

ASAP FP7 Project D6.2 InfoViz Services v1

-- 1 --

FP7 Project ASAP

Adaptable Scalable Analytics Platform

D6.2 InfoViz Services v1

This report describes the ASAP visual analytics framework,

including methods to collect, manage and visualize structured and
unstructured data from multiple sources.

Arno Scharl, Albert Weichselbraun, Alexander Hubmann-Haidvogel,
Walter Rafelsberger, Adrian M.P. Brasoveanu

webLyzard technology

WP 6 – Information Visualization

Nature: Report
Dissemination: Public

Acknowledgement

This project has received funding from the European Union's 7th Framework
Programme for research, technological development and demonstration under grant
agreement number 619706.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 2 --

Executive Summary

The main goal of WP6 is the development of high-performance visual interfaces as
part of the ASAP system architecture to help analysts navigate big data repositories,
in real time and across multiple dimensions (temporal, spatial, etc.). Special
emphasis is placed on sub-second response times of the user interface, and the
ability to incorporate metadata as additional context information when analyzing
complex relations in Web content (WP8) or telecommunications data (WP9).

Rendering complex, manifold relations and patterns in contextual information spaces
(Scharl et al. 2015) requires an integration of metadata extracted from text
documents (unstructured) with statistical indicator data (structured). For this purpose,
the ASAP roadmap includes the development of core components in Year 1
(acquisition, representation and visualization of statistical data, temporal controls)
and Year 2 (data layers and geospatial projections), the provision of open APIs for
effective data interchange and integrating the visualizations in a wide range of
applications in Year 2, and the use of these APIs (i) to support dynamic re-calibration
of processing from M20 onwards (T5.3), and (ii) to provide key functionalities for the
Web content analytics and telecommunications use cases.

● T6.1 has focused on methods to collect, represent and visualize statistical
data, which will be linked together via the ASAP dashboard. This included a
linked data indexer, as well as a set of visualization components for the rapid
rendering of complex statistical data (using color coding to show metadata
attributes, and interactive mechanisms to select appropriate timescales).

● In Year 2 of ASAP, WP6 has focused on (i) a revised charting module with
additional features and a new layout, made more flexible by eliminating
dependencies on third-party libraries; (ii) adaptive tooltips and context menus
that offer relevant actions and settings based on the sequence of user
actions, providing a user-friendly way to trigger on-the-fly query refinements;
(iii) and extended geographic map module with custom base layers and data
manipulation options, and (iv) an open API to integrate the visualization
engine with other WPs. Included in Appendix C of this deliverable, this API will
not only allow to render multi-source data for the use case applications, but
also play an important role in the ASAP exploitation plan by supporting a
flexible and scalable Visualization-as-a-Service (VaaS) approach.

To ensure rapid prototyping of the visual methods, WP6 uses the D3 JavaScript
library (Bostock et al. 2011).1 D3 is perfectly suited for the purposes of ASAP, since
it is not focused on a new grammar for graphics, but rather on integrating existing
standards to create effective visualizations.

1 www.d3js.org

ASAP FP7 Project D6.2 InfoViz Services v1

-- 3 --

Introduction

The interactive visualizations of WP6 are intended to support free insight generation
without prior modelling of a domain, embracing both unstructured (Web intelligence)
and structured (linked data) sources. Shneiderman et al. (1996) present a taxonomy
of data types in the context of visualization, including temporal and multivariate data.

ASAP will dynamically combine such data types on the fly – taking into account use
case specifics and current user tasks. Time is a particularly important dimension to
consider, and was as such a focus of the work conducted in T6.1. The resulting
interactive visualizations should (i) reveal complex patterns and evolving trends, (ii)
provide flexible mechanism to select appropriate timescales, and (iii) are capable of
rendering a considerable amount of data spanning multiple sources and significant
timescales – without relying solely on aggregation, which might hide important facts.

Interactive Visualization of Heterogeneous Data from Multiple Sources

Visualization is an effective means to help analysts make sense of the current data
deluge. Quite often it is not enough to design a single visualization, but rather a set
of visualizations to get a better sense of hidden patterns and trends, as different
images might send different signals to the user. If this discovery process is to be
effective, visualization components need to be able to use large quantities of data
from heterogeneous data sources. A telecommunications analyst who wants to
visualize call metadata from various cities, for example, might require additional
information besides call metadata (see WP9); e.g.:

● news or social media coverage about the observed cities to correlate peaks in
the number of calls with co-occurring events such as music concerts, sports
events or political campaigns;

● population statistics, GDP data or statistical indicators from the respective
cities, assuming such datasets are available in an RDF or JSON format;

● patterns that correlate call metadata (aggregated and anonymized) with
statistical data and/or news and social media coverage.

In order to be able to cope with such requirements, a state-of-the-art visualization
engine and dashboard needs to include not just a set of appropriate visual methods,
but also components that support:

● the parallel processing of a wide variety of data types, including semantic data
types like geolocation, dates, etc.;

● the remix of data from a wide variety of data sources regardless of domain,
structure (structured or unstructured), or provenance;

● the possibility to extract various types of aggregated statistics or the most
important entities, and means to select, sort and summarize the data.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 4 --

Data Matching and Integration

Without an integrated backend that provides such services, any visualization service
will not reach the scale and depth needed to create on-the-fly visualizations from
heterogeneous data sources. Among the most complex problems that such a
backend needs to solve is the matching of data sources to different visualizations.
Several solutions have been proposed, but there is still no widely accepted standard
to flexibly integrate and visualize heterogeneous data sources. In general the
problem of resolving the entities from different datasets to the same common real-
world entities is known as data matching or record linkage since the 1960s (Koudas
et al., 2006). More recent solutions to address the problem of flexible integration for
automated visualization include schema matching (Cammarano et al., 2007),
ontology based information extraction and integration (Buitelaar et al., 2008), data
wrangling (Kandel et al., 2011) or proactive wrangling (Guo et al., 2011) via
interactive data transformation scripts, scalable data curation (Stonebraker et al.,
2013), human data wrangling following a crowdsourcing approach (Clow, 2014), as
well as visual embedding and visual product spaces (Demiralp et al., 2014).

In addition to these automated visualization models, a number of models mostly
focused on automated visualization of structured data (and especially Linked Data)
include Ontology Based Data Access (Giese et al., 2013), Linked Widgets for
exploiting governmental Linked Data (Trinh et al., 2013), LDVM or Formal Linked
Data Visualization Model (Brunetti et al., 2013), universal data cube concordance
model (Kelleher, 2014), and OLAP4LD – which is a generalization of OLAP for
various types of linked data (Harth et al., 2014).

Despite the availability of various models and related tools, the field of data matching
is still in its infancy. This also suggests that there is still a lot of work to be done in
order to get to a place where automated visualization systems are mature and
flexible enough to visualize any type of heterogeneous data source on the fly.
Interoperability, speed and scalability are obviously other factors that need to be
taken into account when designing such a system.

Visual Dashboard to Explore Contextualized Information Spaces

ASAP will integrate real-time data feeds from multiple sources via an open API (see
Appendix C), which allows uploading structured and unstructured datasets,
searching for specific sets of indicators or documents, and embedding individual
visualizations in Web-based applications, to be rendered in real time (T6.1, T6.2).

The ASAP dashboard (T6.3) will combine several visualizations to represent the
contextualized information space using a multiple coordinated view approach.
Synchronized widgets show the various metadata dimensions (see mockup in Figure
1; the more lightweight look and feel in comparison to the mockup of D6.1 reduces
complexity and highlights the actual content). These widgets will help explore the

ASAP FP7 Project D6.2 InfoViz Services v1

-- 5 --

storytelling potential of big data visualization, addressing calls for methods to support
the complementary relationship between the explorative and analytical dimensions of
information visualization.

The dashboard builds on insights gained from the Media Watch on Climate Change
(MWCC),2 which in the context of ASAP serves as a rapid prototyping platform to
develop and test the widget synchronization, as a means to gather user feedback
(T6.3) including non-expert users (T6.4), and as an outreach channel (WP10).

Figure 1. Mockup of the ASAP dashboard; see Section Visual Analytics Components for a description of
the individual D6.1 and D6.2 components

Deliverable Structure

The remainder of this deliverable summarizes the work of T6.1 – T6.4, starting with
an outline of the developed APIs, the chosen representation of statistical data, and a
summary of the planned visualization workflow. This conceptual part is followed by a
description of the visual analytics building blocks – interactive D3.js modules for line
charts, donut charts, bar charts, and geographic maps, to be synchronized within the
ASAP dashboard (T6.3). This portfolio of visualizations is complemented by the
Granular Overview Overlay, a novel way to display aggregated statistical data, and a
slider mechanism to select time intervals for the analysis. D6.2 concludes with
technical considerations in terms of rendering and indexing strategy, the scalability of
the open API, and rapid deployment in distributed environments.

2 www.ecoresearch.net/climate

ASAP FP7 Project D6.2 InfoViz Services v1

-- 6 --

Application Programming Interfaces

The ASAP visualization pipeline for processing unstructured and structured content
from multiple sources aims to solve the data matching problem. It is being made
available via an open API for members of the consortium, and selected external
partners who will help evaluate the provided functionality. To align the APIs with the
specific requirements of the consortium partners, a stand-alone Request for
Comments was sent out in July 2015. An extended version was then provided as
part of the initial draft of D6.2 in August 2015. Future versions of the API will evolve
alongside the use case requirements, and play an important part in formulating the
ASAP exploitation strategy (T10.2), which will leverage the functionality of the API
pursuing a Visualization-as-a-Service (VaaS) approach.

