

ASAP FP7 Project D6.3 InfoViz Services v2

-- 1 --

FP7 Project ASAP
Adaptable Scalable Analytics Platform

D6.3 InfoViz Services v2

WP 6 – Information Visualization
webLyzard technology

Nature: Report
Dissemination: Public

Version History

Version Date Author Comments
0.1 06 Jun 2015 W. Rafelsberger Initial Version based on D6.2
0.2 15 Jun 2016 A. Hubmann Revision and Search API
0.3 16 Jun 2016 A. Weichselbraun System Architecture Extension
0.4 20 Jul 2016 A. Scharl Major Revision
0.5 16 Aug 2016 W. Rafelsberger GeoMap, Visual Analytics Components
0.6 25 Aug 2016 W. Rafelsberger VaaS Architecture
1.0 31 Aug 2016 A. Scharl Revision and Final Edits

Acknowledgement

This project has received funding from the European Union's 7th Framework Pro-
gramme for research, technological development and demonstration under grant
agreement number 619706.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 2 --

Executive Summary

The main goal of WP6 is the development of high-performance visual interfaces as
part of the ASAP system architecture to help analysts navigate big data repositories,
in real time and across multiple dimensions (temporal, spatial, etc.). Special empha-
sis is placed on sub-second response times of the user interface, and the ability to
incorporate metadata as additional context information when analyzing complex rela-
tions in Web content (WP8) or telecommunications data (WP9).

Research and Development Roadmap

Rendering complex, manifold relations and patterns in contextual information spaces
(Scharl et al., 2015) requires an integration of metadata extracted from text docu-
ments (unstructured) with statistical indicator data (structured). For this purpose,
ASAP developed a number of core components in Year 1 (acquisition, representa-
tion and visualization of statistical data; temporal controls) and Year 2 (data layers
and geospatial projections).

Year 2 efforts resulted in a first version of an open API for effective data interchange
and integrating the visualizations into a wide range of applications. In Year 3, the API
has been extended and adapted to support dynamic re-calibration of processing
workflows (T5.3), and to provide key functionalities for the Web content analytics and
telecommunications use cases (WP8, WP9).

Data-Driven Documents (D3) Standard

To ensure rapid prototyping of the visual methods developed, and a seamless inte-
gration into the ASAP Dashboard (T6.3)1 and external Web-based applications, WP6
uses the D3 JavaScript library (Bostock et al., 2011).2 D3 is perfectly suited for the
purposes of ASAP, since it is not focused on a new grammar for graphics, but rather
on integrating existing standards to create effective visualizations.

Significant Results

T6.1 focused on methods to collect, represent and visualize statistical data, to be
linked together via the ASAP Dashboard (T6.3). This included a linked data indexer,
as well as a set of visualization components for the rapid rendering of complex statis-
tical data (using color coding to show metadata attributes, and interactive mecha-
nisms to select appropriate timescales). Development (T6.2, T6.3) and evaluation
(T6.4) efforts in the second half of the ASAP project resulted in the following visuali-
zation workflow management and visual analytics components:

1 asap.weblyzard.com
2 www.d3js.org

ASAP FP7 Project D6.3 InfoViz Services v2

-- 3 --

Visualization Workflows

● Application Programming Interface (API) for structured and unstructured
data, which enables the integration of the WP6 visualization engine with other
WPs. Included in Appendix C, this API not only allows rendering multi-source
data for the use case applications (WP8, WP9), but also will play an important
role in the ASAP Exploitation Plan (T10.2) by supporting a flexible and scala-
ble Visualization-as-a-Service (VaaS) approach.

● Containers bundle together data acquisition, transformation and visualization
functionality; we plan to offer these functions using a “Container-as-a-Service”
(CaaS) approach (T10.2).

● Event and notification system for intra-module communication in multiple
contexts and support for manipulation of intermediary and final data sets.

● Substantial performance gains through improved data structures for docu-
ment mapping, optimized queries, and a revised indexing strategy.

Visual Analytics Components

● Charting module – new layout, interactive features based on feedback from
the Y1 and Y2 project reviews, as well as from T6.4 evaluations; consolidation
by removing dependencies from third-party libraries.

● Adaptive tooltips and context menus as a user-friendly way to trigger on-
the-fly query refinements.

● Geographic Map: (i) custom base layers and data manipulation options; (ii)
incremental versions of statistical data visualizations – circular markers, chor-
opleth; (iii) dynamic clustering to allow adaptive data exploration from high-
level views to regional/local data; selected features will be published under an
Apache open source license.3

Application and Dissemination

● Prototype of the ASAP Dashboard (T6.3) with real-time content feeds and a
rapid synchronization of multiple coordinated views, each view representing
one or more visual analytics components.

● Best Paper Award at the 49th Hawaii International Conference on System
Sciences; Journal articles in Semantic Web Journal (Brasoveanu et. al.,
2017) and IEEE Systems (Scharl et al., 2016).

3 www.github.com/weblyzard/infovyz

ASAP FP7 Project D6.3 InfoViz Services v2

-- 4 --

Table of Contents

Executive Summary .. 2

Research and Development Roadmap ... 2

Data-Driven Documents (D3) Standard .. 2

Significant Results ... 2

Introduction ... 5

Interactive Visualization of Heterogeneous Data from Multiple Sources 5

Data Matching and Integration .. 6

Visual Dashboard to Explore Contextualized Information Spaces 6

Deliverable Structure .. 7

Visual Analytics Components ... 8

Trend and Donut Charts .. 8

Bar Chart ... 10

Scatter Plot ... 11

Geographic Map ... 12

Metadata Exploration .. 17

Temporal Controls ... 18

System Architecture ... 19

Rendering Performance .. 19

Indexing Strategy and Deployment ... 21

Application Programming Interface ... 22

Visualization-as-a-Service (VaaS) Architecture .. 26

Outlook and Next Steps ... 31

References .. 33

Appendix A: Visualization Workflow ... 36

Appendix B: RDF Data Cube Vocabulary ... 37

Appendix C: API Specification .. 38

Document API ... 39

Statistical Data API ... 44

Search API .. 48

Visualization API ... 55

Authentication | Authorization.. 57

Document Format ... 58

Statistical Data Format .. 64

ASAP FP7 Project D6.3 InfoViz Services v2

-- 5 --

Introduction

The interactive visualizations of WP6 are intended to support free insight generation
without prior modelling of a domain, embracing both unstructured (Web intelligence)
and structured (linked data) sources. Shneiderman et al. (1996) present a taxonomy
of data types in the context of visualization, including temporal and multivariate data.

ASAP will dynamically combine such data types on the fly, taking into account the
use case specifics and current user tasks. Time is a particularly important dimension
to consider, and was as such a focus of the work conducted in T6.1. The resulting
interactive visualizations should (i) reveal complex patterns and evolving trends, (ii)
provide flexible mechanism to select appropriate timescales, and (iii) are capable of
rendering a considerable amount of data spanning multiple sources and significant
timescales – without relying solely on aggregation, which might hide important facts.

Interactive Visualization of Heterogeneous Data from Multiple Sources

Visualization is an effective means to help analysts make sense of the current data
deluge. Quite often it is not enough to design a single visualization, but rather a set
of visualizations to get a better sense of hidden patterns and trends, as different im-
ages might send different signals to the user. If this discovery process is to be effec-
tive, visualization components need to be able to use large quantities of data from
heterogeneous data sources. A telecommunications analyst who wants to visualize
call metadata from various cities, for example, might require additional information
besides call metadata (see WP9); e.g.:

● news or social media coverage about the observed cities to correlate peaks in
the number of calls with co-occurring events such as music concerts, sports
events or political campaigns;

● population statistics, GDP data or statistical indicators from the respective cit-
ies, assuming such datasets are available in an RDF or JSON format;

● patterns that correlate call metadata (aggregated and anonymized) with statis-
tical data and/or news and social media coverage.

In order to be able to cope with such requirements, a state-of-the-art visualization
engine and dashboard needs to include not just a set of appropriate visual methods,
but also components that support:

● the parallel processing of a wide variety of data types, including semantic data
types like geolocation, dates, etc.;

● the remix of data from a wide variety of data sources regardless of domain,
structure (structured or unstructured), or provenance;

● the possibility to extract various types of aggregated statistics or the most im-
portant entities, and means to select, sort and summarize the data.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 6 --

Data Matching and Integration

Without an integrated backend that provides such services, any visualization service
will not reach the scale and depth needed to create on-the-fly visualizations from
heterogeneous data sources. Among the most complex problems that such a
backend needs to solve is the matching of data sources to different visualizations.
Several solutions have been proposed, but there is still no widely accepted standard
to flexibly integrate and visualize heterogeneous data sources. In general the prob-
lem of resolving the entities from different datasets to the same common real-world
entities is known as data matching or record linkage since the 1960s (Koudas et al.,
2006). More recent solutions to address the problem of flexible integration for auto-
mated visualization include schema matching (Cammarano et al., 2007), ontology
based information extraction and integration (Buitelaar et al., 2008), data wrangling
(Kandel et al., 2011) or proactive wrangling (Guo et al., 2011) via interactive data
transformation scripts, scalable data curation (Stonebraker et al., 2013), human data
wrangling following a crowdsourcing approach (Clow, 2014), as well as visual em-
bedding and visual product spaces (Demiralp et al., 2014).

