
FP7 Project ASAP
Adaptable Scalable Analytics Platform

ASAP D8.2
Use Case Requirements

WP 8 – Applications: Web Content Analytics

Nature: Report

Dissemination: Public

Version History

Version Date Author Comments
0.1 January 16, 2015 Philippe Rigaux Initial Version
0.2 January 24, 2015 Tsuyoshi Sugibuchi Revised Version
0.3 February 4, 2015 Philippe Rigaux First complete draft
0.4 February 16, 2015 Philippe Rigaux Revised draft
0.5 February 27, 2015 Philippe Rigaux Final revision based on

internal reviewing

ASAP FP7 Project

ASAP D8.2

Use Case Requirements
Acknowledgement This project has received funding from the European Union’s 7th Framework
Programme for research, technological development and demonstration under grant agreement
number 619706.

2

Contents
1 Introduction 4

2 Pipes in MIGNIFY 5
2.1 Storing and indexing data . 5
2.2 Agents, queries, and pipes . 6
2.3 Pipe execution . 7

3 Extending the expressivity of pipes 8
3.1 Iterative workflows . 8
3.2 Example: running a k-means clustering on result sets 10
3.3 Distributed processing engines: Flink / Spark . 12

4 Use Case Requirements 13
4.1 Pipes monitoring . 14
4.2 Multi-pipes execution . 15
4.3 Continuous pipe execution . 17
4.4 Non functional requirements . 17

5 Test platform 19
5.1 The test cluster . 19
5.2 MIGNIFY agents and workflow . 19

List of Figures
1 Current architecture of MIGNIFY (with focus on pipes) 6
2 Public interface of MIGNIFY (1) . 8
3 Public interface of MIGNIFY (2) . 9
4 Adding machine learning capabilities to pipes . 10
5 A concrete example: a k-Means workflow . 11
6 Running the k-means example with Flink . 12
7 Running the k-means example with Spark . 13

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Abstract
This deliverable presents a detailed list of the Web Data Use case requirements. It provides

a focused description of the MIGNIFY platform proposed by Internet Memory Research, with
emphasis on a set of services called pipes that allow to specify and execute workflows of web
data processing operators. Based on this description, the deliverable develops three types of
requirements: monitoring and performance evaluation, multi pipes execution and continuous
pipe execution. A testbed has been set up by IMR with the necessary software components to
evaluate the capacity of the ASAP platform to support these requirements.

1 Introduction
The present deliverable covers the requirements of the Web content use case. It is centered on
the set of services proposed by Internet Memory Research as part of the MIGNIFY platform
(http://mignify.com). They provide access to a large collection of contents extracted from
the Web, cleaned, annotated and indexed in a distributed infrastructure based on Hadoop compo-
nents: HDFS (storage), HBase (primary indexing on URLs), MapReduce (Hadoop 1) and Elastic-
Search (secondary indexing). The infrastructure and ingestion workflow have been described in
Deliverable 8.1, along with the main characteristics of the Web dataset.

We expose a list of requirements all focused on extending and enriching the public workflow
interface supplied by MIGNIFY, called pipes. MIGNIFY relies on Hadoop V1 to run MapRe-
duce jobs, and this severely limits the workflows that can be expressed by pipes. In partic-
ular, iterative workflows, typical of data mining algorithms, cannot be obtained with MapRe-
duce without a heavy programming effort. During the project we aim at exploring the capacities
of recent data processing engines, namely Flink (http://flink.apache.org) and Spark
(http://spark.apache.org) to extend pipes with iteration and fixpoint operators.

Based on this setting, the requirements can be divided in three main groups which can be
organized to fit in the ASAP project roadmap as follows:

• (R1) Requirement 1: monitoring the cost of pipes execution.
MIGNIFY proposes a public interface that lets customers specify and execute pipes on the
IMR Web collections. All pipes have to run concurrently in a single distributed infrastruc-
ture. It is essential to obtain a reliable estimation on the time frame of a pipe execution, in
order to report to our customer the expected delay to obtain the result.