Advantages. Prior to ASAP, the webLyzard dashboard existed in different versions,
fully customized to client specifications and typically including a multiple visual tools.
The manual effort of customizing each system quickly became a cost driver that
does not scale well with an increasing number of projects. When aiming to support
flexible on-the-fly visualizations based on dynamic datasets, as required by ASAP,
this approach is no longer feasible at all. This led to the development of several open
APIs, bundled within a uniform framework for the rapid integration of heterogeneous
data sources into a common visualization processing pipeline.

Specification. The specification of the APIs aimed to provide a simple and unified
interface through which to expose all data and interface services, increasing the
degree of automation between various components and offering a clean and
extensible set of JSON formats for each important service. This enables rapid
deployment on a wide range of platforms, and provides instant access to relevant
data – not only to serve as a building block of the use case applications, but also to
support the ongoing development process. For developers, the APIs structure and
streamline the overall workflow. A visualization designer does not need to learn
about SPARQL queries to retrieve and visualize entities referenced in a text.
Similarly, a backend developer does not need to know about the specifics of a
certain visualization to demonstrate an improved knowledge extraction method.

The main API convention is that content to be ingested by the visualization engine
can be modelled as a small set of objects (visualizations, queries, documents,
annotations, statistical observations) in JSON format. Each API is designed to be
flexible and future-proof, following a versioning policy and requiring users to be
authenticated. The APIs are in an early stage; future versions will not fundamentally
change their structure, but will certainly refine them and add specific functions. The
current set of APIs reported in Annex C of D6.2 comprises the following:

● Document API – ingests unstructured data, for example crawled Web
documents from WP8. The main objects are Documents, Sentences and
Annotations. This API can be used for sharing documents regardless of their

ASAP FP7 Project D6.2 InfoViz Services v1

-- 7 --

provenance, as well as annotations from knowledge extraction services
(sentiment analysis, named entity detection, etc.).

● Statistical Data API – ingests structured data from a variety of sources, for
example the telecommunications data of WP9. The main object is a Statistical
Observation. The API follows the RDF Data Cube philosophy, splitting
statistical data into datasets with the same structure and components
(dimensions, measures, attributes, observations).

● Search API – returns a set of query results in the form of unstructured text
documents. The main object is Query. The next version of the API to be
reported in D6.3 will also support queries for structured datasets.

● Embeddable Visualization API – provides the ASAP partners with a means to
integrate visualizations in their applications, typically based on the results of a
search query. The main object is Visualization.

Document API (Unstructured Data)

The Document API ingests different types of textual content (binary, text, html, etc.).
It does not require fully annotated texts. Sentences (POS lists, token lists, etc.),
annotations (sentiment, named entities, etc.) or metadata (data about the file itself,
e.g. provenance) can be added in advance by a partner, or they can later be
provided in a separate process via the Annotation API.

The creation of independent Elasticsearch3 repositories (see Section on “Technical
Considerations” below) allows distinguishing datasets from different tasks or partner
organizations. Each repository has a unique ID. The Document API is used for
uploading documents to such a repository. When adding new documents, one will
have to set the content, content type, provenance, time, language and location of the
document, along with an optional set of annotations. Annotations can later be added
either via webLyzard’s own knowledge extraction components (Scharl et al. 2016)
including sentiment analysis (Weichselbraun et al., 2013, 2014) and named entity
recognition (Weichselbraun et al., 2015), the text mining operators of IMR’s Mignify
platform (see Section 2.2 of D8.2), or by using third-party services.

Statistical Data API (Structured Data)

The analytical goals of ASAP and the requirement of visualizing structured data from
multiple sources (e.g. time series of Web content metrics from WP8 in conjunction
with telecommunications data from WP9) required a new data format that supports:

● datasets created by ASAP partners, using common formats such as CSV,
JSON, RDF, XML, etc.;

3 www.elastic.co

ASAP FP7 Project D6.2 InfoViz Services v1

-- 8 --

● complementary data from Open Data Initiatives (e.g. governmental open data,
or indicators from international organizations);

● RDF Data Cubes in the SDMX, QB and other similar RDF formats.

This format should resemble the JSON format used by the Document API to ensure
consistency across structured and unstructured data, and the ability to visualize
these data along multiple dimensions. To represent statistical data from a variety of
sources, we adopted the RDF Data Cube Vocabulary (QB) approach, which is the
current standard for publishing statistical data in RDF format (see Appendix B). By
splitting the statistical data into cubes with a maximum of three dimensions (e.g.,
mobile cellular subscriptions, location and time), QB offers a simple structure that
can be shared by all datasets. In order to use data from multiple datasets, there are
several possible strategies:

● determine whether all the components of the respective datasets match using
complex ontology alignment or data matching techniques;

● use machine learning techniques to perform the data matching automatically;

● create a common data format for all datasets based on the basic concepts of
this vocabulary – i.e., organized in datasets which contain observations
described through measures, dimension, attributes, etc.

When developing the API for ASAP, we have chosen the third option (follow-up
projects might add machine learning techniques to perform complex data matching,
for example to ingest noisy datasets with uncertain provenance). The RDF Data
Cube philosophy is not only useful for QB or SDMX datasets, but also for integrating
any type of statistical data. The underlying idea was to use a common statistical
mapping with a rich set of optional fields to visualize various ASAP datasets using a
common Statistical API. This mapping process is described in Table 1.

Table 1. Mapping between QB data and Elasticsearch indices

RDF Data Cube Vocabulary Concept Elasticsearch Correspondence

Dataset Repository

Data Structure Document Mapping

Code Lists There is no need to keep code lists, but they
can be converted to corresponding data types.

Statistical Observation Document with type = “observation”

Measure Components, Dimension
Components, Attributes

Fields with the corresponding Elasticsearch
data types

Slices Queries

ASAP FP7 Project D6.2 InfoViz Services v1

-- 9 --

While it appears that measure and dimension components are meshed together, this
hardly happens in reality, as the typical queries would almost always involve just the
dimension components (Query 1), but it does offer the possibility of querying the
other components as well (Query 2):

● Query 1 – Retrieve the growth of mobile phone users [fixed dimension] in Italy
[fixed dimension] between 2005 and 2015 [time interval; free dimension].

● Query 2 – Retrieve the units of measurements used in this dataset.

When uploading data with the Statistical Data API, the relevant data snippets have to
be transformed into observations, which themselves are grouped into datasets. In
general it is recommended to upload entire datasets instead of individual
observations, but modifying individual entries is possible. This conversion process
becomes particularly valuable when slicing and grouping observations via the
Elasticsearch Query DSL (Domain-Specific Language), as the performance of this
DSL has a significant impact on overall scalability.

The main advantages of using the RDF Data Cube standard for modelling statistical
datasets to be ingested into the ASAP visualization processing pipeline are:

● using a proven methodology (W3C Recommendation) to drive both the data
modelling and the visualization process;

● the ability to perform most operations (slice, dice, aggregations, sub-totals,
etc.) one would be able to perform on data cubes, which are already well-
understood and formalized through cube algebras like the ones presented by
Gray et al. (1997) and Cifferi et al. (2013);

● effective integration by aligning RDF Data Cube concepts and Elasticsearch
core concepts.

Search API

The Search API enables data analysts to use powerful queries based on the full text
of a document, its metadata attributes, and statistical observations – therefore it is
the ideal means for providing data for embeddable visualizations (see below).

It is a stateless, RESTful API, accessed via HTTPS that uses JSON as input and
output format and supports most functions of Elasticsearch (in addition to specific
operations related to the available metadata).

The Search API supports a wide range of queries such as bool, phrase, regexp,
term, wildcard, range, sentiment, date, etc. The current version returns search
results as documents. Future version might also support more granular queries for
sentences, sentence combinations or paragraphs.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 10 --

Embeddable Visualization API

The Search API allows users to access relevant data, and embed results in third-
party applications. To identify hidden patterns and to better understand the
underlying processes, however, visual methods are often superior.

The Embeddable Visualization API complements the rich and more complex
functionality offered by the multiple coordinated views of the ASAP dashboard. It
supports the integration of individual visualizations into use case applications, and
represents the basic building block of ASAP’s Visualization-as-a-Service (VaaS)
exploitation strategy (WP10). Calls to this API allow specifying the appearance
(width, height, style, etc.), data format (html, csv, json, xml, etc.), query or type of
chart that should be displayed. It works with both structured and unstructured data,
and the queries resemble those sent to the Search API (see above).

Details about the new and revised visual tools to be made available both via the
ASAP Dashboard as well as the Embeddable Visualization API will be described in
the next section of this deliverable.

Visual Analytics Components

This section summarizes the individual visualization components of WP6. While the
trend chart and the geographic map build upon previous work that is being extended
and refined for the purposes of ASAP, the donut chart, bar chart and time interval
slider components are new developments. The GROOVE visualization for showing
the temporal distribution of large datasets is also based on previous work, but has
been ported to D3.js and made compatible with the ASAP dashboard (D6.2) in the
second year of the project – with a focus on the interaction layer, including real-time
synchronization capabilities with various other dashboard components.

D6.2 introduces a redesigned user interface with a new layout and increased feature
set. The more lightweight look and feel, as compared to the initial design reported in
D6.1, reduces complexity and highlights the actual content; i.e. query results and
visualizations. Instead of showing all the available options at once, many features of
the user interface are now hidden until being activated via hovering above the
corresponding interface element. To further reduce cognitive overhead, the new
navigation structure distinguishes between global, view-specific and element-specific
settings and actions.