In addition to these automated visualization models, a number of models mostly fo-
cused on automated visualization of structured data (and especially Linked Data) in-
clude Ontology Based Data Access (Giese et al., 2013), Linked Widgets for exploit-
ing governmental Linked Data (Trinh et al., 2013), LDVM or Formal Linked Data Vis-
ualization Model (Brunetti et al., 2013), universal data cube concordance model
(Kelleher, 2014), and OLAP4LD – which is a generalization of OLAP for various
types of linked data (Harth et al., 2014).

Despite the availability of various models and related tools, the field of data matching
is still in its infancy. This also suggests that there is still a lot of work to be done in
order to get to a place where automated visualization systems are mature and flexi-
ble enough to visualize any type of heterogeneous data source on the fly. Interoper-
ability, speed and scalability are obviously other factors that need to be taken into
account when designing such a system.

Visual Dashboard to Explore Contextualized Information Spaces

ASAP will integrate real-time data feeds from multiple sources via an open API (see
Appendix C), which allows uploading structured and unstructured datasets, search-
ing for specific sets of indicators or documents, and embedding individual visualiza-
tions in Web-based applications, to be rendered in real time (T6.1, T6.2).

The ASAP dashboard (T6.3) combines several visualizations to represent the con-
textualized information space using a multiple coordinated view approach. Synchro-
nized widgets show the various metadata dimensions (see screenshot in Figure 1;
the more lightweight look and feel in comparison to the mockup of D6.1 reduces
complexity and highlights the actual content). These widgets help explore the story-

ASAP FP7 Project D6.3 InfoViz Services v2

-- 7 --

telling potential of big data visualization and address calls for methods to support the
complementary relationship between the explorative and analytical dimensions of
information visualization. The ASAP dashboard builds on insights gained from the
Media Watch on Climate Change,4 which initially served as a rapid prototyping plat-
form to develop the widget synchronization, as a means to gather feedback (T6.3)
from non-expert users (T6.4), and as an outreach channel (WP10). Figure 1 shows a
screenshot of the actual ASAP dashboard prototype – the fully integrated version will
be reported in D6.4, complemented by the usability evaluation of D6.5.

Figure 1. Screenshot of the ASAP dashboard prototype (see Section Visual Analytics Compo-
nents for a description of the individual D6.1 and D6.2 components)

Deliverable Structure

The remainder of this deliverable summarizes the work of T6.1 – T6.4, starting with
the visual analytics components, the system architecture including an outline of the
developed APIs, the chosen representation of statistical data, and a summary of the
visualization workflow. The visual analytics components are building blocks for full
visualization dashboards and include interactive D3.js modules for line charts, donut
charts, bar charts, scatter plot and geographic maps, to be synchronized within the
ASAP dashboard (T6.3). This portfolio of visualizations is complemented by a slider
mechanism to select time intervals for the analysis. D6.3 concludes with technical
considerations in terms of rendering and indexing strategy, the scalability of the open
API, and rapid deployment in distributed environments.

4 www.ecoresearch.net/climate

ASAP FP7 Project D6.3 InfoViz Services v2

-- 8 --

Visual Analytics Components
This section summarizes the individual visualization components of WP6. While the
trend chart and the geographic map build upon previous work that is being extended
and refined for the purposes of ASAP, the donut chart, bar chart and time interval
slider components are new developments.

D6.2 introduces a redesigned user interface with a new layout and increased feature
set. The more lightweight look and feel, as compared to the initial design reported in
D6.1, reduces complexity and highlights the actual content; i.e. query results and
visualizations. Instead of showing all the available options at once, many features of
the user interface are now hidden until being activated via hovering above the corre-
sponding interface element. To further reduce cognitive overhead, the new naviga-
tion structure distinguishes between global, view-specific and element-specific set-
tings and actions.

To support interactive query refinement while exploring datasets with the ASAP
dashboard, adaptive tooltips and context menus have been developed in Year 2
(representing the element-specific part of the multi-layer menu structure outlined
above). These tooltips offer the most relevant actions and settings in the context of
the current user interaction, and always include the ability to (i) replace the search
term, or to either (ii) extend or (iii) restrict the search via Boolean operators.

Trend and Donut Charts
Trend charts are central components of the webLyzard dashboard, using D3.js to
render dynamic transitions – to show different source combinations, for example, or
incremental changes in a dataset. Building on existing functionality from previous
projects, T6.1 has rewritten and extended the trend chart module to eliminate de-
pendencies on third-party libraries, increase rendering performance, and support a
wider range of usage scenarios.

Applied to Web content repositories, the line chart shows the evolution of topics. Its
vertical axis re-scales automatically. This feature is particularly useful if a high value
obscures the distributions of other variables. Hovering above data points displays
tooltips with context-specific metadata. For Web content analytics (WP8), the fre-
quency of a topic as well as the sentiment expressed towards this topic will serve as
key indicators. Derived metrics such as disagreement (= the standard deviation of
sentiment) can show how contested a topic is. The term ‘tsunami’, for example, typi-
cally has a low standard deviation since everyone agrees on its negative connota-
tion. For the WP9 use case on telecommunications data analysis, the trend chart will
enable us to show the number of bookings or enquiries, for example, and to summa-
rize the temporal distribution in conjunction with specific events.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 9 --

Figure 2. Trend and donut chart

The new donut chart shown in Figure 2 is functionally similar to the previously used
pie chart, but improves data perception by de-emphasizing the use of areas. While
the areas of the pie chart slices can be deceiving (their size grows exponential rather
than a linear manner), the donut chart provides a more realistic display of attribute
values. Users focus on reading arc lengths rather than comparing slice areas. An
additional advantage is the use of the empty center to display additional information,
for example the name of the shown variable or a chart legend.

The data export function provides time series data from the trend chart module in
XLSX format or as a comma-separated text file (CSV) encoded in UTF-8 format.
Specific ASAP extensions to this component include (i) the export of larger datasets
with a progress bar, (ii) the ability to start several downloads in parallel, and (iii) the
option to cancel an extensive download while the progress bar is being shown. This
will allow the processing of large datasets in statistical packages such as R and
SPSS, and a range of other external applications.

Extended Interactive Trend Chart Functionality

The Trend Chart is being further extended and a zooming technique is being imple-
mented. It provides a more fine-grained display of the desired time interval, allowing
an in-depth and on-the-fly analysis. Similarly to the GeoMap visualization, the Trend
Chart’s zooming allows the following interactions:

1. Zoom-in/out – triggered by a mouse wheel / trackpad device, the display is
augmented/reduced by a certain factor. A double click triggers the zoom-in
procedure.

2. Side panning – after zooming-in, user is able to navigate through the timeline
via the dragging procedure.

The Donut Chart is planned be synced with the Trend Chart and updated according
to the current selection.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 10 --

Programmable Methods as Event System Hooks

As part of the full dashboard application, various visualizations, among them the
trend chart and donut chart, are available for stand-alone embedding via iframes and
can be configured using URL parameters. In addition to visualizing aggregation
based on the document data, the trend chart has been extended to allow adding
predefined statistical indicators using a format like:
 ?search=rome&indicator=sms,phonecall.
Chart legends, which were previously only available for static exports, have also
been made available for the stand-alone embeddings. To support additional interac-
tion when embedding charts in other host applications, using postMessage(), the
iframe and the parent window can communicate with each other. The following Ja-
vaScript example demonstrates updating an embedded trend chart from the host
window with a new search query:

iframe.contentWindow.postMessage(JSON.stringify({
 type: 'wlt.search',
 target: 'trendChart',
 searchTerm: 'solar energy',
 samples: ['news', 'social'],
 beginDate: new Date('1 Jan 2016'),
 endDate: new Date('31 Mar 2016')
}), location.href);

Going the other way around, a click event triggered within the embedded iframe can
be emitted to the host window:

window.parent.postMessage(JSON.stringify({
 type: 'wlt.click',
 target: 'trendChart',
 searchTerm: searchTerm
}), location.href);

Bar Chart
To increase the versatility of the chart library and address the above-mentioned limi-
tations of pie charts and donut charts, the portfolio has been extended with two dif-
ferent types of bar charts that can be deployed individually or in combination:

● Visualizing Clustered Data: This generic extension allows visualizing any type
of grouped datasets (e.g. static information sources with a limited number of
daily or weekly updates in the case of the Web content analytics of WP8, or
different tourist segments in the telecommunications data analysis of WP9).
The example shown in Figure 3 (left) compares the total number of mentions
per category. Each bar is accompanied with a number that indicates the doc-
ument count, and the three most common keywords.