4

http://mignify.com
http://flink.apache.org
http://spark.apache.org

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

• (R2) Requirement 2: resource sharing and optimization for multi-pipes execution.
Internet Memory Research uses its own infrastructure to store data and execute pipes. Many
distributed softwares share the resources of this infrastructure, and even if we decide to
allocate a dedicated cluster to pipe execution, the problem of sharing the resources between
multiple pipes running concurrently remain. Based on the monitoring results (R1), we need
to come up with a scheduling module apt at allocating resources for pipes execution based
on the services constraints.

• (R3) Requirement 3: continuous pipe execution.
In the current setting, a customer explicitly requires the execution of a pipe. In many sce-
narios (e.g.; extraction of indicators from social sources) the pipe should run almost contin-
uously on incoming new contents. We therefore need to study how this continuous subscrip-
tion mechanism can be implemented in the context of a large set of concurrent workflows
execution.

These requirements can/should be examined in sequence and addressed one after the other
throughout the ASAP project development. Requirements R2 and R3 are somewhat independent
from one another, but both depend on R1.

The organization of the Deliverable is as follows. Section 2 first develops the concept of pipe
in MIGNIFY, and introduces the current user interface. Section 3 exposes the principles of pipe
extension that will be experimented during the project with modern distributed processing engines.
Suggested solutions based on either Flink or Spark are briefly introduced. Section 4 is devoted to
the requirements of our use case in the context of ASAP. Finally, Section 5 describes the test
platform which has been set up for ASAP experiments and cooperation with our partners.

2 Pipes in MIGNIFY

Figure 1 shows the current architecture of MIGNIFY, with emphasis on pipes definition and pro-
cessing. Data is collected from the Web by a crawler, MemoryBot, designed to operate at large
scale, and stored in HBase, a persistent distributed data structure with indexing capabilities, apt at
managing very large datasets (TeraBytes or even PetaBytes).

2.1 Storing and indexing data
The ingestion process gets the raw documents supplied by the crawler, annotate documents with
extracted features, and insert them in HBase. Feature extraction operations are applied either to a
single document or to group of documents. Features (e.g., language of the document, MIME type,
keywords) are stored as meta-data in HBase along with the document itself.

5

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Figure 1: Current architecture of MIGNIFY (with focus on pipes)

We use those features to build a secondary index on the collection with ElasticSearch1. Until
a recent version, the ElasticSearch index was used to obtain the list of documents ids, and an
additional access-by-id request was necessary to retrieve the document from HBase. For simplicity
and efficiency, we now also store in ElasticSearch the document itself. This means that all the
information necessary to index and process web content can now be obtained from ElasticSearch
without involving the other back-end components (HDFS, HBase) anymore. As a side effect, this
makes the architecture much simpler and understandable for our partners.

Thanks to ElasticSearch (which is essentially a distributed version of Lucene), resources can be
accessed via their unique identifier (combination of a URL and a timestamp), or through complex
queries expressing criteria over the features produced during the ingestion process. It is possible
for instance to query a collection by specifying a combination of language code, MIME type and
time range (”Give me all PDF documents in French collected during this period”).

2.2 Agents, queries, and pipes
The main interface proposed by MIGNIFY to access our Web collections is called pipe. A pipe
(Figure 1) consists of :

1. a query executed over the ElasticSearch index;

2. a workflow of so-called agents which take the query result set as input, and progressively
transform/annotate the elements of the result set.

1http://www.elasticsearch.org

6

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Agents are, together with the ability to access a lage repository of cleaned Web content, the
main assets of the platform. They implement text mining operators such as:

• keyword extraction (most significant terms of the content);

• entity recognition (locations, events, names, etc.);

• entity disambiguation (link to an ontology such as Yago or DBpedia);

• sentiment analysis.

Many of these agents are implemented by encapsulating text mining functions from some well-
know open source library, e.g., Gate2 or LingPipe3. An agent may also require some auxiliary
source (Figure 1) such as, for instance, an in-memory representation of an ontology for entity
disambiguation.