To support interactive query refinement while exploring datasets with the ASAP
dashboard, adaptive tooltips and context menus have been developed in Year 2
(representing the element-specific part of the multi-layer menu structure outlined
above). These tooltips offer the most relevant actions and settings in the context of
the current user interaction, and always include the ability to (i) replace the search
term, or to either (ii) extend or (iii) restrict the search via Boolean operators.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 11 --

Trend and Donut Charts

Trend charts are central components of the webLyzard dashboard, using D3.js to
render dynamic transitions – to show different source combinations, for example, or
to incremental changes in a dataset. Building on existing functionality from previous
projects, T6.1 has rewritten and extended the trend chart module to eliminate
dependencies on third-party libraries, increase rendering performance, and support a
wider range of usage scenarios (see Figure 2).

Applied to Web content repositories, the line chart shows the evolution of topics. Its
vertical axis re-scales automatically. This feature is particularly useful if a high value
obscures the distributions of other variables. Hovering above data points displays
tooltips with context-specific metadata. For Web content analytics (WP8), the
frequency of a topic as well as the sentiment expressed towards this topic will serve
as key indicators. Derived metrics such as disagreement (= the standard deviation of
sentiment) can show how contested a topic is. The term ‘tsunami’, for example,
typically has a low standard deviation since everyone agrees on its negative
connotation. For the WP9 use case on telecommunications data analysis, the trend
chart will enable us to show the number of bookings or enquiries, for example, and to
summarize the temporal distribution in conjunction with specific events.

Figure 2. Redesigned trend chart and donut chart (replacing the previous pie chart)

The new donut chart is functionally similar to the previously used pie chart, but
improves data perception by de-emphasizing the use of areas. While the areas of
the pie chart slices can be deceiving (their size grows exponential rather than a
linear manner), the donut chart provides a more realistic display of attribute values.
Users focus on reading arc lengths rather than comparing slice areas. An additional
advantage is the use of the empty center to display additional information, for
example the name of the shown variable or a chart legend.

The data export function provides time series data from the trend chart module in
XLSX format or as a comma-separated text file (CSV) encoded in UTF-8 format.
Specific ASAP extensions to this component include (i) the export of larger datasets
with a progress bar, (ii) the ability to start several downloads in parallel, and (iii) the

ASAP FP7 Project D6.2 InfoViz Services v1

-- 12 --

option to cancel an extensive download while the progress bar is being shown. This
will allow the processing of large datasets in statistical packages such as R and
SPSS, and a range of other external applications.

Bar Chart

To increase the versatility of the chart library and address the above-mentioned
limitations of pie charts and donut charts, the portfolio has been extended with two
different types of bar charts that can be deployed individually or in combination:

● Visualizing Clustered Data: This generic extension allows visualizing any type
of grouped datasets (e.g. static information sources with a limited number of
daily or weekly updates in the case of the Web content analytics of WP8, or
different tourist segments in the telecommunications data analysis of WP9).
The example shown in Figure 3 (left) compares the total number of mentions
per category. Each bar is accompanied with a number that indicates the
document count, and the three most common keywords.

● Visualizing Metadata Distributions: The inherent limitations of pie charts are
only partially addressed by the above mentioned switch to donut charts. While
pie charts in all their manifestations have gained a lot of popularity among end
users in software applications which offer ready-made charts, studies on a
perceptual level show that bar charts are more effective for estimating
differences in given values when compared to angle encodings (Heer and
Bostock, 2010). Bar charts also improve the readability when rendering many
different categories, and can be easily subdivided to display additional
metadata such as the positive, negative and neutral sentiment shown in
Figure 3 (right). The split design allows us to show both, the overall metadata
distribution as well as the distribution by data category as percentages.

Figure 3. Bar charts present grouped datasets as an alternative to time series data (left), and as an
alternative to the previous pie chart module (right)

Scatterplot

The revised version of the webLyzard scatterplot translates two-dimensional tables
into visual form, providing interactive features and animated transitions to show
incremental changes from query to query. For content analytics applications, it is

ASAP FP7 Project D6.2 InfoViz Services v1

-- 13 --

currently used as a “Source Map” (see Figure 4), showing the relative importance of
a given topic as well as the editorial position of various authors towards this topic. In
the following, we summarize the key characteristics of the scatterplot component:

● Layout. The sources are shown with circles of variable position, size and
color. The circles are mapped on a two-dimensional layout with the horizontal
axis corresponding to the frequency and the vertical axis to the sentiment
value range. Both axes use a quadratic scale that distributes circles more
evenly in space due to the fact that the majority of sources has small
frequency and sentiment values. The size of a source is proportional to its
reach value and the color represents the average sentiment value.

● Interactive Features. On mouseover, a tooltip provides additional information
including the name of the source, numeric values of four variables (frequency,
centrality, sentiment and reach), and the top 3 keywords. The view-specific
menu provides an option to label the sources. The positioning of the labels is
calculated with an adapted version of the D3-Labeler library (Wang, 2014),
which optimizes the positioning to minimize overlap.

● Incremental Updates. Each query triggers an incremental update of the layout
using smooth animations. The axes ticks are also calculated dynamically
depending on the respective data value ranges.

Figure 4. Scatterplot showing the frequency vs. sentiment distribution of references to “climate change”

by international English-language news media (2015)

ASAP FP7 Project D6.2 InfoViz Services v1

-- 14 --

Recursive Pattern Arrangement for Showing Temporal Views

Keim et al. (1995) propose a recursive pattern arrangement for pixel-based
visualizations. One important information source for this arrangement is the calendar
aspect of time, i.e. time being composed of multiple granularities such as day,
weeks, or months. For pixel-based visualizations of time-oriented data, the method
has become the standard arrangement. Two important shortcomings are a lack of
user-orientation and the need for focus and context capabilities (Card et al,. 1999).
For the latter, Shimabukuro et al. (2004) propose the multi-scale visualization. It
provides focus and context, but the views are detached and the lack of orientation
becomes an even bigger problem due to frequent view shifting that users need to
perform. To resolve those issues, Lammarsch et al. (2009) introduced the GROOVE
visualization with integrated focus and context based on granularities and the
recursive pattern arrangement. D6.1 has adopted the GROOVE approach,
implemented it via the D3.js library, and extended the capabilities to show additional
metadata dimension such as average document sentiment.

Figure 5. GROOVE representation based on occurrences of the term

“climate change” in international news media coverage (2014)

Pixel-based visualization originally used one pixel per data element (e.g., the data for
one calendar date), using color coding to represent the data value. Newer
implementations such as GROOVE represent each data element by a square that
might be only the size of one pixel, but automatically expands if more space is
available. The pixels (or squares) are arranged according to the days of a year,
similar to a calendar. The example of Figure 5 shows the year 2014, positioning the

ASAP FP7 Project D6.2 InfoViz Services v1

-- 15 --

days of each month (each day with a white border) inside a larger rectangle (the
larger areas without border). The rectangles are arranged quarterly, so each section
labelled with 1-4 on the left side represents one quarter. At the top, the labels of 1-3
represent the first, second, and third month of each quarter.

The shown data reflects the frequency of the term “climate change” in Anglo-
American news media between January and December 2014. The goal is to show
both frequency and sentiment data, which exceeds the possibilities of the original
GROOVE implementation. Therefore, we designed a new color-coding scheme
where lightness refers to the number of daily occurrences, while sentiment is
mapped to the hue and chroma of each pixel. Pink and magenta colors represent
negative bias. Green colors represent positive bias. Colors closer to gray represent
balanced sentiment. Very strong biases are represented by more vibrant colors,
weaker biases are closer to gray, and thus, more pale. This mapping of hues is
based on work by Choudhury et al. (2011), which has been extended by a hybrid
computation of hue, chroma, and lightness. Monthly averages are mapped to the
colors of the rectangles that surround the days and represent the months.

Geographic Map

The geographic map builds upon previous work on the Media Watch on Climate
Change (Scharl et al. 2013a) and its extension into a knowledge co-creation platform
(Scharl et al. 2013b) within the DecarboNet FP7 project,4 which provided an initial
D3.js-based implementation. T6.2 extended this earlier work by providing:

● custom base layers to show additional details when rendering the display.
This required tools to generate raster image tiles, to serve them as MBTiles,
and to customize these MBTiles according to specific use case requirements;

● adaptive tooltips and view-specific menus for data highlighting, selection, and
drill down (see tooltip on “Austria” in Figure 6), and

● a choropleth feature in conjunction with reverse geocoding on the country-
level to provide additional data highlighting features, especially in regards to
structured datasets.

Custom Base Layers

The pre-T6.2 version of the GeoMap module was entirely based on SVG, using
country shapes as base layer to display borders and provide country-level hovering
and selection. While such SVG-rendered shapes are great for a quick overview and
easy to adapt in terms of visual attributes, they lack the level of detail required for the
ASAP use cases – when focusing on a given limited area such as the City of Vienna,
for example, the shapes’ lack of detail becomes obvious as county and district
border shapes are notably missing.

4 www.decarbonet.eu

ASAP FP7 Project D6.2 InfoViz Services v1

-- 16 --

Figure 6. Geographic map with activated base layer and adaptive tooltip

While theoretically there are no limitations on how detailed SVG shapes can be, the
actual rendering process is resource-intensive. The previously used shapes required
approximately 357 kB of uncompressed data. Adding more detail to the shapes
quickly grows the dataset into the range of several megabytes, which is not feasible
for Web client applications – especially when taking mobile access scenarios into
account. To address these constraints, T6.2 implemented a pipeline of tools to offer
customized raster-based image tiles for map base layers.

● GeoMap JavaScript Client Library. The Web client library is extended to
support multiple raster-based image tiles as base layers. The subtle design of
the standard base layer is intended, featuring the necessary shapes and
labels to offer the geographic context, but keeping the main focus on the
actual data displayed on top of the base layer. POIs can be displayed in
various styles. Additionally, the rasterized base layer can be combined with
SVG labels to increase the flexibility of visual applications.