● Visualizing Metadata Distributions: The inherent limitations of pie charts are
only partially addressed by the above mentioned switch to donut charts. While
pie charts in all their manifestations have gained a lot of popularity among end

ASAP FP7 Project D6.3 InfoViz Services v2

-- 11 --

users in software applications which offer ready-made charts, studies on a
perceptual level show that bar charts are more effective for estimating differ-
ences in given values when compared to angle encodings (Heer and Bostock,
2010). Bar charts also improve the readability when rendering many different
categories, and can be easily subdivided to display additional metadata such
as the positive, negative and neutral sentiment shown in Figure 3 (right). The
split design allows us to show both, the overall metadata distribution as well
as the distribution by data category as percentages.

Figure 3. Bar charts present grouped datasets as an alternative to time series data (left),
and as an alternative to the previous pie chart module (right)

Scatter Plot
The revised version of the webLyzard scatter plot translates two-dimensional tables
into visual form, providing interactive features and animated transitions to show in-
cremental changes from query to query. For content analytics applications, it is cur-
rently used as a “Source Map” (see Figure 4), showing the relative importance of a
given topic as well as the editorial position of various authors towards this topic. In
the following, we summarize the key characteristics of the scatter plot component:

● Layout. The sources are shown with circles of variable position, size and col-
or. The circles are mapped on a two-dimensional layout with the horizontal ax-
is corresponding to the frequency and the vertical axis to the sentiment value
range. Both axes use a quadratic scale that distributes circles more evenly in
space due to the fact that the majority of sources has small frequency and
sentiment values. The size of a source is proportional to its reach value and
the color represents the average sentiment value.

● Interactive Features. On mouse over, a tooltip provides additional information
including the name of the source, numeric values of four variables (frequency,
centrality, sentiment and reach), and the top 3 keywords. The view-specific
menu provides an option to label the sources. The positioning of the labels is
calculated with an adapted version of the D3-Labeler library (Wang, 2014),
which optimizes the positioning to minimize overlap.

● Incremental Updates. Each query triggers an incremental update of the layout
using smooth animations. The axes ticks are also calculated dynamically de-
pending on the respective data value ranges.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 12 --

Figure 4. Scatter plot showing the frequency vs. sentiment distribution of

“climate change” references by international news media (2015)

Geographic Map

The geographic map shown in Figure 5 builds on previous work on the Media Watch
on Climate Change (Scharl et al. 2013a; Scharl et al. 2013b) within the DecarboNet
FP7 project,5 which provided an initial D3.js-based implementation. Work in T6.2 ex-
tended this earlier work by providing:

● Custom base layers including raster image and vector tiles to show additional
details when rendering the display. This required tools to generate raster im-
age tiles, to serve them as MBTiles, and to customize these MBTiles accord-
ing to specific use case requirements;

● adaptive tooltips and view-specific menus for data highlighting, selection, and
drill down,

● a choropleth feature in conjunction with reverse geocoding on the country-
level to provide additional data highlighting features, especially in regards to
structured datasets,

● dynamic clustering to allow adaptive data exploration from high-level views to
regional/local data,

● support to map custom metadata values to visual attributes,
● and publishing the geographic map as an open source project.

5 www.decarbonet.eu

ASAP FP7 Project D6.3 InfoViz Services v2

-- 13 --

Figure 5. Screenshot of the revised geographic map module, including a custom base layer
and an adaptive tooltip with user actions and Boolean query refinement options

Custom Base Layers

The pre-T6.2 version of the GeoMap module was entirely based on SVG, using
country shapes as base layer to display borders and provide country-level hovering
and selection. While such SVG-rendered shapes are great for a quick overview and
easy to adapt in terms of visual attributes, they lack the level of detail required for the
ASAP use cases – when focusing on a given limited area such as the City of Rome,
for example, the shapes’ lack of detail becomes obvious as county and district bor-
der shapes are notably missing.

While theoretically there are no limitations on how detailed SVG shapes can be, the
actual rendering process is resource-intensive. The previously used shapes required
approximately 357 kB of uncompressed data. Adding more detail to the shapes
quickly grows the dataset into the range of several megabytes, which is not feasible
for Web client applications – especially when taking mobile access scenarios into
account. To address these constraints, T6.2 implemented a pipeline of tools to offer
customized raster-based image tiles for map base layers.

● GeoMap JavaScript Client Library. The Web client library is extended to
support both raster-based image and vector tiles as base layers. The standard
base layer’s subtle design was on purpose, featuring the necessary shapes

ASAP FP7 Project D6.3 InfoViz Services v2

-- 14 --

and labels to offer the geographic context, but keeping the main focus on the
actual data displayed on top of the base layer. POIs can be displayed in vari-
ous styles. Additionally, the rasterized base layer can be combined with SVG
labels to increase the flexibility of visual applications. Finally, support for vec-
tor tiles adds additional customization options.

● Tile Server. The base tiles need to be hosted and served. tilestream6 is an
open source high performance map tile server based on MBTiles files. De-
ploying the server in combination with docker7 and Apache HTTP Server8 ad-
dresses scalability and security issues. docker simplifies deployment and scal-
ing, while Apache guarantees that tile server access is limited to ASAP part-
ners and authenticated third parties with the required permissions.

● Customized Map Creation ensures maximum flexibility when it comes to
specific use case requirements. The ASAP map creation pipeline yields cus-
tom MBTiles files for the tile server. The format used to style maps is
CartoCSS. By building upon the CSS standard, it offers a low learning curve
for designers familiar with common Web technologies. These styles are used
as a basis to render the tiles with mapnik,9 and can be combined with different
data sources. The default is OpenStreetMap,10 but sources and formats can
be applied based on specific requirements (e.g., ArcGIS data).

Highlighting Data Points and Connections, Selection and Drill Down

Extending the GeoMap component with adaptive tooltips and context menus enrich-
es its functionality while ensuring a unified user experience. Based on the analyst’s
current context, for example in the form of a country shape or point of interest, the
tooltip displays filtered information and a context menu to either drill down or extend
the search. Basic highlighting functions include visual cues to show specific (groups
of) data points when users hover over related components in the ASAP dashboard,
or color coding of data points according to metadata attributes such as sentiment.
With a special emphasis on structured datasets, the GeoMap library has also been
extended with a choropleth feature as well as a reverse geocoding function that op-
erates on the country level.

The JavaScript library of the Geographic Map in combination with tooltips and con-
text menu as well as the updated event system allows a range of data points high-
lighting techniques. The user is able to gather detailed information on custom poly-
gons (e.g. country shapes), individual data points and trajectories (by highlighting
connections between source and target data points).

6 www.github.com/mapbox/tilestream
7 www.docker.com
8 httpd.apache.org
9 www.mapnik.org
10 www.osm.org

ASAP FP7 Project D6.3 InfoViz Services v2

-- 15 --

Dynamic Clustering

The Atlas component was improved to support client side interactive clustering. In-
teractions by users with the Geographic Map’s viewport trigger custom events which
allow updating the level of detail within the map as well as synced components (see
Figure 6). The dynamic clustering allows a drill down in real-time from high-level
views to regional/local data. Additionally, an updated event system was developed to
support rapid prototyping of tightly coupled views in multiple contexts. The event sys-
tem is described in its own section.

Figure 6. Example application with consecutive drill down states: The area of Rome is a single
cluster in the overview viewport (left) and begins to dynamically split up into fine grained clus-
ters while zooming in (center). Further zooming in to street level reveals more details (right).
While the clustering uses a grid to define the level of detail (most obvious in the left overview
viewport), individual clusters are positioned by weighting their internal location focus.

Data Overlays

Previous dashboard implementations of the Geographic Map supported the display
of a very limited amount of data only, for example, the top 50 documents actually on
display in the application. T6.3 introduces support for the display of multiple aggre-
gated geographic features in the form of data overlays, immensely improving the al-
lowed quantity of source and target locations as well as connections between them.

A stand-alone prototype including mobile cell data from WIND as well as geo-tagged
Tweets has been developed to demonstrate the performance. Circular markers allow
the comparison of multiple datasets, like phone calls and the regional distribution of
social media coverage. This can be generalized to visualize arbitrary metadata for
different use cases. The framework allows incremental real-time updates, triggered
by user input or other external events — e.g., new content being added to the
knowledge repository. This dynamic approach increases the granularity of the dis-
play, particularly in conjunction with improved geotagging services or data acquisi-
tion services that capture author-provided coordinates. For rapid prototyping and
easy integration with other system components, the concept of visualization contain-
ers was implemented. The containers offer the module’s full functionality including
data acquisition, transformation and visualization (for follow-up exploitation efforts,

ASAP FP7 Project D6.3 InfoViz Services v2

-- 16 --

this would enable a Container-as-a-Service model in addition to the envisioned Visu-
alization-as-a-Service approach). We describe this in more detail in the section Con-
tainerized Visualization as a Service.