Pipes can be defined thanks to the MIGNIFY Web interface which is illustrated by Figures 2
and 3. Figure 2 shows the state of the UI after the definition of a query on the Forum collection.
It contains user generated contents published in the hundreds of thousands of forums crawled by
MIGNIFY. Several parameters can be set from the UI, including the maximal number of documents
taken from the full ranked list supplied by ElasticSearch, as well as the features that must be
incorporated in the result set (content, but also user, date, etc.)

The pipe also feature an initial agent which extracts named entities from the contents of the
result set. The workflow can progressively be extended by adding more agents. Figure 3 shows
the final required step when building a pipe: specifying the output channel. As a general principle,
the pipe is saved with a name and a unique pipe URI is produced. The pipe execution produces a
set of files (say, in JSON or XML), and the customer can access to these files via REST services
associated to the pipe URI.

2.3 Pipe execution
The user can request the execution of a pipe. A request id is returned and MIGNIFY, in the current
version, initiates a MapReduce job which is run asynchronously. The job consists of executing the
query as a distributed process running on ElasticSearch shards as input, followed by the application
of the workflow of agents to the documents extracted from the shards. This distributed execution
produces the pipe result (a large set of annotated resources) which is then packaged in container
files. Whenever the result is complete, a notification is sent to the user, along with the URL from
which container files can be retrieved.

2http://gate.ac.uk
3http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/

7

http://gate.ac.uk
http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Figure 2: Public interface of MIGNIFY (1)

3 Extending the expressivity of pipes
A pipe workflow appears to be quite limited in the set of operations that it can express. Basically,
only direct acyclic graphs of data flows can be represented. This motivates efforts to extend the
operators to a richer set, including in particular loops to allow the iterative construction of some
solution. We examine in this section how this can be achieved with new processing engines that
go far beyond the mere Hadoop’s V1 MapReduce operator.

3.1 Iterative workflows
If we compare with the operators from Pig latin [5] 4 for instance (Table 1), workflows in MIGNIFY

are built with the subset that excludes binary operators (i.e., join, cross, and cogroup). This
makes sense if we view pipes in MIGNIFY as specialized workflows for applying text mining
operators, but also shows that we cannot capture some very useful operators. It turns out that, in
particular, iteration is the key for covering many data mining tasks that would be quite relevant
and valuable.

One of the expectations of the MIGNIFY customers is indeed to be able to build an interpretation
model for the result set of a query, and then to apply on-the-fly the model to the very same result

4http://pig.apache.org

8

http://pig.apache.org

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Figure 3: Public interface of MIGNIFY (2)

set.
This is illustrated by Figure 4. It shows a pipe that retrieves a result set, applies some document-

level agents (Agent A on the Figure), and reaches a point where it becomes possible to mine the
annotated result set to learn some semantic information (say, the main topics in the result set, or
the identification of some graph structure, etc.). This requires the execution of a machine learning
agent (ML op on the Figure) which derives an interpretation model from the result set, and stores
this model as an auxiliary structure. The pipe can then proceed by interpreting the documents of
the result set with respect to the model. The whole machine learning process (model creation, and
model application) is integrated in a single workflow.

Such a pipe would be much more powerful than the current simple linear annotation workflows
currently handled by MIGNIFY. It would produce quite valuable derived information, enabling
MIGNIFY customers to run on-line machine learning on Web datasets, with large-scale execution
as a service

It is important to point out that building the model on-the-fly on the result set, and not as a
pre-processing step on a whole, stored, collection, is a key to an accurate interpretation of the
data mining result. Consider for instance a pipe that classifies forums content based on keywords
extraction. Identifying the relevant keywords implies the construction of a language model or topic
model. This cannot be done on a general collection of world-wide forums which mix contents in
all languages and related to all kinds of topics, whereas the pipe focuses on a forum subset defined

9

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Operator Description
foreach Apply one or several expression(s) to each of the input tuples.
filter Filter the input tuples with some criteria.
order Order an input.
distinct Remove duplicates from an input.
cogroup Associate two related groups from distinct inputs.
cross Cross product of two inputs.
join Join of two inputs.

