete points for the Terasort case and 162 points for the 
SSSP and Pagerank cases. Thus sampling with 20% of these spaces leads to 27 and 32 
points respectively. Thus the training time of our models is less than 1.5 seconds when 
there exist 32 points for training. This is the time needed to successfully train all the 
available models. The time needed to deploy and run an operator dominates the 
profiling process and its typical duration is in the order of minutes. Finally, in more 
complex cases where the Input Space consists of thousands or tens of thousands of 
points a Sampling Rate of 20% is prohibitive. In such complex cases, our adaptive 
sampling approach can approximate the objective function with the best accuracy, 
within a user defined budget of experiments.   
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5 Conclusion  

This deliverable describes the architecture of the IReS platform, the core component of 
the ASAP project that is responsible for managing, executing and monitoring complex 
analytics workflows. Its goal is to provide adaptive, cost-based and customizable 
resource management of the diverse execution and storage engines available. Moreover, 
since the area of high performance analytics advances daily, ASAP's goal is to present a 
repeatable process that will allow easy inclusion of different technologies, if so desired.  

IReS incorporates a modeling framework that constantly evaluates the cost, quality and 
performance of data and computational resources in order to decide on the most 
advantageous store, indexing and execution pattern available. The methodology of the 
runtime and data store modeling process has been thoroughly described and an initial 
evaluation has been presented in order to showcase its efficacy.  
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