We experimented with several ways to combine data overlay techniques and densify
the information on display, keeping in mind requirements in regards to usability and
data perception. The prototype shown in Figure 7 uses color to distinguish data
sources as well as data point size for the data attribute. Our approach favors visual
simplicity, but – as described previously – combined with the interaction and data
highlighting techniques, it supports a range of advanced data exploration features.
While in terms of implementation it is straightforward to combine e.g. a choropleth
base layer with additional layers using circles, such combinations tend to map data
to different visual attributes (e.g. country shape, circle size, color) and lead to visual
clutter, therefore slowing and skewing the perception of the given results.

Figure 7. Comparing the results for the same data query of the previous implementation (left
column) to the new approach using data aggregation and geo clustering (right column). The
first row of visualizations shows data points only while the second row adds “trajectories” be-
tween source and target locations.

Custom Metadata

While the default implementation of the Geographic Map displays aggregated fre-
quency and sentiment values, the library has been extended to support function
overrides to display additional numeric metadata such as confidence values (predic-
tive analysis, veracity detection) on visual attributes (e.g. size, color, opacity).

ASAP FP7 Project D6.3 InfoViz Services v2

-- 17 --

Open Source Library

The Geographic Map JavaScript client library is available under an Apache 2 open
source license, publicly available at www.github.com/weblyzard/infovyz. To promote
adoption and ease development, the client library is accompanied by example im-
plementations, a comprehensive documentation and programmatic test cases.

Metadata Exploration

Recursive Pattern Arrangement for Showing Temporal Views

Keim et al. (1995) propose a recursive pattern arrangement for pixel-based visualiza-
tions. One important information source for this arrangement is the calendar aspect
of time, i.e. time being composed of multiple granularities such as day, weeks, or
months. For pixel-based visualizations of time-oriented data, the method has be-
come the standard arrangement. Two important shortcomings are a lack of user-
orientation and the need for focus and context capabilities (Card et al,. 1999). For
the latter, Shimabukuro et al. (2004) propose the multi-scale visualization. It provides
focus and context, but the views are detached and the lack of orientation becomes
an even bigger problem due to frequent view shifting that users need to perform. To
resolve those issues, Lammarsch et al. (2009) introduced the GROOVE visualization
with integrated focus and context based on granularities and the recursive pattern
arrangement. D6.1 has adopted the GROOVE approach, implemented it via the
D3.js library, and extended the capabilities to show additional metadata dimension
such as average document sentiment.

Pixel-based visualization originally used one pixel per data element (e.g., a calendar
date), using color coding to represent the data value. Newer implementations such
as GROOVE represent each data element by a square that might be only the size of
one pixel, but automatically expands if more space is available. The pixels (or
squares) are arranged according to the days of a year, similar to a calendar.

Within ASAP, the initial goal was to show both frequency and sentiment data, which
exceeds the possibilities of the original GROOVE implementation. Therefore, a new
color-coding scheme based on work by Choudhury et al. (2011) was developed to
extend GROOVE to allow a hybrid computation of hue, chroma, and lightness.

Drill Down Sidebar

Based on initial experiments with the GROOVE visualization outlined above, which
showed that most users prefer more well-known and easier to interpret interface rep-
resentations, we decided to discontinue the further development of GROOVE and
instead focus Year 3 efforts on a drill down sidebar to show temporal views and con-
vey temporal variations in metadata attributes. The drill down sidebar has the addi-
tional advantages of providing a clear separation of attribute values – e.g., positive
vs. neutral vs. negative sentiment.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 18 --

To switch between different sidebar types, a new icon
was added next to the header of the window. The new
Drill Down menu consists of “synthetic topics” that rep-
resent metadata categories relating to the current
search. It allows using the trend chart to compare ele-
ments within a metadata category (similar to selected
topics as shown in Figure 8), but prohibits selections
across categories to avoid confusion. Currently, the
following metadata attributes are supported:

● Language: EN, FR, DE, ES
● Source Type: News Media, Social Media, etc.
● Sentiment: Positive, Negative, Neutral

The new navigational structure will also form the basis for the Statistics sidebar, in
addition to the Topics and Drill Down sidebars, to be reported in D6.4: ASAP Dash-
board.

Figure 8. Metadata drill down via line and donut chart showing positive vs. neutral vs. negative
sentiment for a news media query on “Rome”

Temporal Controls

Date Selection

To investigate longitudinal data, a time slider for selecting a date range for the analy-
sis has been developed in a joint effort with researchers from the FP7 project
Pheme.11 The slider element consists of a timespan bar in conjunction with a sliding
window. It displays daily amounts of documents for the full date range available in
the portal. Figure 9 illustrates the timespan bar based on randomly generated data.
The grid ticks on the horizontal axis provide the temporal context, with labels for
years and months.

11 www.pheme.eu

ASAP FP7 Project D6.3 InfoViz Services v2

-- 19 --

Figure 9. Time interval slider

User can modify and adjust the range in four different ways:

1) by dragging and releasing the sliding window to adjust its position;

2) by performing a click-drag-release interaction outside the sliding window to
select the desired time interval;

3) by dragging the two triangular grey-colored handles situated on each side of
the sliding window to resize it;

4) by clicking the two triangular arrow buttons located on both sides of the
timespan bar to shift the sliding window by a fixed interval (day, week, month
or year) towards the direction of the arrow. The interval will be predefined dy-
namically, based on the current date range: the bigger the range, the bigger
the interval and vice-versa.

Any of the aforementioned interactions will set the current date range according to
the new position of the sliding window and consequently update the entire portal.

Date Range Shifting

There will also exist an additional functionality to allow shifting the current date range
by a fixed interval (day, week, month or year), working the same way as the two but-
tons on both sides of the timespan bar. However, it will be useful when the timespan
bar is not visible or available. The interval will be predefined dynamically, too. This
functionality will be accessible through the “Date Range” menu in the portal header.

The menu will feature two sections: “Date Picker” and “Date Range.” The first will
provide two options – “Show/Hide Calendar” and “Show/Hide Timeline” – each ena-
bling/disabling the respective component. The second will contain two options to shift
the date range forwards and backwards.

System Architecture

Rendering Performance

To assess and improve the rendering and animation performance of the visualization
methods, the strengths and weaknesses of different rendering techniques were in-
vestigated in Year 1 of the ASAP project. While SVG is known to perform better with
fewer elements and larger rendering areas, for example, Canvas is superior in the
case of more elements and smaller rendering areas.12

12 www.smus.com/canvas-vs-svg-performance

ASAP FP7 Project D6.3 InfoViz Services v2

-- 20 --

Since rendering text in SVG is known to be prone to performance issues, we devel-
oped a simple test program to render and animate several thousand text elements,
using the following techniques: D3 (SVG), D3 (Canvas), D3 (WebGL, Canvas), Ki-
neticJS (Canvas),13 PixiJS (WebGL, Canvas).14

In terms of relative rendering speed we observed the best performance using PixiJS,
which is a 2D rendering library utilizing the graphics card by using WebGL and ren-
dering the output on a Canvas element. However, although slight performance im-
provements could be achieved using PixiJS, we assessed the various implications
and decided to keep using D3 and SVG for the following reasons:

● Since SVG works with vector graphics, the output is more precise and visually
more appealing compared to pixel-based graphics;

● WebGL is a fairly new technology and therefore might not be supported by all
available browsers, especially on mobile devices;

● ASAP visualizations are highly interactive, where the major advantage lies
with D3 and SVG, due to its data-binding and event handling capabilities;

● Straightforward implementation of animations – when the attributes of the el-
ements to be moved are known, it is straightforward to directly select and an-
imate them in D3. In Canvas, by contrast, all elements need to be redrawn,
and one needs to keep track of the elements to be moved, and interpolate
their new position (D3 manages these processes automatically).

● Text cannot be rendered directly in GL, since a texture element needs to be
generated for each text element; this complicates animating font size changes
as compared to SVG (with respect to text quality and correct positioning);

While SVG offers significant advantages for web-based applications, there are spe-
cific scenarios where it lacks performance in comparison to WebGL implementations
– if a lot of textual elements are required, for example, it loses its performance ad-
vantage and has issues with rendering quality (see Section “Rendering Process” be-
low). We investigated possible WebGL implementations, as the geographic features
of the D3.js library itself can be used to create shapes, but the data can also be
passed on to a WebGL renderer such as three.js instead of SVG. As an alternative,
NASA World Wind (formerly a Java-based application framework only) is currently
being ported to HTML5 and JavaScript.15

In light of the potential drawbacks outlined above, we considered the gains in raw
performance not significant enough to justify the efforts required to further test and
potentially adopt Canvas/WebGL-based approaches.