Table 1: List of Pig latin operators (excerpt)

Figure 4: Adding machine learning capabilities to pipes

by the initial query, which restricts for instance the language to French, and only gets content from
medicine-related sites. The integrated evaluation therefore leverages the value of the machine-
learning process by focusing on the subset of interest to the customer.

3.2 Example: running a k-means clustering on result sets
We propose to design and evaluate the pipe extension with the concrete case of k-means clustering
based on salient keywords identified on-the-fly during the pipe execution. The workflow is depicted
in Figure 5 at a generic level. We will later on propose possible implementations with two modern
processing engines.

The pipe starts, as usual, with a result set extracted from the Web collections with an Elastic-
Search query. One of the MIGNIFY agents extracts the term frequency (tf) from documents and
produces an annotated data set RS1. From RS1, another agent creates an auxiliary structure con-
taining the inverse document frequency (idf). We are then ready to build the clustering model by
applying a k-means algorithm. It takes as input RS1, the idf table, and iteratively adjusts the set

10

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

of centers. This requires to repeatedly scan RS1, as well as a fast access to the idf table. Once the
clusters centers are determined, a final ML agent (the classifier) produces clusters of the documents
in RS1 and outputs the final result.

Some comments are noteworthy.

1. Such a process, featuring repeated scans of an intermediate result, is definitely not supported
by a processing engine based on the MapReduce operator. It would be both cumbersome to
implement, and quite slow to execute.

2. The k-means example is just an instance of a more generic class of problems. We can
mention for instance topic modeling [2]: one of the MIGNIFY agents is an implementation
of the Latent Dirichlet Allocation [3] which produces, from a set of documents, a list of
”topics” represented by a term distribution. Classifying the documents by topics with a pipe
complies to the same process as the one illustrated above for k-means clustering

Implementation of iterations with MapReduce is a burden for the developer who must take
care of properly storing the result, and design a mechanism that takes as input, at each iteration,
the result produced during the previous phase.

Moreover, MapReduce relies on a checkpoint-based fault tolerance. This implies that all in-
termediate steps are materialized on disks. In this case (and in the case of iterative algorithms in
general), each iteration results in a write/read phase of the result, plus repeated disk reads of the
whole result set.

We aim at exploring the ability of modern distributed processing engines to support the ex-
ecution of such extended pipes. Candidates of choice are Flink (http://flink.apache.
org, formerly Stratosphere [1]) and Spark [8] (http://spark.apache.org), two top-level
Apache projects.

Figure 5: A concrete example: a k-Means workflow

11

http://flink.apache.org
http://flink.apache.org
http://spark.apache.org

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

3.3 Distributed processing engines: Flink / Spark
Both Flink and Spark support a set of high-level operators similar to those of Pig latin (see Table 1).
Most of these operators are second-order function that apply some User Defined Function (UDF)
to a data flow in a distributed environment. In our context, UDF are the MIGNIFY agents which
run text mining, document-level operations on textual content. A nice additional feature of Flink
is that it features two operators that greatly simplify the specification of iterative workflows 5.

1. The ITERATE operator runs a loop over an input dataset, maintaining a partial solution at
each step.

2. The DELTA ITERATE operator covers the case of incremental iterations which progressively
refine a solution. The situation is typical in Machine Learning algorithms.

Figure 6: Running the k-means example with Flink

As a result, the k-means pipe execution with Flink is illustrated by Figure 6. Yellow ovals
correspond to Flink operators, and brown ovals to MIGNIFY agents. Intermediate result sets are
shown as blue rectangles. The salient part is the k-means computation: it can simply be imple-
mented with an application of the DELTA ITERATE operator to the tf/idf annotated documents, and
produces the solution (a list of cluster centers) used to classify the documents.