● Tile Server. The base tiles need to be hosted and served. tilestream5 is an
open source high performance map tile server based on MBTiles files.
Deploying the server in combination with docker6 and Apache HTTP Server7

5 www.github.com/mapbox/tilestream
6 www.docker.com
7 httpd.apache.org

ASAP FP7 Project D6.2 InfoViz Services v1

-- 17 --

addresses scalability and security issues. docker simplifies deployment and
scaling, while Apache guarantees that tile server access is limited to ASAP
partners and authenticated third parties with the required permissions.

● Customized Map Creation ensures maximum flexibility when it comes to
specific use case requirements. The ASAP map creation pipeline yields
custom MBTiles files for the tile server. The format used to style maps is
CartoCSS. By building upon the CSS standard, it offers a low learning curve
for designers familiar with common Web technologies. These styles are used
as a basis to render the tiles with mapnik,8 and can be combined with different
data sources. The default is OpenStreetMap,9 but sources and formats can be
applied based on specific requirements (e.g., ArcGIS data).

Data Highlighting, Selection and Drill Down

Extending the GeoMap component with adaptive tooltips and context menus
enriches its functionality while ensuring a unified user experience. Based on the
analyst’s current context, for example in the form of a country shape or point of
interest, the tooltip displays filtered information and a context menu to either drill
down or extend the search.

Basic highlighting functions include visual cues to show specific (groups of) data
points when users hover over related components in the ASAP dashboard, or color
coding of data points according to metadata attributes such as sentiment. With a
special emphasis on structured datasets, the GeoMap library has also been
extended with a choropleth feature as well as a reverse geocoding function that
operates on the country level.

WebGL Support

While SVG offers significant advantages for Web-based applications, there are
specific scenarios where it lacks performance in comparison to WebGL
implementations – if a lot of textual elements are required, for example, it loses its
performance advantage and has issues with rendering quality (see Section
“Rendering Process” below). We will continue to investigate possible WebGL
implementations, as the geographic features of the D3.js library itself can be used to
create shapes, but the data can also be passed on to a WebGL renderer such as
three.js instead of SVG. As an alternative, NASA World Wind (formerly a Java-based
application framework only) is currently being ported to HTML5 and JavaScript.10

8 www.mapnik.org
9 www.osm.org
10 www.webworldwind.org

ASAP FP7 Project D6.2 InfoViz Services v1

-- 18 --

Date Selection

To investigate longitudinal data, a time slider for selecting a date range for the
analysis has been developed in a joint effort with researchers from the FP7 project
Pheme.11 We plan to activate the new component as part of the webLyzard
dashboard in the third quarter of 2015. The slider element consists of a timespan bar
in conjunction with a sliding window. The variation of the point heights forms a line
chart which is transformed to a horizon chart (shown with a light grey color) to
emphasize minimum and maximum values. Figure 7 illustrates the timespan bar
based on randomly generated data. The grid ticks on the horizontal axis provide the
temporal context, with labels for years and months.

Figure 7. Interactive date range selector

User can drag and drop the sliding window; the current date range will then be
updated according to the new position. The two triangular grey-colored handles
situated on each side of the window resize the window and adjust the date range.
Finally, users can move the selected time span using the triangular arrow buttons
located on both sides of the timespan bar – clicking on a button will shift the sliding
window by one week towards the side that the arrow is facing.

Technical Considerations

Rendering Process

To assess and improve the rendering and animation performance of the visualization
methods, the strengths and weaknesses of different rendering techniques were
investigated in Year 1 of the ASAP project. While SVG is known to perform better
with fewer elements and larger rendering areas, for example, Canvas is superior in
the case of more elements and smaller rendering areas.12

Since rendering text in SVG is known to be prone to performance issues, we
developed a simple test program to render and animate several thousand text
elements, using the following techniques: D3 (SVG), D3 (Canvas), D3 (WebGL,
Canvas), KineticJS (Canvas),13 PixiJS (WebGL, Canvas).14

In terms of relative rendering speed we observed the best performance using PixiJS,
which is a 2D rendering library utilizing the graphics card by using WebGL and
rendering the output on a Canvas element. However, although slight performance

11 www.pheme.eu
12 www.smus.com/canvas-vs-svg-performance
13 www.kineticjs.com
14 www.pixijs.com

ASAP FP7 Project D6.2 InfoViz Services v1

-- 19 --

improvements could be achieved using PixiJS, we assessed the various implications
and decided to keep using D3 and SVG for the following reasons:

● Since SVG works with vector graphics, the output is more precise and visually
more appealing compared to pixel-based graphics;

● WebGL is a fairly new technology and therefore might not be supported by all
available browsers, especially on mobile devices;

● ASAP visualizations are highly interactive, where the major advantage lies
with D3 and SVG, due to its data-binding and event handling capabilities;

● Straightforward implementation of animations – when the attributes of the
elements to be moved are known, it is straightforward to directly select and
animate them in D3. In Canvas, by contrast, all elements need to be redrawn,
and one needs to keep track of the elements to be moved, and interpolate
their new position (D3 manages these processes automatically).

● Text rendering in GL is not done directly, since a texture element needs to be
generated for each text element; this requirement complicates the animation
of font size changes as compared to SVG (with respect to text quality and
correct positioning);

In light of the potential drawbacks outlined above, we considered the gains in raw
performance not significant enough to justify the efforts required to further test and
potentially adopt Canvas-based approaches.

Indexing Strategy and Deployment

The visualization components of ASAP are based on high-performance queries on
unstructured and structured data repositories. Before the start of the ASAP project,
the webLyzard processing pipeline was based on Apache Lucene15 and largely built
around the processing of large datasets in batch mode. We increased flexibility
through a modularization strategy, together with a migration to Elasticsearch,16 a
distributed search and analytics engine made available under an Apache 2 open
source license. Elasticsearch provides a RESTful API using JSON over HTTP. Built
for the cloud, it ensures the required scalability for real-time queries that provide the
data for through multi-tenancy and sharded indexing.

Elasticsearch not only speeds up accessing domain-specific repositories of
unstructured content, but also facilitates the process of slicing statistical linked data
and their integration with other data sources. Elasticsearch aggregations yield
additional information for user queries or API calls:

15 lucene.apache.org
16 elastic.co

ASAP FP7 Project D6.2 InfoViz Services v1

-- 20 --

● top k answers. Top search results based on a simple or advanced query;
● data slices. Most often across time, but in the case of complex datasets other

dimensions can be included as well – when analyzing tourism transactions,
for example, one can obtain all the flights originating from a specific airport to
multiple destinations;

● data summaries. Indicator performance is highlighted not just by color
coding, but also through a data summary.

On top of ElasticSearch, the API specified in Annex C of this deliverable is being
implemented using Vert.x17, a high-performance, lightweight and scalable application
framework. Using its distributed event bus, larger applications can be broken down
into micro-services, which can then be horizontally scaled over multiple hosts. As a
non-blocking, asynchronous toolkit, Vert.x can easily scale to several thousand
requests per second. The modular processing strategy of WP6, in conjunction with
the provision of Vert.x-based RESTful APIs, will enable the on-the-fly integration of
intermediate results in T5.3 from month 20 onwards.

For a more flexible deployment of ASAP visualization components, Kernel-based
Virtual Machines (KVMs)18 have been replaced with Docker instances.19 Since the
Docker engine container comprises just the application and its dependencies (in
contrast to KVM, which also includes the guest operating system), this will increase
the portability and efficiency of the developed components. The migration to a
distributed Docker architecture has been completed in the third quarter of 2015.

Figure 8. Virtual machines versus Docker containers (Source: www.docker.com)

17 vertx.io
18 www.linux-kvm.org
19 www.docker.com

ASAP FP7 Project D6.2 InfoViz Services v1

-- 21 --

Outlook and Next Steps

This deliverable summarizes the work conducted in WP6 of the ASAP FP7 project.
In the first 18 months, this work has focused on methods to collect, represent and
visualize structured as well as unstructured data, to be linked together via the ASAP
dashboard. This included the development of an open API and a corresponding
indexer, as well as visual analytics components for the rapid rendering of complex
datasets using visual cues (e.g., color coding) to show metadata attributes, and
interactive mechanisms to select appropriate timescales. These components include
(i) a charting module with adaptive tooltips and context menus that offer actions and
settings based on the sequence of user actions, providing a user-friendly way to
trigger on-the-fly query refinements; and (ii) a geographic map module with custom
base layers, choropleth functionality, and customizable data manipulation options.

The open API allows integrating the WP6 visualization engine with the components
developed in other WPs, and rendering multi-source data for the use case
applications. To set the stage for a seamless integration, Appendix C of the this
deliverable contains the preliminary specification of the API, building upon the Year 1
work on processing statistical data. It will allow connecting the data streams to either
individual visualizations, or to the entire ASAP dashboard.

Further development activities will increase rendering performance using a Web
Workers-based approach,20 embed use case data from both WP8 and WP9 into a
unified ASAP dashboard in order to enable customized analytics. From M20
onwards, T5.3 will integrate WP6 components into the data analytics workflow,
enabling the manipulation of intermediary and final data sets.

We will also continue to evolve the API specification itself, as it will play an important
role in the ASAP exploitation strategy (T10.2) by supporting a flexible and scalable
Visualization-as-a-Service (VaaS) approach.

References

Bostock, M., Ogievetsky, V. and Heer, J. (2011). “D3: Data-Driven Documents”,
IEEE Transactions on Visualization and Computer Graphics, 17(12): 2301-2309.