13 www.kineticjs.com
14 www.pixijs.com
15 www.webworldwind.org

ASAP FP7 Project D6.3 InfoViz Services v2

-- 21 --

Indexing Strategy and Deployment
The visualization components of ASAP are based on high-performance queries on
unstructured and structured data repositories. Before the start of the ASAP project,
the webLyzard processing pipeline was based on Apache Lucene16 and largely built
around the processing of large datasets in batch mode. We increased flexibility
through a modularization strategy, together with a migration to Elasticsearch,17 a dis-
tributed search and analytics engine made available under an Apache 2 open source
license. Elasticsearch provides a RESTful API using JSON over HTTP. Built for the
cloud, it ensures the required scalability for real-time queries that provide the data for
through multi-tenancy and sharded indexing.

Elasticsearch not only speeds up accessing domain-specific repositories of unstruc-
tured content, but also facilitates the process of slicing statistical linked data and
their integration with other data sources. Elasticsearch aggregations yield additional
information for user queries or API calls:

● top k answers. Top search results based on a simple or advanced query;
● data slices. Most often across time, but in the case of complex datasets other

dimensions can be included as well – when analyzing tourism transactions, for
example, one can obtain all the flights originating from a specific airport to
multiple destinations;

● data summaries. Indicator performance is highlighted not just by color cod-
ing, but also through a data summary.

On top of Elasticsearch, the API specified in Annex C of this deliverable is being im-
plemented using Vert.x18, a high-performance, lightweight and scalable appli-
cation framework. Using its distributed event bus, larger applications can be
broken down into micro-services, which can then be horizontally scaled over
multiple hosts. As a non-blocking, asynchronous toolkit, Vert.x can easily
scale to several thousand requests per second. The modular processing
strategy of WP6, in conjunction with the provision of Vert.x-based RESTful
APIs, will enable the on-the-fly integration of intermediate results.

For a more flexible deployment of ASAP visualization components, Kernel-based Vir-
tual Machines (KVMs)19 were replaced with Docker instances (see Figure 10).20
Since the Docker engine container comprises just the application and its dependen-
cies (in contrast to KVM, which also includes the guest operating system), this will
increase the portability and efficiency of the developed components. The migration to
a distributed Docker architecture has been completed in the third quarter of 2015.

16 lucene.apache.org
17 elastic.co
18 vertx.io
19 www.linux-kvm.org
20 www.docker.com

ASAP FP7 Project D6.3 InfoViz Services v2

-- 22 --

Figure 10. Virtual machines versus Docker containers (Source: www.docker.com)

Application Programming Interface

The ASAP visualization pipeline for processing unstructured and structured content
from multiple sources aims to solve the data matching problem. It is being made
available via an open API for members of the consortium, and selected external
partners who will help evaluate the provided functionality. To align the APIs with the
specific requirements of the consortium partners, a stand-alone Request for Com-
ments was sent out in July 2015. An extended version was then provided as part of
the initial draft of D6.2 in August 2015. Future versions of the API will evolve along-
side the use case requirements, and play an important part in formulating the ASAP
exploitation strategy (T10.2), which will leverage the functionality of the API pursuing
a Visualization-as-a-Service (VaaS) approach.

Advantages. Prior to ASAP, the webLyzard dashboard existed in different versions,
fully customized to client specifications and typically including a multiple visual tools.
The manual effort of customizing each system quickly became a cost driver that
does not scale well with an increasing number of projects. When aiming to support
flexible on-the-fly visualizations based on dynamic datasets, as required by ASAP,
this approach is no longer feasible at all. This led to the development of several open
APIs, bundled within a uniform framework for the rapid integration of heterogeneous
data sources into a common visualization processing pipeline.

Specification. The specification of the APIs aimed to provide a simple and unified
interface through which to expose all data and interface services, increasing the de-
gree of automation between various components and offering a clean and extensible
set of JSON formats for each important service. This enables rapid deployment on a
wide range of platforms, and provides instant access to relevant data – not only to
serve as a building block of the use case applications, but also to support the ongo-
ing development process.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 23 --

For developers, the APIs structure and streamline the overall workflow. A visualiza-
tion designer does not need to learn about SPARQL queries to retrieve and visualize
entities referenced in a text. Similarly, a backend developer does not need to know
about the specifics of a certain visualization to demonstrate an improved knowledge
extraction method.

The main API convention is that content to be ingested by the visualization engine
can be modelled as a small set of objects (visualizations, queries, documents, anno-
tations, statistical observations) in JSON format. Each API is designed to be flexible
and future-proof, following a versioning policy and requiring users to be authenticat-
ed. The APIs are in an early stage; future versions will not fundamentally change
their structure, but will certainly refine them and add specific functions. The current
set of APIs reported in Annex C of D6.2 comprises the following:

● Document API – ingests unstructured data, for example crawled Web docu-
ments from WP8. The main objects are Documents, Sentences and Annota-
tions. This API can be used for sharing documents regardless of their prove-
nance, as well as annotations from knowledge extraction services (sentiment
analysis, named entity detection, etc.).

● Statistical Data API – ingests structured data from a variety of sources, for ex-
ample the telecommunications data of WP9. The main object is a Statistical
Observation. The API follows the RDF Data Cube philosophy, splitting statisti-
cal data into datasets with the same structure and components (dimensions,
measures, attributes, observations).

● Search API – returns a set of query results in the form of unstructured text
documents. The main object is Query. The next version of the API to be re-
ported in D6.3 will also support queries for structured datasets.

● Embeddable Visualization API – provides the ASAP partners with a means to
integrate visualizations in their applications, typically based on the results of a
search query. The main object is Visualization.

Document API (Unstructured Data)

The Document API ingests different types of textual content (binary, text, html, etc.).
It does not require fully annotated texts. Sentences (POS lists, token lists, etc.), an-
notations (sentiment, named entities, etc.) or metadata (data about the file itself, e.g.
provenance) can be added in advance by a partner, or they can later be provided in
a separate process via the Annotation API.

The creation of independent Elasticsearch21 repositories (see Section on “Technical
Considerations” below) allows distinguishing datasets from different tasks or partner
organizations. Each repository has a unique ID. The Document API is used for up-

21 www.elastic.co

ASAP FP7 Project D6.3 InfoViz Services v2

-- 24 --

loading documents to such a repository. When adding new documents, one will have
to set the content, content type, provenance, time, language and location of the doc-
ument, along with an optional set of annotations. Annotations can later be added ei-
ther via webLyzard’s own knowledge extraction components (Scharl et al. 2016) in-
cluding sentiment analysis (Weichselbraun et al., 2013, 2014) and named entity
recognition (Weichselbraun et al., 2015), using the text mining operators of IMR’s
Mignify platform (see Section 2.2 of D8.2), or by using third-party services.

Statistical Data API (Structured Data)

The analytical goals of ASAP and the requirement of visualizing structured data from
multiple sources (e.g. time series of Web content metrics from WP8 in conjunction
with telecommunications data from WP9) required a new data format that supports:

● datasets created by ASAP partners, using common formats such as CSV,
JSON, RDF, XML, etc.;

● complementary data from Open Data Initiatives (e.g. governmental open data,
or indicators from international organizations);

● RDF Data Cubes in the SDMX, QB and other similar RDF formats.

This format should resemble the JSON format used by the Document API to ensure
consistency across structured and unstructured data, and the ability to visualize
these data along multiple dimensions. To represent statistical data from a variety of
sources, we adopted the RDF Data Cube Vocabulary (QB) approach, which is the
current standard for publishing statistical data in RDF format (see Appendix B). By
splitting the statistical data into cubes with a maximum of three dimensions (e.g.,
mobile cellular subscriptions, location and time), QB offers a simple structure that
can be shared by all datasets. In order to use data from multiple datasets, there are
several possible strategies:

● determine whether all the components of the respective datasets match using
complex ontology alignment or data matching techniques;

● use machine learning techniques to perform the data matching automatically;

● create a common data format for all datasets based on the basic concepts of
this vocabulary – i.e., organized in datasets which contain observations de-
scribed through measures, dimension, attributes, etc.

When developing the API for ASAP, we have chosen the third option (follow-up pro-
jects might add machine learning techniques to perform complex data matching, for
example to ingest noisy datasets with uncertain provenance). The RDF Data Cube
philosophy is not only useful for QB or SDMX datasets, but also for integrating any
type of statistical data. The underlying idea was to use a common statistical mapping
with a rich set of optional fields to visualize various ASAP datasets using a common
Statistical API. This mapping process is described in the following table.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 25 --

Table 1. Mapping between QB data and Elasticsearch indices

RDF Data Cube Vocabulary Concept Elasticsearch Correspondence

Dataset Repository

Data Structure Document Mapping

Code Lists There is no need to keep code lists, but they
can be converted to corresponding data types.