Applying the classifier is just a matter of scanning a second time the web documents, with a
MAP operator that runs the classifier function for each document.

5See http://flink.apache.org/docs/0.6-incubating/iterations.html for details.

12

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Figure 7: Running the k-means example with Spark

If we now turn to Spark (Figure 7), a quite similar execution workflow can be defined, with
a few notable differences. Spark is based on the concept of Resilient Data Set (RDD), which are
essentially intermediate results pinned in memory, with a fault tolerance method based on partial
re-computation. RDD can be made persistent (in memory as much as possible), or transient.
Figure 7 shows our k-means workflow with one transient RDD (the initial query result), all other
RDD being persistent, at least during a part of the workflow execution timeframe (the idf table for
instance can be flushed once the k-means operators is finished.)

Spark does not natively support iteration. This means that the burden of implementing a fix-
point computation for machine learning algorithms remains. In our context, this is a limitation,
although we can expect that the current community activity around Spark will eventually result in
additional functionalities that would match those of Flink in this respect.

This means that we have to manually encode the iteration step for the k-means solution, and
may result in a sub-optimal implementation for the management of intermediate results, as sug-
gested with some preliminary studies conducted with the TUB team that leads the development of
Flink. Ease of implementation, and thus cost of maintenance, is an important criteria to assess the
industrial strength of a solution. Conducting a comparison of those engines as part of ASAP would
probably prove to be an interesting study, fully in line with the project’s objectives.

4 Use Case Requirements
We now detail the requirements of the use case. We first expose functional requirements and then
devote a short sub-section to non-functional requirements (scalability and usability aspects).

13

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

4.1 Pipes monitoring
At the moment we can hardly estimate the resources needed by a pipe, nor can we anticipate the
time it will take until completion. This is a major concern because this greatly impacts our ability
to faithfully obtain the cost of a pipe execution, in order to expose this cost to our customers. The
problem involves several aspects which must all be considered together.

• Cost of queries. Each pipe starts with a query evaluation with ElasticSearch. The pipe
interface lets the customer define the number of documents that must be processed by a pipe
(i.e., ”process only the Top-10000 documents of the ranked result”). Although this part does
not seem to be significant with respect to the rest of the workflow evaluation, this remains to
be confirmed.

• Cost of workflows. A pipe is executed as a graph of second-order operators. We should
be able to evaluate, at a global (workflow) level, the behavior of these operators. This is
particularly important for iteration based operations.

• Cost of agents. Finally, an agent (MIGNIFY) operates at the document level, and mostly
apply some text mining method. This turns out to be the most costly part in some cases, and
even sometimes prevent the agent to be applied at large scale due to its lack of efficiency.

We made a study to evaluate the resources (time and space) consumption of our main agents:

(A) Text normalization

(B) Tf extraction

(C) Topic extraction (based on language model)

(D) Microformats (MF) and micro-data (MD),

(E) Entity recognition (Agent Aida, based on Yago6)

The following table shows the average cost of processing each agent per document, and the
overall cost of running a pipe that linearly applies agents A to D (entity disambiguation is discussed
separately). It should be underlined that the figures result from important optimization efforts in
order to achieve the best possible performance, as each additional millisecond has a strong impact
when processing millions of documents. The whole workflow takes on average less than 100ms
for a single resource.

Agent (A) (B) (C) (D) Total
Cost 18 ms 17 ms 40 ms 16 ms 91 ms

6http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/

14

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

This translates to processing, on a single processor, 10 documents per sec., 864,000 per day
and 6M per week. Distributed over several processors and computers, this scales linearly. Entity
disambiguation is an issue. At the time of writing, optimizations are still in progress. The per-
formance of the entity extraction is currently a few seconds (2-3), with a high standard variance:
complex and large documents are much more costly to process.

Those figures constitute the baseline upon which we can build a reliable cost model. We need a
sound methodology to produce performance indicators for each agent, so as to create and maintain
a reference table.