P. Bonacich (2007). “Some unique properties of eigenvector centrality”, Social
Networks 29(4): 555-564, 2007.

Brunetti, J. M., Auer, S., García, R., Klímek, J., & Nečaský, M. (2013). “Formal linked
data visualization model”. In Proceedings of International Conference on Information
Integration and Web-based Applications & Services, ACM, USA: 309-324.

20 www.w3.org/TR/workers

ASAP FP7 Project D6.2 InfoViz Services v1

-- 22 --

Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., & Racioppa, S. (2008). “Ontology-
based information extraction and integration from heterogeneous data sources”.
International Journal of Human-Computer Studies, 66(11), 759-788.

Cammarano, M., Dong, X., Chan, B., Klingner, J., Talbot, J., Halevy, A., & Hanrahan,
P. (2007). “Visualization of heterogeneous data”. Visualization and Computer
Graphics, IEEE Transactions on, 13(6), 1200-1207.

Card, S.K., Mackinlay, J.D. and Shneiderman, B. (1999). Readings in Information
Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann.

Choudhury, A., Potter, K., Rhyne, T., Livnat, Y., Johnson, C., and Alter, O. (2011).
“Visualizing Global Correlation in Large-Scale Molecular Biological Data”, 1st IEEE
Symposium on Biological Data Visualization (BioVis-2011). Providence, USA.

Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., & Zimányi, E. (2013).
“Cube algebra: a generic user-centric model and query language for OLAP cubes”.
International Journal of Data Warehousing and Mining (IJDWM),9(2), 39-65.

Demiralp, C., Scheidegger, C. E., Kindlmann, G. L., Laidlaw, D. H., & Heer, J.
(2014). “Visual embedding: A model for visualization”. Computer Graphics and
Applications, IEEE, 34(1), 10-15.

Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H.,
Koubarakis, M., Lenzerini, M., Moller, R., Ozcep, O., Muro, M.R., Rosati, R.,
Schlatte, R., Schmidt, M., Soylu, A., and Waaler, A. (2013). “Scalable end-user
access to big data”. Big Data Computing, 205-245.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F. and Pirahesh, H. (1997). “Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals”. Data Mining and Knowledge
Discovery, 1(1), 29-53.

Guo, P. J., Kandel, S., Hellerstein, J. M., & Heer, J. (2011). “Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts”. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology. ACM, USA: 65-74.

Heer, J. and Bostock, M. (2010). Crowdsourcing Graphical Perception: Using
Mechanical Turk to Assess Visualization Design. 28th ACM Conference on Human
Factors in Computing Systems (CHI-2010). Atlanta, USA: 203-212.

Heer, J. and Shneiderman, B. (2012). “Interactive Dynamics for Visual Analysis”,
Communications of the ACM, 55(4): 45-54.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 23 --

Kämpgen, B., & Harth, A. (2014). “OLAP4LD–A Framework for Building Analysis
Applications Over Governmental Statistics”. In The Semantic Web: ESWC 2014
Satellite Events. Springer International Publishing, Berlin: 389-394.

Keim, D., Ankerst, M., and Kriegel, H.-P. (1995). "Recursive pattern: A technique for
visualizing very large amounts of data", 6th Conference on Visualization (Vis-95).
Atlanta, USA: 279-287.

Kelleher, C. (2014). Visualizing the universal data cube. Doctoral dissertation,
University of Massachusetts Lowell.

Koudas, N., Sarawagi, S., and Srivastava, D (2006). “Record linkage: similarity
measures and algorithms”. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, ACM, pp. 802–803.

Lammarsch, T., Aigner, W., Bertone, A., Mayr, E., Gartner, J., Smuc, M. and Miksch,
S. (2009). “Hierarchical Temporal Patterns and Interactive Aggregated Views for
Pixel-based Visualizations”. 13th International Conference Information Visualisation.
Barcelona, Spain: 44-50.

Scharl, A., Hubmann-Haidvogel, A., Weichselbraun, A., Lang, H.-P. and Sabou, M.
(2013a). Media Watch on Climate Change – Visual Analytics for Aggregating and
Managing Environmental Knowledge from Online Sources. 46th Hawaii International
Conference on Systems Sciences (HICSS-46). R.H. Sprague. Maui, USA: IEEE
Press: 955-964.

Scharl, A., Herring, D., Rafelsberger, W., Hubmann-Haidvogel, A., Kamolov, R.,
Fischl, D., Föls, M. and Weichselbraun, A. (2015). “Semantic Systems and Visual
Tools to Support Environmental Communication”, IEEE Systems Journal:
Forthcoming (Accepted 31 July 2015).

Scharl, A., Hubmann-Haidvogel, A., Sabou, M., Weichselbraun, A. and Lang, H.-P.
(2013b). “From Web Intelligence to Knowledge Co-Creation – A Platform to Analyze
and Support Stakeholder Communication”, IEEE Internet Computing, 17(5): 21-29.

Scharl, A., Weichselbraun, A., Göbel, M., Rafelsberger, W. and Kamolov, R. (2016).
"Scalable Knowledge Extraction and Visualization for Web Intelligence", 49th Hawaii
International Conference on System Sciences (HICSS-2016). Kauai, USA.
Forthcoming (Accepted 17 Aug 2015).

Shimabukuro, M., Flores, E., de Oliveira, M., and Levkowitz, H. (2004). “Coordinated
Views to Assist Exploration of Spatio-Temporal Data: A Case Study”. 2nd
International Conference on Coordinated and Multiple Views in Exploratory
Visualization, São Paulo, Brazil: 107-117.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 24 --

Shneiderman, B. (1996). “The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations”. IEEE Symposium on Visual Languages. Boulder, USA:
IEEE Press: 336-343.

Stonebraker, M., Bruckner, D., Ilyas, I. F., Beskales, G., Cherniack, M., Zdonik, S.
B., and Xu, S. (2013). “Data Curation at Scale: The Data Tamer System”. In CIDR,
Asilomar, California, USA, 2013.

Trinh, T. D., Do, B. L., Wetz, P., Anjomshoaa, A., & Tjoa, A. M. (2013). “Linked
widgets: an approach to exploit open government data”. InProceedings of
International Conference on Information Integration and Web-based Applications &
Services. ACM, USA: 438.

Wang, E. (2014). “A D3 Plug-In for Automatic Label Placement Using Simulated
Annealing”. University of Berkeley, USA. http://github.com/tinker10/D3-Labeler.

Weichselbraun, A., Gindl, S., & Scharl, A. (2013). “Extracting and grounding context-
aware sentiment lexicons”. IEEE Intelligent Systems, 28(2), 39-46.

Weichselbraun, A., Gindl, S., & Scharl, A. (2014). “Enriching semantic knowledge
bases for opinion mining in big data applications”. Knowledge-Based Systems, 69,
78-85.

Weichselbraun, A., Streiff, D., & Scharl, A. (2015). “Consolidating Heterogeneous
Enterprise Data for Named Entity Linking and Web Intelligence”. International
Journal on Artificial Intelligence Tools, 24(2), 1540008.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 25 --

Appendix A: Visualization Workflow

Building on best-practice examples reported in the literature, we adopted the
following workflow for collecting, processing and visualizing statistical data as part of
big data applications:

● Requirement Analysis includes the collection of user stories related to the
data sets to be integrated, and the identification of appropriate visualizations;

● Discovery. If a partner does not have the data in the needed format, we help
with selecting the (dimensions of) datasets that need to be analyzed,
aggregated or augmented in order to fit particular visualization scenarios.

● Alignment generally refers to converting the new datasets into the format
required by the Statistical Data API (see Appendix C).

● Indicator Storage and Retrieval. New datasets are stored after being
aligned to match the API. Effective indexing strategies based on established
platforms such as Elasticsearch21 and Lucene22 are essential building blocks
of big data applications (see Section “Index Strategy and Deployment”).

● Transformation is rarely needed, as data provided via the API can be directly
visualized. The transformation step can be seen as a first part of the data and
view specification (filter, derive) step of Heer and Shneiderman (2012),
although derive tasks can also appear in subsequent steps.

● Visualization. The basic building blocks such as line charts, bar charts and
donut charts (see “Visual Analytic Components”) tend to be reusable
components, which result in visualization grammars that can be considered
the second part of the data and view specification step (visualize, sort).

● Interaction. An interaction layer that includes zooming, panning and
synchronization mechanisms is usually built on top of the visualization layer,
corresponding to the view manipulation step of Heer and Shneiderman
(2012), and is the focus of D1.3: ASAP Dashboard.

● Reuse can happen on multiple levels, from indicators to specific charts or the
entire platform. It should be integral to the design process, corresponding to
the process and provenance step of Heer and Shneiderman (2012).

21 elastic.co
22 lucene.apache.org

ASAP FP7 Project D6.2 InfoViz Services v1

-- 26 --

Appendix B: RDF Data Cube Vocabulary

As a W3C Recommendation, the RDF Data Cube Vocabulary (QB)23 is supported by
both industry and academia. It has already gained widespread acceptance judged by
the increasing number of statistical datasets published using this vocabulary.

QB is based on a cube model that is compatible with SDMX (Statistical Data and
Metadata Exchange), designed to be generic and suitable for publishing various
types of multidimensional datasets. The basic building blocks of the cube model are
measures, dimensions and attributes, collectively referred to as components:

● Measure Components describe real-world objects or phenomena that are
being observed; typically used for measurements – e.g. number of mobile
phone calls.

● Dimension Components specify variables that are important when defining
an individual observation for a measurement – e.g., time and space.

● Attributes help interpret the measured values by specifying the units of
measurement, and additional metadata such as the status of the observation
– e.g. unit of measurement, estimated.