Statistical Observation Document with type = “observation”

Measure Components, Dimension
Components, Attributes

Fields with the corresponding Elasticsearch da-
ta types

Slices Queries

While it appears that measure and dimension components are meshed together, this
hardly happens in reality, as the typical queries would almost always involve just the
dimension components (Query 1), but it does offer the possibility of querying the
other components as well (Query 2):

● Query 1 – Retrieve the growth of mobile phone users [fixed dimension] in Italy
[fixed dimension] between 2005 and 2015 [time interval; free dimension].

● Query 2 – Retrieve the units of measurements used in this dataset.

When uploading data with the Statistical Data API, the relevant data snippets have to
be transformed into observations, which themselves are grouped into datasets. In
general it is recommended to upload entire datasets instead of individual observa-
tions, but modifying individual entries is possible. This conversion process becomes
particularly valuable when slicing and grouping observations via the Elasticsearch
Query DSL (Domain-Specific Language), as the performance of this DSL has a sig-
nificant impact on overall scalability.

The main advantages of using the RDF Data Cube standard for modelling statistical
datasets to be ingested into the ASAP visualization processing pipeline are:

● using a proven methodology (W3C Recommendation) to drive both the data
modelling and the visualization process;

● the ability to perform most operations (slice, dice, aggregations, subtotals,
etc.) one would be able to perform on data cubes, which are already well-
understood and formalized through cube algebras like the ones presented by
Gray et al. (1997) and Cifferi et al. (2013);

● effective integration by aligning RDF Data Cube concepts and Elasticsearch
core concepts.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 26 --

Search API

The Search API enables data analysts to use powerful queries based on the full text
of a document, its metadata attributes, and statistical observations – therefore it is
the ideal means for providing data for embeddable visualizations (see below).

It is a stateless, RESTful API, accessed via HTTPS that uses JSON as input and
output format and supports most functions of Elasticsearch (in addition to specific
operations related to the available metadata).

The Search API supports a wide range of queries such as bool, phrase, regexp,
term, wildcard, range, sentiment, date, etc. The current version returns search re-
sults as documents. Future version might also support more granular queries for
sentences, sentence combinations or paragraphs.

Embeddable Visualization API

The Search API allows users to access relevant data, and embed results in third-
party applications. To identify hidden patterns and to better understand the underly-
ing processes, however, visual methods are often superior.

The Embeddable Visualization API complements the rich and more complex func-
tionality offered by the multiple coordinated views of the ASAP dashboard. It sup-
ports the integration of individual visualizations into use case applications, and rep-
resents the basic building block of ASAP’s Visualization-as-a-Service (VaaS) exploi-
tation strategy (WP10).

Calls to this API allow specifying the appearance (width, height, style, etc.), data
format (html, csv, json, xml, etc.), query or type of chart that should be displayed. It
works with both structured and unstructured data, and the queries resemble those
sent to the Search API (see above).

Details about the new and revised visual tools to be made available both via the
ASAP Dashboard as well as the Embeddable Visualization API will be described in
the next section of this deliverable.

Visualization-as-a-Service (VaaS) Architecture

To support the usage of the visual analytics components in multiple contexts, a event
and notification system was developed. In contrast to the legacy implementation
used in previous versions for example of the dashboard and geographic map com-
ponent, the new system doesn’t require hard event dependencies inside single mod-
ules. This allows in combination with the concept of Containerized Visualization as a
Service the rapid development of customized visualization dashboards.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 27 --

Event and Notification System for Client-Side Micro Services

The visualization dashboard application includes an event system which allows
communication between separate modules. The technology allows the creation of
multiple coordinated views (Hubmann-Haidvogel et al., 2009). In the past, this ap-
proach worked well for the main dashboard application. However, updated system
requirements (e.g. embeddable visualizations) and progress in web technologies
(e.g. the rise of mobile applications) surfaced some shortcoming in the previous im-
plementation, which uses an event system to manage communication between
modules by using a register/notify pattern. Modules could subscribe to certain events
and trigger an action should the event be called using the notify() function in another
module. The resulting graph of dependencies among modules is shown in Figure 11.

Figure 11. Exemplary dependency graph of modules following the register/notify pattern

While this approach proved to be flexible, there were some shortcomings which
needed to be addressed to support future use cases:

● The event subscriptions and triggers were defined within modules which lead
to hard-coded dependencies. This prohibits the use of modules in multiple
contexts or applications. So because the events were hard-coded for the
desktop dashboard application, there was no way to use the same event sys-
tem for example for an alternate mobile application.

● While it was simple to add multiple subscriptions to one event trigger in multi-
ple event receiving modules, it had a negative impact on the ease of code
maintenance. Because each event subscription was handled within each
module, there was no simple way to get an overview to a single event’s sub-
scriptions.

To address the described shortcomings, a successor event framework was devel-
oped. It had to fulfill the following requirements:

ASAP FP7 Project D6.3 InfoViz Services v2

-- 28 --

● Provide support for intra-module communication in multiple contexts (e.g.
desktop and mobile application, embeddable visualizations, modules acting as
plugins for other host frameworks),

● allow developers to easily get an overview of the event flow, meaning to see
at a glance both an event subscription and all actions triggered by the event

● and offer support for event bubbling in nested module hierarchies.

The resulting framework consists of a combination of code building blocks and best
practice patterns:

● The event flow allows modules to be loosely coupled, avoiding hard-coded
dependencies between modules.

● A module should not contain logic calling other modules in the context of
event triggers (this does not apply to nested or inherited modules).

● Event names should be about the actual action/event being triggered inside
the module (e.g. “termStateChange”) and should avoid referencing other
modules (like “notifyGeographicMapModule”).

● Modules expose event listeners (instead of the previous notify()) and public
methods (instead of register()), as shown in Figure 12.

● The actual implementation of event subscriptions and action triggers (module
method calls) happens outside a module’s scope, therefore allowing the use
of a module in multiple contexts. Depending on the complexity of an applica-
tion, optional multiple event controllers can be used to organize the event flow
(Figure 13).

Figure 12. The diagram shows a simple event flow pattern between two loosely coupled mod-
ules used in two different applications. Event listeners (black arrows) can be subscribed to by
a simple host application, for example a desktop or mobile version of a web application. Func-
tion callbacks inside event listeners can then trigger public module methods (blue arrows).
Because there are no hard-coded dependencies between the modules, the same event listen-
ers can be used multiple times in different contexts.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 29 --

Figure 13. A more complex setup with additional modules and multiple controllers is shown in
this diagram. The same event features can be applied in this application. Multiple controllers
allow the separation of distinct event patterns within a larger application, therefore simplifying
code management and maintenance.

The updated event system was used in combination with the already described visu-
al analytics components to develop the required visualization interface for WP9, the
Telecommunication Data Analytics (TDA) application use case developed by WIND.
It allows the exploration of a multi-layer data set consisting of cell phone data as well
as geo located tweets, as shown in Figure 14.

Figure 14. Screenshots of the visualization component for the WP9 Telecommunication Data
Analytics (TDA) application. It demonstrates the usage of the updated event system to sync
individual dashboard components in real-time based on user interactions. When the user in-
teracts with the geographic viewport both the clustered data points in the viewport as well as
the corresponding information in the other elements updates in real-time.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 30 --

Containerized Visualization as a Service

Most open source charting and visualization libraries are only concerned with client
side representation of data in the browser. Additionally, some libraries lack capabili-
ties to fully support an extended data lifecycle. They are able to render a given da-
taset but fail when trying to properly update a given view or render data streams.
While we initially decided to use the NVD3 library as a basis to develop our visualiza-
tions, it emerged during development that it lacked both described shortcomings.
NVD3’s underlying visualization framework d3 has the capabilities though to support
updating existing charts properly when its enter/update/exit pattern is implemented
correctly. Since we gained significant expertise of d3 while implementing custom vis-
ualizations, we decided to implement our own versions of standard charts (line chart,
donut chart, bar chart) to properly support dynamic updates.

Additionally we came up with a lightweight framework to support a more holistic data
lifecycle including data acquisition, storage and representation. The goal was to cre-
ate both a setup which is easily understood and maintainable by visualization engi-
neers as well as deployable as a building block in service driven architectures. Fig-
ure 15 shows an overview of the setup.

The main wrapper is a Docker Compose setup, which offers additional features to
create setups consisting of multiple interconnected containers which can be run with
one simple startup command.22 The individual containers solve the requirements of
data acquisition, storage and representation:

● Acquisition: A node.js based REST API server offers an interface to inject
and read data into and from the storage. Additionally, being based on JavaS-
cript itself, it allows frontend developers to implement necessary data trans-
formations.

● Storage: An Elasticsearch container is both responsible for data storage and
analytics. While one of Elasticsearch’s core purposes is search applications,
its aggregation framework was designed to offer powerful analytics features.

● Representation: This container is based on the nginx httpd server. It hosts
static files and acts as a proxy to the REST API container.