Requirement 1.1. Define and implement a methodology to obtain a reliable estimation of the CPU
cost (per document, possibly parameterized by document size and type) of agents.

The memory consumption is another concern that needs to be addressed. In general, agent
process documents, and the memory usage is roughly proportional to the document size which
can be known from the repository statistics. Here again, entity disambiguation distinguishes by the
need to maintain an in-memory representation of an ontology. In the case of Yago for instance, this
requires a PostgreSQL database containing Yago whose footprint is almost 4 GB. For this specific
case, we use SSDs to avoid allocating a large part of our servers memory to the disambiguation
agents. Being able to know in advance the memory requirements, and to model memory usage, is
therefore part of the monitoring requirements.

Requirement 1.2. Define and implement a methodology to model memory usage (per document,
possibly parameterized by document size and type) for the MIGNIFY agents.

Regarding the workflow second-order operators, we are mostly interested by iterative algo-
rithms in general, and machine-learning model construction in particular. We need to obtain per-
formance assessments for the following techniques

1. k-means based on tf.idf;

2. LDA topic model.

IMR already implemented the agents to execute these functions. We must incorporate them in
a distributed processing engine and test their performance. We plan to proceed with Flink, but a
comparison with Spark in the context of ASAP would be quite valuable.

Requirement 1.3. Evaluate iterative machine learning algorithms (k-means and LDA) with Flink,
and possibly Spark.

4.2 Multi-pipes execution
Hadoop V1 is a monolithic platform which is able to run one MapReduce job at a time. This
constitutes a quite severe limitation in a context where many concurrent pipes can be submitted to

15

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

the system. Moreover, we do not dispose in the moment of a mean to determine a scheduling of
pipes based on their expected performance (e.g., a pipe that would complete in 10 mns may have
to wait for 2 days before being assigned an execution slot).

We plan to design a solution to set-up a general scheduler that will distribute and optimize
a multi-pipes portfolio. We expect to benefit from the meta-services of the ASAP platform to
estimate the costs and resources usages of a pipe. Based on this estimation we should be able
to schedule the execution of multiple pipes concurrently by allocating bounded resources to each
pipe.

The design of such a scheduler should be inspired by some existing cloud management plat-
forms like Mesos [4] and Yarn [7]. We investigated both solutions, and it seems that Yarn is
a resource sharing system which only manages softwares belonging to the Hadoop ecosystem.
Mesos does not seem to present this limitation. The ASAP scheduler should not be limited to a
single execution platform (e.g., Hadoop) and should allow the specification of a software ecosys-
tem sharing the resources of a cloud infrastructure. At the very least, we should be able to declare
the distributed indexing mechanism that we use in the moment (ElasticSearch) and the distributed
crawler developed and used by Internet Memory (MemoryBot).

Requirement 2.1. ASAP must include a resource management and scheduling platform for sharing
our cluster’s resources. Must take in consideration distributed applications beyond the Hadoop
ecosystem (e.g., ElasticSearch, MemoryBot).

Based on the expected performance and resource utilization of pipes (see the requirements
above), we need to come up with a scheduling that ensures an optimal or near-optimal solution
to execute a portfolio of pipes with respect to a list of constraints which together define a Service
Level Agreement (SLA) for MIGNIFY.

The cost of running a pipe in MIGNIFY is expressed in MCUs (Mignify Computing Units). This
cost is currently the sum of a fixed cost based on the number of documents processed by the pipe
and a variable cost which depends on the ”price” of each agent involved in the pipe. This price in
turn is determined, more or less accurately, by considering both the resource consumption of the
agent and the added value it brings to the information set built by the pipe. Informally speaking, an
agent that merely finds the language of some content has less added value than an agent that finds
and disambiguates all the named entities.

So far, a pipe runs as a MapReduce job in the cluster, and all pipes benefit from the same
computing and storage resources. If we can estimate in advance the pipe resource consumption
and completion time, it becomes possible to propose to our customers several possible SLAs, each
associated with a specific cost. The lower the cost of a SLA, the lower the priority of a pipe.