● Observations are the atomic units in a dataset that represent a concrete
measured value for a set of concrete dimension values. When the value of a
dimension is the same in a large number of observations (for example, the
geolocation), it is convenient to group them into a slice.

● Datasets that contain observations grouped into slices across dimensions
constitutes Cubes.

● The Data Structure Document (DSD) describes each dataset and contains
all the required namespaces and components.

● Code Lists or Dictionaries describe the list of entities that are generally
repeated through all the datasets from a publisher (countries, units of
measurements, etc).

23 www.w3.org/TR/vocab-data-cube

ASAP FP7 Project D6.2 InfoViz Services v1

-- 27 --

Appendix C: API Specification

This API specification outlines how to share data with the webLyzard knowledge
repository, and how to access ASAP visualization services. The API specification
contains four separate parts, followed by a workflow description.

1. The Document API specification describes the mechanism to upload and
annotate the IMR Web content of WP8 (and other third-party text documents),
and to integrate them into the ASPA visualization pipeline developed in WP6.

2. The Statistical Data API supports the upload of statistical data, e.g. the WIND
telecommunications data from WP9.

3. The Search API returns relevant documents sets based on a search query.

4. The InfoViz API renders individual visualizations and allows to embed them
into third-party Web applications.

The APIs are stateless RESTful APIs accessed via HTTPS. They typically use JSON
as input and output formatting, except in the case of RDF Data Cubes and similar
structured exchange formats. All API requests need to be authenticated using JSON
Web Tokens. Tokens are time-limited and repository-restricted.

As of August 2015, this specification should be considered alpha status. While the
overall set of feature is stable, specific parts of the specification might still change in
line with specific use case requirements.

(1) Document API

The document API consists of three separate objects: the Document, the Sentence,
and the Annotation. These three data structures strongly depend on each other, yet
only the Document is essential.

The Document models a single document to be uploaded. It provides the system
with the basic information required to process this single document. Fully tokenized
and/or annotated documents can be provided via the Annotation (surface form
annotations such as NER and target sentiment) and the Sentence (tokenization/
POS/sentiment) formats as documented below.

Document

Required Fields

repository_id string
a unique ID consisting of a repository name + fqdn of the content
provider, source or project – for example: mobile.asap-fp7.eu,
media.ecoresearch.net, or social.weblyzard.com.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 28 --

uri string
the unique identifier of the document, e.g. a URL

title string
a title string

content_type string
only required if a plain text content is provided, specifies how the
content should be interpreted, choose from html, pdf, xml,text

content variable
the document content as byte stream, as plain text string. If the
content is not already tokenized via the sentences optional field,
the optional field content_type must also be provided.

Optional Fields

language_id string
ISO language identifier

sentences list
an ordered list of already tokenized webLyzard sentence objects.

annotations dict
a dictionary describing arbitrary document annotations, with the
annotation type as key and a list of webLyzard annotation
objects as value. Currently supported by the visualization
components are sentiment and named_entity types, but may be
used also for other annotations types (such as rumours, opinion
targets, etc).

meta_data dict
a dictionary describing arbitrary document metadata that provides
additional document-level information, for example:

author the author of the document

published_date a date string determining when a
document was published (and therefore
when it will be visible in the portal). If no
published_date is provided, we will try to
extract one from the content. If this fails,
the submission date of the document is
used as the published_date

polarity document-level sentiment polarity

document_linkage 1) 'refers-to', n-to-n, for retweets, quotes,
etc...
2) 'child-of', 1-to-1, to model nested
conversations (threaded dialogues)
3) 'part-of' , n-to-n, document belongs to
e.g. story cluster / other collection

ASAP FP7 Project D6.2 InfoViz Services v1

-- 29 --

Examples

{
 "repository_id": "media.ecoresearch.net",
 "uri": "http: //www.bbc.com/news/science‐environment‐33524589",
 "content_type": "html",
 "title": "New Horizons: Nasa spacecraft speeds past Pluto",
 "content": "<html>...</html>",
 "meta_data": {
 "author": "Jonathan Amos"
 }
}

{
 "repository_id": "media.ecoresearch.net",
 "uri": "http: //www.bbc.com/news/science‐environment‐33524589",
 "content_type": "html",
 "title": "New Horizons: Nasa spacecraft speeds past Pluto",
 "content": "<html>...</html>",
 "sentences": [
 {
 "id":"595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasas spacecraft speeds past Pluto",
 "is_title": "TRUE",
 "pos_list": "NN NN : &quot; NN : NN CC JJ NN . &quot;",
 "token_list": "0,2 3,19 19,20 21,22 22,33 33,34 35,42 43,46 47,55 56,62 62,63 63,64",
 "sentence_number": 0,
 "polarity": ‐0.783
 }
],
 "annotations": {
 "OrganizationEntity": [
 {
 "start": 12,
 "end": 16,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surfaceForm": "Nasas",
 "key": "http://dbpedia.org/page/Nasa"
 }
],
 "GeoEntity": [
 {
 "start": 40,
 "end": 44,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surfaceForm": "Pluto",
 "key": "http://dbpedia.org/page/Pluto"
 }
]
 },
 "meta_data": {
 "polarity": "0.342",
 "published_date": "2015‐07‐14"
 }
}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 30 --

Sentence

Required Fields

id string
the unique identifier of the sentence, i.e. a sentence hash (md5)

value string
the sentence text

Optional Fields

is_title boolean
is the sentence part of the title

pos_list string
a whitespace separated list of part-of-speech tags (POS), one per
token. Currently supported POS by language, are:
cs: ["N"]
de: ["ADJA", "ADJD", "ADV", "NN", "NE"]
en: ["JJ", "JJR", "JJS", "NN", "NNPS", "NNP", "RB", "RBR", "RBS"]
es: ["ncms000", "ncfp000", "ncms00d", "nccs000", "nccp000",
"ncmn000", "ncfn000", "np000g0", "np000o0", "np000p0", "np00000",
"nc0p000"]
fr: ["N", "NC", "NP"]

tok_list string
a whitespace separated list of sentence tokens (words), encoded
as space-separated string of comma-separated sentence offset
tuples: start_offset,end_offset, e.g. "0,2 3,19"

dep_tree string
a whitespace separated list of pointers to the parent of a token in
the dependency tree. -1 denotes the root node.

sentence_number int
0-based sentence sequence number, e.g. the index of a sentence
in the list of all document sentences

paragraph_number int
0-based paragraph sequence number, e.g. the index of a
paragraph in the list of all document paragraphs

polarity float
sentence-level sentiment polarity, with range [‐1,+1] and a value
of 0 representing neutral polarity

Examples

{
 "id": "595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasas spacecraft speeds past Pluto",

ASAP FP7 Project D6.2 InfoViz Services v1

-- 31 --

 "is_title": true,
 "pos_list": "NN NN : &quot; NN : NN CC JJ NN . &quot;",
 "tok_list": "0,2 3,19 19,20 21,22 22,33 33,34 35,42 43,46 47,55 56,62 62,63 63,64",
 "sentence_number": 0,
 "polarity": ‐0.783
}

{
 "id": "595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasas spacecraft speeds past Pluto"
}

Annotation

Required Fields

start int
the start offset of the annotation, relative to the absolute document
content (not tokenized).

end int
the end offset of the annotation, relative to the absolute document
content (not tokenized).

surface_form string
the surface form of the annotation (e.g. how the annotation actually
appears in the document)

Optional Fields

key string
reference key, e.g. Linked Open Data (LOD)

sentence string
the sentence id to which the annotation positions refer to. If no
sentence id is specified, the annotation positions are applied on
the document level.

displayName string
searchable field in the portal

annotationType string
the type of the annotation. Supported by the visualization
components are Sentiment, GeoEntity, PersonEntity,
OrganizationEntity. Arbitrary, other sentence-level annotations
are allowed, but not currently supported by the visualization
components.

polarity float
for sentiment annotations, the polarity of the annotation as a
floating point value. Requires annotationType to be sentiment.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 32 --

properties dict
a dictionary of additional properties associated with the annotation.
The expected key value tuples in the properties depend on the
type of the entity defined on the webLyzard document level (e.g.
the key to the annotation list).
Supported properties by the portal are:
lat, long, population, birth_date, abstract

Examples

{
 "start": 87,
 "end": 92,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surfaceForm": "Apple",
 "key": "http://dbpedia.org/page/Apple_Inc",
 "annotationType": "OrganizationEntity",
 "displayName": "Apple Incorporated",
 "properties": {
 "founders": "Steve Jobs,Steve Wozniak,Ronald Wayne"
 }
}

{
 "start": 12,
 "end": 14,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surfaceForm": "USA",
 "key": "http://dbpedia.org/page/United_States",
 "annotationType": "GeoEntity",
 "displayName": "U.S.A",
 "properties": {
 "population": "318.900.000",
 "lat": "100.0",
 "long": "30.0"
 }
}

{
 "start": 12,
 "end": 14,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surfaceForm": "USA",
 "polarity": 0.655,
 "annotationType": "Sentiment"
}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 33 --

(2) Statistical Data API

Datasets from partners and clients (e.g., phone call data, tourism statistics), open
government sources, or international organizations such as Eurostat and the World
Bank are often statistical in nature – each data point corresponds to an observation
with timestamp, value, unit of measurement and several other attributes or
dimensions. Such data comes in multiple formats including JSON, RDF (classic
RDF, SDMX or RDF Data Cube), and XML. The following JSON format based on the
popular RDF Data Cube (QB) standard ingests such heterogeneous data into into
the visualization pipeline. Each data point can be considered the equivalent of a
document in the Document API, but the Statistical Data API is separate – there are
no dependencies among data types.