This setup is suitable to fulfill multiple needs:

● Rapid Prototyping: With the stack being entirely based on JSON and JavaS-
cript, this setup offers visualization engineers a complete environment to rap-
idly develop visualization prototypes extending the pure representation layer
which most data visualization libraries offer only. By using Docker Compose,
developers are able to run to the whole setup with a single command on a va-
riety of development environments.

22 www.docker.com/what-docker

ASAP FP7 Project D6.3 InfoViz Services v2

-- 31 --

● Simple Deployment: One of Docker’s advantages is a reproducible applica-
tion environment for both the developer and the production server. Multiple
visualization container combinations can be deployed to a single production
host system, without compromising, for example, the configuration of the
hosts or other container httpd servers.

Figure 15. Overview diagram of containerized visualization with support for data acquisition,
transformation and visualization.

Outlook and Next Steps

This deliverable summarizes the work conducted in WP6 of the ASAP FP7 project.
In the first 30 months, this work has focused on methods to collect, represent and
visualize structured as well as unstructured data, to be linked together via the ASAP
dashboard. This included the development of an open API and a corresponding in-
dexer, as well as visual analytics components for the rapid rendering of complex da-
tasets using visual cues (e.g., color coding) to show metadata attributes, and interac-

ASAP FP7 Project D6.3 InfoViz Services v2

-- 32 --

tive mechanisms to select appropriate timescales. These components include (i) a
charting module with adaptive tooltips and context menus that offer actions and set-
tings based on the sequence of user actions, providing a user-friendly way to trigger
on-the-fly query refinements; and (ii) a geographic map, where T6.2 added custom
base layers by generating raster image tiles, serving them as MBTiles, and custom-
izing the MBTiles according to the use case requirements. To render statistical data
on top of the geographic map, T6.2 developed two distinct features: (ii.a) a choro-
pleth display in conjunction with reverse geocoding on the country level to provide
additional data highlighting features, especially in regards to structured datasets;
(ii.b) circular markers to compare multiple datasets, e.g., phone calls and the region-
al distribution of social media coverage. Both features allow incremental real-time
updates, triggered by user input or other external events — e.g., new content being
added to the knowledge repository. For rapid prototyping and easy integration with
other system components, the concept of visualization containers was implemented.
The containers offer the module’s full functionality including data acquisition, trans-
formation and visualization (for follow-up exploitation efforts, this would enable a
Container-as-a-Service model in addition to the previously envisioned Visualization-
as-a-Service approach). Additionally, the geographic map supports vector tiles and
advanced real-time features to compare multiple datasets. Finally, the geographic
map was released as an open source project.

The open API allows integrating the WP6 visualization engine with the components
developed in other WPs, and rendering multi-source data for the use case applica-
tions. To set the stage for a seamless integration, Appendix C of this deliverable con-
tains the updated specification of the API, building upon the Year 1 work on pro-
cessing statistical data. It allows connecting the data streams to either individual vis-
ualizations, or to the entire ASAP dashboard.

Regarding T6.3, a first fully functional prototype of the ASAP dashboard has been
deployed. Adaptive tooltips and view-specific context menus were added to support
on-the-fly query refinements, and to provide various options for data highlighting, se-
lection, and drill down. A REST Application Programming Interface (API) integrates
the visualization engine of the dashboard with other WPs. First published as part of
D6.2 and continuously refined since then in terms of functionality and scalability, it
can be subdivided into the Document API, the Annotation API, the Search API, the
Statistical Data API, and the Visualization API. This allows ingesting product offers
from WP8 and call data records from WP9, for example, and embedding visualiza-
tions in various analytic applications. The Elasticsearch cluster powering both the
dashboard itself as well as the new APIs has been optimized for improved perfor-
mance and resilience: (i) reduced memory load of individual nodes through data
structure changes within the engine and the dashboards document mappings; (ii) au-
tomated query optimizations for resource-heavy aggregations; (iii) monthly index
slices to reduce the size of active indices to answer queries, and improve horizontal
scaling across multiple hosts for parallel queries.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 33 --

We will also continue to evolve the API specification itself, as it will play an important
role in the ASAP exploitation strategy (T10.2) by supporting a flexible and scalable
Visualization-as-a-Service (VaaS) approach. Containerized visualizations enable the
integration of WP6 components into the data analytics workflow of T5.3 and the Tel-
ecommunication Data Analytics (TDA) application of T9.3. The VaaS event and noti-
fication system offers a framework to support the manipulation of intermediary and
final data sets.

References

Bostock, M., Ogievetsky, V. and Heer, J. (2011). “D3: Data-Driven Documents”,
IEEE Transactions on Visualization and Computer Graphics, 17(12): 2301-2309.

P. Bonacich (2007). “Some unique properties of eigenvector centrality”, Social Net-
works 29(4): 555-564, 2007.

Brasoveanu, A.M.P., Sabou, M., Scharl, A., Hubmann-Haidvogel, A., Fischl, D.
(2017). “Visualizing Statistical Linked Knowledge for Decision Support”. Semantic
Web Journal, IOS Press, 8(1).

Brunetti, J. M., Auer, S., García, R., Klímek, J., & Nečaský, M. (2013). “Formal linked
data visualization model”. In Proceedings of International Conference on Information
Integration and Web-based Applications & Services, ACM, USA: 309-324.

Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., & Racioppa, S. (2008). “Ontology-
based information extraction and integration from heterogeneous data sources”. In-
ternational Journal of Human-Computer Studies, 66(11), 759-788.

Cammarano, M., Dong, X., Chan, B., Klingner, J., Talbot, J., Halevy, A., & Hanrahan,
P. (2007). “Visualization of heterogeneous data”. Visualization and Computer
Graphics, IEEE Transactions on, 13(6), 1200-1207.

Card, S.K., Mackinlay, J.D. and Shneiderman, B. (1999). Readings in Information
Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann.

Choudhury, A., Potter, K., Rhyne, T., Livnat, Y., Johnson, C., and Alter, O. (2011).
“Visualizing Global Correlation in Large-Scale Molecular Biological Data”, 1st IEEE
Symposium on Biological Data Visualization (BioVis-2011). Providence, USA.

Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., & Zimányi, E. (2013).
“Cube algebra: a generic user-centric model and query language for OLAP cubes”.
International Journal of Data Warehousing and Mining (IJDWM),9(2), 39-65.

Demiralp, C., Scheidegger, C. E., Kindlmann, G. L., Laidlaw, D. H., & Heer, J.
(2014). “Visual embedding: A model for visualization”. Computer Graphics and Ap-
plications, IEEE, 34(1), 10-15.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 34 --

Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H., Koubar-
akis, M., Lenzerini, M., Moller, R., Ozcep, O., Muro, M.R., Rosati, R., Schlatte, R.,
Schmidt, M., Soylu, A., and Waaler, A. (2013). “Scalable end-user access to big da-
ta”. Big Data Computing, 205-245.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pel-
low, F. and Pirahesh, H. (1997). “Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals”. Data Mining and Knowledge Discov-
ery, 1(1), 29-53.

Guo, P. J., Kandel, S., Hellerstein, J. M., & Heer, J. (2011). “Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts”. 24th annual
ACM symposium on User interface software and technology. ACM, USA: 65-74.

Heer, J. and Bostock, M. (2010). Crowdsourcing Graphical Perception: Using Me-
chanical Turk to Assess Visualization Design. 28th ACM Conference on Human Fac-
tors in Computing Systems (CHI-2010). Atlanta, USA: 203-212.

Heer, J. and Shneiderman, B. (2012). “Interactive Dynamics for Visual Analysis”,
Communications of the ACM, 55(4): 45-54.

Hubmann-Haidvogel, A., Scharl, A. and Weichselbraun, A. (2009). “Multiple Coordi-
nated Views for Searching and Navigating Web Content Repositories”, Information
Sciences, 179(12): 1813-1821.

Kämpgen, B., & Harth, A. (2014). “OLAP4LD–A Framework for Building Analysis
Applications Over Governmental Statistics”. In The Semantic Web: ESWC 2014 Sat-
ellite Events. Springer International Publishing, Berlin: 389-394.

Keim, D., Ankerst, M., and Kriegel, H.-P. (1995). "Recursive pattern: A technique for
visualizing very large amounts of data", 6th Conference on Visualization (Vis-95). At-
lanta, USA: 279-287.

Kelleher, C. (2014). Visualizing the universal data cube. Doctoral dissertation, Uni-
versity of Massachusetts Lowell.

Koudas, N., Sarawagi, S., and Srivastava, D (2006). “Record linkage: similarity
measures and algorithms”. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, ACM, pp. 802–803.

Lammarsch, T., Aigner, W., Bertone, A., Mayr, E., Gartner, J., Smuc, M. and Miksch,
S. (2009). “Hierarchical Temporal Patterns and Interactive Aggregated Views for
Pixel-based Visualizations”. 13th International Conference Information Visualisation.
Barcelona, Spain: 44-50.