Requirement 2.2. Design a scheduling algorithm for pipes which automatically determines an
allocation plan that satisfies the MIGNIFY SLA.

Note that Requirement 2.2 implies an automatic evaluation of the resources needed by a pipe
given the constraints associated to the MCU cost. This is not possible with state-of-the-art solutions
(e.g., Yarn or Mesos, previously mentioned) which both require a manual input of this information.

16

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

We cannot afford a manual estimation for each pipe, and thus current solutions do no scale to
the expected submission rate of pipes in MIGNIFY (see Subsection 4.3). If the requirement can
be satisfied by ASAP, this will constitute a distinctive advantage for MIGNIFY in particular, and
subscription platforms similar to MIGNIFY in general.

4.3 Continuous pipe execution
The final set of requirements pertains to continuous execution of pipes. The current state of
MIGNIFY requires an explicit triggering of a pipe execution. Although pipes are able to run a
delta-computation that only considers the documents newly collected with respect to the previous
execution, they do not self-decide on the appropriate moment to run themselves. Relying on a
human decision jeopardizes the ability of the system to provide timely results.

We therefore target an evolution of the pipe mechanism to enable a publication/subscription
system. A publication event in this context is the insertion of a new document matching the pipe’s
query; a subscription is the production of the pipe output when applied to the delta result. This
gives rise to the following challenges:

1. Detecting that a new document matches one or several pipe queries.

2. Delta computation of the result.

3. Execution strategy for delta computation: distributed or local?

The first issue is well known in the context of pub/sub system, and essentially relies on an
indexing of queries to match incoming events against an efficient structure. The second issue is
easy for document-level agents, but intricate when it comes to maintain a result based on some
aggregation step. Typically, models produced for machine learning tasks evolve as new data is
fed to the system. Maintaining k-means centroids, or a topic-model built by LDA, as the dataset
continuously evolves, is a challenging problem.

The final issue can be related to the volume for which a distributed execution becomes relevant.
We expect that in many cases, a local computation of pipes applied to the delta result will do the
job. This can be clarified by considering the cost model for pipes developed to answer earlier
requirements.

Requirement 3.1. Design a pub/sub extension of MIGNIFY based on continuous pipe execution.

4.4 Non functional requirements
We conclude with a list of non-functional requirement which mostly address the usability and
scalability of the use case.

17

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

Visualization

The visualization components currently under development in WP 6 constitute important potential
assets for the use case. Of particular interest are the charts devoted to time series data [6] that
could be coupled with continuous pipe execution to monitor the evolution of topics and display the
sentiment associated with a given entity in social web exchanges.

Monitoring

There is no means for end user now inspect the progress of pipes as they are running. Given that a
pipe execution can span, in the worse case, several days, this leaves customers in the dark during
a significant period regarding the scope of the data which is processed and the accuracy/quality of
the result. The platform would therefore strongly benefit from a continuous monitoring, yielding
indicators and clues on the forthcoming result. A promising approach is to provides such in-
advance estimations based on samples drawn from the input datasets.

Scalability

At the time of writing, MIGNIFY maintains a catalog of more than 700,000 active sources from
which web pages are constantly crawled. Wrappers associated to these sources extract structured
content and publish this content, indexed, in ElasticSearch as input to pipes execution. The crawler
collects approximately 5M of web ressources per month for these sources (feeds, web content
referred to by feeds, and linked web pages up to a small number of hops for discovery purposes).
Since we constantly enrich the catalog with new sources, we expect to reach, during the course of
ASAP, in the order of 10 millions of sources and about 50 millions of web content crawled and
indexed every month. ASAP should therefore be apt at dealing efficiently with several Billions of
indexed ressources.