Statistical Data

Required Fields

uri string
the unique identifier of the document, e.g. a URL of the
respective observation
Example: http://eurostat.linked-
statistics.org/data/ttr00012#A,PASS,CZ,2004

added_date date
the date when the observation was added to the index

indicator string
a short or long name of the indicator

in case the data does not come from a statistical database
(therefore it is not organized around indicators), this field should
contain a short descriptive name of what type of data we have
(e.g., European phone calls, Italian tourism data)

date date
the observation date
Format: 2004-01-01T00:00:00

value float
the observation value

Optional Fields

year, month, day string
you can use shortcuts for year, month, day to ease the search

target_type string
the type of geographical unit that we find in the target.
In general the locations that are not geo political / administrative

ASAP FP7 Project D6.2 InfoViz Services v1

-- 34 --

(city, country, region) should be marked as points of interests
(poi).
{city, country, region, poi}

target_poi_type string
the type of poi in order to distinguish e.g. landmarks, historical
places, monuments, parks, office buildings, etc.

target_country string
2 letter ISO code of the target country

target_location geolocation
the geolocation of the target – can include name and the geo
coordinates (lat and long).

Example:
{

"name": "New Zealand",
"point": {

 "lat": "‐42.0",
 "long": "174.0"

}
}

source_type similar to target_type

source_poi_type similar to target_poi_type

source_country similar to target_country

source_location similar to target_location

producer string
the name of the institution who published the data
Example: Eurostat, World Bank, etc.

frequency string
the sampling frequency
Example: {year, month, day}

description string
a description of the indicator

unit_of_measuremen
t

string
while many of the datasets published today do not contain a unit
of measurement, it would be recommended to add such a field if
this information is present in your dataset

type string
the default type is observation;
you could use this field if you also decide to save other values
like averages for observation groups and not just the raw
observations

ASAP FP7 Project D6.2 InfoViz Services v1

-- 35 --

Examples

{
 "description": "Air transport of passengers",
 "producer": "Eurostat",
 "added_date": "2014‐09‐10T15:01:48.623816",
 "sample": "tourism_statistics",
 "frequency": "year",
 "year": "2004",
 "date": "2004‐01‐01T00:00:00",
 "indicator": "ES Air Trans",
 "target_country": "CZ",
 "url": "http://eurostat.linked‐statistics.org/data/ttr00012#A,PASS,CZ,2004",
 "target_type": "country",
 "value": "9950314",
 "target_location": [
 {
 "name": "Czech Republic",
 "point": {
 "lat": "49.75",
 "long": "15.0"
 }
 }
],
 "_id": "http://eurostat.linked‐statistics.org/data/ttr00012.rdf‐116",
 "type": "observation"
}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 36 --

(3) Search API

Clients need to send Content-Type:application/json
and Accept:application/json headers.

General query structure
A search query conforms to the following JSON document:

{
 "sources" : [],
 "fields" : [],
 "query" : {}
 "filter" : {}
 "count" : 10
 "offset" : 0,
 "ranking" : {}
}

Search

Request Fields
Request fields.

source A list of strings, specifying the set of sources the query should be run
against.

fields A list of strings, specifying which fields should be returned for each
document. Possible values:

contentid
the internal content id of the document

title
the title of the document

url
the original URL of the document

summary
a summary of the full text content of the document

snippet
a short snippet of content around the best query match in the document

quote
a longer snippet of content around the best query match in the
document

ASAP FP7 Project D6.2 InfoViz Services v1

-- 37 --

sourceid
an internal identifier for the source of the document

query Each query object can contain one of the following types of query:

bool
a boolean query
supported query types: bool

title
search for text matches in the title
supported query types: phrase, regexp, term

text
search for text matches in the full text
supported query types: phrase, regexp, term

date
limit search results to a date range
supported query types: range

sentiment
limit search results to a sentiment range
supported query types: range

url
limit search results to matching URLs
supported query types: regexp, term, wildcard

filter The filter object supports the same syntax as the query object, but does
not affect search result ranking. Try to use filters as much as possible
to speed up query times (e.g. date and sentiment should always be put
into a filter, as it makes no sense to rank based on these) and only use
queries for fulltext queries that should affect the order of documents.

count The number of matches to return.

offset Offset for the documents to return.

ranking Allows to influence the order of search results in the response.

boost A list of boosting queries to influence search result order.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 38 --

Query Types

Bool query
A boolean query combines any other queries into a single, aggregated query:

"bool" : {
 "must" : [],
 "should" : [],
 "must_not: []
}

must
Each of the sub-queries must match.
should
Any of the sub-queries should match.
must_not
None of the sub-queries must match.

Phrase query
A phrase query tries to match the given string as a phrase in the field:

"text" : {
 "phrase" : "climate change
}

Regexp query
A regexp query tries to match the given string as a regular expression in the field:

"title" : {
 "regexp" : "climate(|‐)change
}

Allowed regular expression operators:
()
grouping
|
alternatives
?
optional parts

Term query
Match the given string to the full content of the field:

"title" : {
 "term" : "Media Watch on Climate Change"

ASAP FP7 Project D6.2 InfoViz Services v1

-- 39 --

}

Wildcard query
Match the given string to the full content of the field, supporting wildcards:

"url" : {
 "wildcard" : "www.google.com/*"
}

Where * matches any number of characters and ? matches a single character.

Range query
A query that supports matching values in a range:

"sentiment" : {
 "lt" : 0,
 "gt" : ‐0.5
}

"date" : {
 "gte" : "2014‐01‐01",
 "lte" : "2014‐12‐31"
}

eq
value equals the given value
lt
value is less than the given value
gt
value is greater than the given value
lte
value is less than or equal to the given value
gte
value is greater than or equal to the given value

Supported date formats:
yyyy‐MM‐dd
yyyyMMdd
dd‐MM‐yyyy
ddMMyyyy

Boosting queries
Query ranking can be influenced by setting boosting queries, where each boosting query has
the following attributes:

ASAP FP7 Project D6.2 InfoViz Services v1

-- 40 --

query
ranking weights for documents matching the query are changed
mode
score replacement mode
supported values: replace, sum, mult
boost
weight that influences the score

Response
{
 "more" : true|false,
 "hits": [],
 "total": 0
}

more
true if more hits than the returned exist
hits
a list of documents
total
the total number of documents matching the query

Note: if only document counts need to be retrieved, put all queries inside the filter attribute
and set count to 0 for best performance.

Example queries

Search for 100 documents matching "climate change" as a phrase in the full text in January
2015 in News Media in the Media Watch on Climate Change, returning title and summary:

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "summary"],
 "query" : {
 "text" : {
 "phrase" : "climate change"
 }
 },
 "filter" : {
 "date" : {
 "gte" : "2015‐01‐01",
 "lte" : "2015‐01‐31"
 }
 },

ASAP FP7 Project D6.2 InfoViz Services v1

-- 41 --

 "count" : 100,
 "offset" : 0,
 "ranking" : {}
}

Search for 100 negative documents matching "climate change" as a phrase in the full text
and in the title in January 2015 in News Media in the Media Watch on Climate Change,
returning title and summary:

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "summary"],
 "query" : {
 "bool" : {
 "must" : [{
 "text" : {
 "phrase" : "climate change"
 }
 }, {
 "title" : {
 "phrase" : "climate change"
 }
 }]
 }
 },
 "filter" : {
 "bool" : {
 "must" : [{
 "date" : {
 "gte" : "2015‐01‐01",
 "lte" : "2015‐01‐31"
 }
 }, {
 "sentiment" : {
 "lt" : 0
 }
 }]
 }
 },
 "count" : 100,
 "offset" : 0,
 "ranking" : {}
}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 42 --

Search for 100 documents matching "climate change" as a phrase in the full text in January
2015 in News Media in the Media Watch on Climate Change, returning title and url, favoring
matches on CNN:

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "url"],
 "query" : {
 "text" : {
 "phrase" : "climate change"
 }
 },
 "filter" : {
 "date" : {
 "gte" : "2015‐01‐01",
 "lte" : "2015‐01‐31"
 }
 },
 "count" : 100,
 "offset" : 0,
 "ranking" : {
 "boost" : [{
 "query" : {
 "url" : {
 "wildcard" : "*.cnn.com/*"
 }
 },
 "mode" : "mult",
 "boost" : 10
 }]
 }
}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 43 --

(4) InfoViz API

The ASAP dashboard will represent a feature-rich and customizable solution for
visual analytics, semantic search and Web intelligence applications. To support use
cases that require a more granular approach, the webLyzard InfoViz API enables the
integration of distinct portal components into third-party Web applications.

Version 1 uses <iframe> tags to embed these components. While this approach
ensures ease of use and widespread compatibility across platforms, it also comes
with shortcomings if a deeper integration is desired. This will be addressed by
additional features in future versions of the API, complementing (but not replacing)
the <iframe> approach.

<iframe>

Attribute Fields
The iframe should be provided with all necessary attributes, width and height could be
preset to the desired dimensions, similar to the approach of e.g. YouTube.

width int
width in pixels

height int
height in pixels

frameborder int
should always be `0`

seamless boolean
`true` if you want to inherit styles from the parent window and open
links in the parent window

sandbox string
not required, but if present a value of `'allow-same-origin allow-
scripts'` is required

src string
see next section “URL Schema”

ASAP FP7 Project D6.2 InfoViz Services v1

-- 44 --

URL Schema

/embed/:view view:string
`:view` determines the desired map to be shown in the iframe. One
of `documents`, `quotes`, `frequency`, `distribution`, `tags`,
`keywords`, `cluster` or `geo`

/api/:view?format

=:format
view:string, format:string
Similar to above but more generic by using a query parameter to
determine the format: one of `html`, `xml`, `xls`, `csv`, `png`, `svg`
or `json`

Query-String Schema
Additional (optional) query-strings allow the configuration of the embedded visualization.

search string

begindate string

enddate string

repository_ids string
a comma separated list of unique IDs, each consisting of a
repository name + fqdn of the content provider, source or project;
for example: mobile.asap-fp7.eu, media.ecoresearch.net, or
social.weblyzard.com.