Regarding scalability requirements for pipes and multi-pipes execution, the following figures
can be anticipated. Each pipe is allowed to retrieve up to 1M resources from ElasticSearch (this
limit might change in the future). IMR agents are designed to process one resource in less than one
second on average. A rule of thumb for this choice is that, by allocating 10 machines to execute a
pipe in parallel, the result should be available in less than one day. The customer might choose to
process less resources from ranked ElasticSearch result. S/he might also choose to allocate more
or less machines to the job, depending on the expected business value of the result.

Our goal is to be able to evaluate the capacity of ASAP to manage concurrently up to 100 pipes
running in parallel, and processing a number of resources on the order of 100 M per day. The
number of machines that can be allocated to the pipe execution cluster in this scenario is 120. This
corresponds to a linear scalability of the current performance, with the strong additional constraint
that pipes should run in parallel and exploit optimally the resources.

Experiments at a smaller scale have to be carried out. The testbed described in the next section
provides a small but representative infrastructure similar to the large scale setting envisaged above.

18

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

5 Test platform
We briefly describe in this section the test platform which has been installed on a dedicated cluster
at Internet memory, and opened to our partners.

5.1 The test cluster
We installed a small cluster for tests and experimentations, with a 1TB collection. The cluster will
be extended during the last year of the project to test for scalability. The cluster initially consists of
5 machines, with 4 cores CPU Intel(R) 2.90GHz processor, 2 x 4TB SSHD of storage, and 16GB
of RAM.

We installed the following softwares:

• OS: Debian 6.0.10 (”squeeze”)

• Java: 1.7.0 55

• Hadoop: V2.0.0 in CDH4.6.0.

• HBase: V0.94.15 in CDH4.6.0

• Elasticsearch: V1.4.1

• Flink, V0.8

• Spark, V1.2.0

The collection consists of a large of European News site, periodically crawled from the Web.
It contains approximately 28,913,436 documents, 500 GB of data at the beginning of the project,
constantly increasing, indexed with ElasticSearch.

Access to the cluster is granted via SSH; we provide SSH keys to our partners whenever re-
quired.

5.2 MIGNIFY agents and workflow
A simplifier version of MIGNIFY has been created and installed on the cluster for testing purposes.
We also provide sample code packaged as a Maven project. All the dependencies for agents and
text mining libraries are defined in the maven specification file, and access to the maven IMR
repository to download the necessary Java files. in particular:

• TermVectorExtractorSample demonstrates the whole procedure to instantiate, ini-
tialize, execute and finalize agents by using term vector extractor as example.

19

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

• NamedEntityRecognitionSample is another sample demonstrating named entity ex-
traction from plain texts.

Since each MIGNIFY agent is packaged as a Maven module, partners can easily embed an agent
in Java code (for example, to execute agents within a Flink or Spark workflow) by adding Maven
modules of agent as dependencies of a new project.

References
[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian

Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger,
Kostas Tzoumas, and Daniel Warneke. The stratosphere platform for big data analytics. VLDB
J., 23(6):939–964, 2014.

[2] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, 2012.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[4] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 295–308, 2011.

[5] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008, pages 1099–1110, 2008.

[6] A. Scharl, A. Weichselbraun, A Hubmann-Haidvogel, and W Rafelsberger. Deliverable 6.1
- ASAP InfoViz Services Early Design . Technical Report MSU-CSE-00-2, ASAP, February
2015.

[7] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo
Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 5:1–5:16, 2013.

[8] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A

20

ASAP FP7 Project

ASAP D8.2

Use Case Requirements

fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI’12, pages 2–2, 2012.

21

FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP D8.2
Use Case Requirements

WP 8 – Applications: Web Content Analytics

Nature: Report

Dissemination: Public

	Introduction
	Pipes in Mignify
	Storing and indexing data
	Agents, queries, and pipes
	Pipe execution

	Extending the expressivity of pipes
	Iterative workflows
	Example: running a k-means clustering on result sets
	Distributed processing engines: Flink / Spark

	Use Case Requirements
	Pipes monitoring
	Multi-pipes execution
	Continuous pipe execution
	Non functional requirements

	Test platform
	The test cluster
	Mignify agents and workflow