Examples

<!‐‐ The tag cloud using the default search term ‐‐>

<iframe width='400' height='600' src='/embed/tags' frameborder='0'>

<!‐‐ The geo map using a custom search term ‐‐>

<iframe width='400' height='600' src='/embed/geo?search=fracking'

frameborder='0'>

ASAP FP7 Project D6.2 InfoViz Services v1

-- 45 --

API Workflow Description
Document API

Documents are identified by a unique <identifier> that is generated by the webLyzard
platform when adding new documents. Subsequent document modifications and
deletions should refer to this identifier.

Adding Documents

Documents are always added to a specific repository, the data format has to adhere
to the webLyzard Document specification described above. To create a new
document, send a POST request to the /<repository> API endpoint, with the body of
the request containing the document.

$ curl ‐XPOST ‘https://api.weblyzard.com/0.1/documents/<repository>’ ‐d ‘{
 “uri” : “...”,
 “content‐type” : “...”,
 …
}’

If the document has been successfully stored, the server responds with a “201
Created” status code and the “Location” header field contains the unique <identifier>
created for this document.

HTTP/1.1 201 Created
Location:

https://api.weblyzard.com/0.1/documents/<repository>/<identifier>
Content‐Type: application/json; charset=UTF‐8
Content‐Length: ...

{“created”:true, “_id”:”<identifier>”, “version”:”<version>”}

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed.

Updating Documents

Documents can be updated (overwritten) with a newer version of the same
document.

$ curl ‐XPUT

‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>’ ‐d ‘{

ASAP FP7 Project D6.2 InfoViz Services v1

-- 46 --

 “uri” : “...”,
 “content‐type” : “...
 …
}’

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“created”:false,”updated”:true,”_id”:”<identifier>”,”version”:”<version>”

}

If there is no document referenced by <identifier> available, the server will respond
with a “400 Bad Request” error and the document should be added using the syntax
for adding documents (i.e. <identifier> is always created by the server and cannot be
set arbitrarily by the client).

Deleting Documents

Documents (either a specific version or all versions of a document) can be deleted
by issuing a DELETE request on the identifier of the document:

$ curl ‐XDELETE

‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>’

$ curl ‐XDELETE

‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>?version

=<version>’

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“deleted”:true,”_id”:”<identifier>”}

If only a single version has been deleted, the response includes the version having
been deleted:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“deleted”:true,”_id”:”<identifier>”,”version”:”<version>”}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 47 --

Retrieving Documents

The most recent version of a document can be retrieved by sending a GET request
to the <identifier> of the document:

$ curl ‐XGET

‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>’

The server responds with a “200 OK” status code and the JSON representation of
the document (as specified by the webLyzard document specification):

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“_id”:”<identifier>”,

“repository”:”<repository>”,”version”:”<version>”,...}

If the document does not exist, the server sends a “404 Not Found” response.

To retrieve a specific version of a document, a “version” attribute can be added to
the request:

$ curl ‐XGET

‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>?version

=<version>’

Annotation API

Instead of storing and annotating a document, users can request to have a
document annotated only – without permanently storing the document in a
repository.

$ curl ‐XPOST ‘https://api.weblyzard.com/0.1/annotate’ ‐d ‘{
…
}’

If successful, the server responds with a “200 OK” response code and returns the
annotated document:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{...}

ASAP FP7 Project D6.2 InfoViz Services v1

-- 48 --

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed.

To add specific annotations only, the annotation type can be included in the request:

$ curl ‐XPOST ‘http://api.weblyzard.com/0.1/annotate/sentiment’ ‐d ‘{...}’

$ curl ‐XPOST ‘http://api.weblyzard.com/0.1/annotate/sentiment+keywords’ ‐

d ‘{...}’

$ curl ‐XPOST

‘http://api.weblyzard.com/0.1/annotate?annotate=sentiment&annotate=keyword

s’ ‐d ‘{...}’

Statistical Data API

An observation is a special type of document that can generally correspond to a
point in a visualization. A statistical dataset is a collection of observations that have
the same structure. All observations need to have some data about their provenance
(publisher, date, etc). This API can be used to add statistical observations to a
repository. Next version of the API will also include the ability to bulk load data sets
on the fly.

Adding Observations

In case a dataset or indicator is not complete, you can add the missing observations
later. This is similar to adding a document in the Document API.

To create a new observation, send a POST request to the /<repository> API
endpoint, with the body of the request containing the observation.

$ curl ‐XPOST ‘https://api.weblyzard.com/0.1/statistics/<repository>’ ‐d

‘{
 “uri” : “...”,
 “content‐type” : “...”,
 …
}’

If the observation has been successfully stored, the server responds with a “201
Created” status code and the “Location” header field contains the unique identifier
created for this document.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 49 --

HTTP/1.1 201 Created
Location:

https://api.weblyzard.com/0.1/statistics/<repository>/<identifier>
Content‐Type: application/json; charset=UTF‐8
Content‐Length: ...

{“created”:true, “_id”:”<identifier>”, “version”:”<version>”}

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed.

Updating Observations

Similar to updating a document in the Document API. Observations can be updated
(overwritten) with a newer version of the same observation.

$ curl ‐XPUT

‘https://api.weblyzard.com/0.1/statistics/<repository>/<identifier>’ ‐d ‘{
 “uri” : “...”,
 “content‐type” : “...
 …
}’

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“created”:false,”updated”:true,”_id”:”<identifier>”,”version”:”<version>”

}

If there is no observation referenced by <identifier> available, the server will respond
with a “400 Bad Request” error and the observation should be added using the
syntax for adding observations (i.e. <identifier> is always created by the server and
cannot be set arbitrarily by the client).

Deleting Observations

Similar to deleting a document in the Document API.
Observations (either a specific version or all versions of an observation) can be
deleted by issuing a DELETE request on the identifier of the observation:

ASAP FP7 Project D6.2 InfoViz Services v1

-- 50 --

$ curl ‐XDELETE

‘https://api.weblyzard.com/0.1/statistics/<repository>/<identifier>’

$ curl ‐XDELETE

‘https://api.weblyzard.com/0.1/statistics/<repository>/<identifier>?versio

n=<version>’

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“deleted”:true,”_id”:”<identifier>”}

If only a single version has been deleted, the response includes the version having
been deleted:

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“deleted”:true,”_id”:”<identifier>”,”version”:”<version>”}

Retrieving Observations

Similar to retrieving documents.
The most recent version of an observation can be retrieved by sending a GET
request to the <identifier> of the document:

$ curl ‐XGET

‘https://api.weblyzard.com/0.1/statistics/<repository>/<identifier>’

The server responds with a “200 OK” status code and the JSON representation of
the observation (as specified by the webLyzard Statistical Data specification):

HTTP/1.1 200 OK
Content‐Type: application/json; charset=UTF‐8
Content‐Length: …

{“_id”:”<identifier>”,

“repository”:”<repository>”,”version”:”<version>”,...}

If the observation does not exist, the server sends a “404 Not Found” response.

ASAP FP7 Project D6.2 InfoViz Services v1

-- 51 --

To retrieve a specific version of an observation, a “version” attribute can be added to
the request:

$ curl ‐XGET

‘https://api.weblyzard.com/0.1/documents/repository/<identifier>?version=<

version>’

Adding/Updating/Deleting Datasets

While there are cases when you might need to add a single observation, most of the
time when one would want to use bulk loading to add datasets to an index or modify
them.

Generally to do this you will have to prepare a special type of bulk json file that would
look like this (please note that this is an oversimplified version, and that the JSON
objects you will include in that file will have to look like typical observations as
described by this API):

{ "index": {"_index": <index>, "_type": "observation", "_id": "1"}}
{ "value": 111,"year": 2010}
{ "index": {"_index": <index>, "_type": "observation", "_id": "2"}}
{ "value": 222,"year": 2011}

All these will be saved in a JSON file (bulk.json, for example).

To create a new observation, send a POST request to the /<repository> API
endpoint, with the body of the request containing the observation.

$curl ‐s ‐XPOST

'https://api.weblyzard.com/0.1/statistics/<repository>/_bulk' ‐‐data‐

binary @bulk.json

If successful the server will acknowledge it by sending back a list of JSON items,
each with its status.
To make changes one will have to proceed in a similar manner, by creating another
JSON file with the changes he wants to make (for example, update several items).

{ "update": {"_index":<index>, "_type": "observation", "_id": "2"}}
{ "doc":{ "updated": true }}

After we save the updates in a JSON file (bulk_update.json), we will send a POST
request similar to the following:

ASAP FP7 Project D6.2 InfoViz Services v1

-- 52 --

$curl ‐s ‐XPOST

'https://api.weblyzard.com/0.1/statistics/<repository>/_bulk' ‐‐data‐

binary @bulk_update.json

The actions supported by this Bulk API are:

● create
● index
● update
● delete
● upsert – update or insert

The Bulk API will react in the same manner to these actions informing us about the
success or failure of our changes.

Querying Datasets

Incomplete datasets or indicators can be extended by missing observations. This is
similar to querying a document in the Document API, or an observation in the
Statistical Data API.