Scharl, A., Hubmann-Haidvogel, A., Weichselbraun, A., Lang, H.-P. and Sabou, M.
(2013a). Media Watch on Climate Change – Visual Analytics for Aggregating and
Managing Environmental Knowledge from Online Sources. 46th Hawaii International
Conference on Systems Sciences (HICSS-46). Maui, USA: IEEE Press: 955-964.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 35 --

Scharl, A., Herring, D., Rafelsberger, W., Hubmann-Haidvogel, A., Kamolov, R.,
Fischl, D., Föls, M. and Weichselbraun, A. (2016). “Semantic Systems and Visual
Tools to Support Environmental Communication”, IEEE Systems Journal: Forthcom-
ing (Accepted 31 July 2015).

Scharl, A., Hubmann-Haidvogel, A., Sabou, M., Weichselbraun, A. and Lang, H.-P.
(2013b). “From Web Intelligence to Knowledge Co-Creation – A Platform to Analyze
and Support Stakeholder Communication”, IEEE Internet Computing, 17(5): 21-29.

Scharl, A., Weichselbraun, A., Göbel, M., Rafelsberger, W. and Kamolov, R. (2016).
"Scalable Knowledge Extraction and Visualization for Web Intelligence", 49th Hawaii
International Conference on System Sciences (HICSS-2016). Kauai, USA. Forth-
coming (Accepted 17 Aug 2015).

Shimabukuro, M., Flores, E., de Oliveira, M., and Levkowitz, H. (2004). “Coordinated
Views to Assist Exploration of Spatio-Temporal Data: A Case Study”. 2nd Interna-
tional Conference on Coordinated and Multiple Views in Exploratory Visualization,
São Paulo, Brazil: 107-117.

Shneiderman, B. (1996). “The Eyes Have It: A Task by Data Type Taxonomy for In-
formation Visualizations”. IEEE Symposium on Visual Languages. Boulder, USA:
IEEE Press: 336-343.

Stonebraker, M., Bruckner, D., Ilyas, I. F., Beskales, G., Cherniack, M., Zdonik, S.
B., and Xu, S. (2013). “Data Curation at Scale: The Data Tamer System”. In CIDR,
Asilomar, California, USA, 2013.

Trinh, T. D., Do, B. L., Wetz, P., Anjomshoaa, A., & Tjoa, A. M. (2013). “Linked
widgets: an approach to exploit open government data”. International Conference on
Information Integration and Web-based Applications & Services. ACM, USA: 438.

Wang, E. (2014). “A D3 Plug-In for Automatic Label Placement Using Simulated An-
nealing”. University of Berkeley, USA. http://github.com/tinker10/D3-Labeler.

Weichselbraun, A., Gindl, S., & Scharl, A. (2013). “Extracting and grounding context-
aware sentiment lexicons”. IEEE Intelligent Systems, 28(2), 39-46.

Weichselbraun, A., Gindl, S., & Scharl, A. (2014). “Enriching semantic knowledge
bases for opinion mining in big data applications”. Knowledge-Based Systems, 69,
78-85.

Weichselbraun, A., Streiff, D., & Scharl, A. (2015). “Consolidating Heterogeneous
Enterprise Data for Named Entity Linking and Web Intelligence”. International Jour-
nal on Artificial Intelligence Tools, 24(2), 1540008.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 36 --

Appendix A: Visualization Workflow

Building on best-practice examples reported in the literature, we adopted the follow-
ing workflow for collecting, processing and visualizing statistical data as part of big
data applications:

● Requirement Analysis includes the collection of user stories related to the
data sets to be integrated, and the identification of appropriate visualizations;

● Discovery. If a partner does not have the data in the needed format, we help
with selecting the datasets and the dimensions that need to be analyzed, ag-
gregated or augmented in order to fit particular visualization scenarios.

● Alignment generally refers to converting the new datasets into the format re-
quired by the Statistical Data API (see Appendix C) taking into account granu-
larity, naming conventions, geolocation and other factors.

● Indicator Storage and Retrieval. New datasets are stored after being
aligned to match the API. Effective indexing strategies based on established
platforms such as Elasticsearch23 and Lucene24 are essential building blocks
of our big data applications (see Section “Index Strategy and Deployment”).

● Transformation is rarely needed, as data provided via the API can be directly
visualized. The transformation step can be seen as a first part of the data and
view specification (filter, derive) step of Heer and Shneiderman (2012), alt-
hough derive tasks can also appear in subsequent steps.

● Visualization. The basic building blocks such as line charts, bar charts and
donut charts (see “Visual Analytic Components”) tend to be reusable compo-
nents, which result in visualization grammars that can be considered the sec-
ond part of the data and view specification step (visualize, sort).

● Interaction. An interaction layer that includes zooming, panning and synchro-
nization mechanisms is usually built on top of the visualization layer, corre-
sponding to the view manipulation step of Heer and Shneiderman (2012), and
is the focus of D1.3: ASAP Dashboard.

● Reuse can happen on multiple levels, from indicators to specific charts or the
entire platform. It should be integral to the design process, corresponding to
the process and provenance step of Heer and Shneiderman (2012).

23 elastic.co
24 lucene.apache.org

ASAP FP7 Project D6.3 InfoViz Services v2

-- 37 --

Appendix B: RDF Data Cube Vocabulary

As a W3C Recommendation, the RDF Data Cube Vocabulary (QB)25 is supported by
both industry and academia. It has already gained widespread acceptance judged by
the increasing number of statistical datasets published using this vocabulary.

QB is based on a cube model that is compatible with SDMX (Statistical Data and
Metadata Exchange), designed to be generic and suitable for publishing various
types of multidimensional datasets. The basic building blocks of the cube model are
measures, dimensions and attributes, collectively referred to as components:

● Measure components describe things or phenomena that are being observed;
typically used for measurements – e.g. number of mobile phone calls.

● Dimension components specify variables that are important when defining an
individual observation for a measurement – e.g., time and space.

● Attributes help interpret the measured values by specifying the units of meas-
urement, and additional metadata such as the status of the observation – e.g.
unit of measurement, estimated.

● Observations are the atomic units in a dataset that represent a concrete
measured value for a set of concrete dimension values. When the value of a
dimension is the same in a large number of observations (for example, the
geolocation), it is convenient to group them into a slice.

● A dataset that contains observations grouped into slices across dimensions
constitutes a cube.

● The Data Structure Document (DSD) describes each dataset and contains all
the required namespaces and components.

● Code lists or dictionaries describe the list of entities that are generally repeat-
ed through all the datasets from a publisher (countries, units of measure-
ments, etc.).

25 www.w3.org/TR/vocab-data-cube

ASAP FP7 Project D6.3 InfoViz Services v2

-- 38 --

Appendix C: API Specification

The following API specification v0.5 outlines how to share data with the webLyzard
knowledge repository, and how to access ASAP visualization services. The API
specification contains four separate parts, followed by a workflow description.

1. The Document API specification describes the mechanism to upload and an-
notate the IMR Web content of WP8 (and other third-party text documents),
and to integrate them into the ASPA visualization pipeline developed in WP6.

2. The Statistical Data API supports the upload of statistical data, e.g. the WIND
telecommunications data from WP9.

3. The Search API returns relevant documents sets based on a search query.

4. The Visualization API renders individual visualizations and allows to embed
them into third-party Web applications.

The APIs are stateless RESTful APIs accessed via HTTPS. They typically use JSON
as input and output formatting, except in the case of RDF Data Cubes and similar
structured exchange formats. All API requests need to be authenticated using JSON
Web Tokens. Tokens are time-limited and repository-restricted.

As of August 2016, this specification should be considered beta status. While the
overall set of feature is stable, specific parts of the specification might still change in
line with use case requirements.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 39 --

Document API

Introduction

The Document API describes the programmatic interface for creating, retrieving,
updating, deleting (CRUD) documents with a given document repository. To use this
functionality of the Document API, the user must have a webLyzard document repos-
itory configured. Documents in such repositories are identified by a unique (numeric)
<identifier> that is generated by the platform when adding new documents. Subse-
quent document retrievals, updates and deletions should refer to this identifier.

In addition to this repository-only functionality, the document API also supports anno-
tating existing documents using any of the supported webLyzard annotation tools.
For document annotation, no repository is required. The Document API provides the
following functionality:

1. Adding a document to a given repository
2. Updating an existing document in a given repository
3. Deleting an existing document from a given repository
4. Querying an existing document from a given repository
5. Annotating an existing document without a given repository

Usage of the document API requires an access token. For further information on
how to obtain such access token, please refer to the section on Authentication and
Authorization.

Adding Documents to a Repository (Create)

Documents are always added to a specific repository, the data format has to adhere
to the webLyzard Document specification (see below). Adding a document will al-
ways result in

1. the creation of a new numeric identifier and therefore a new document in the
repository, regardless if the URI already exists, and

2. the execution of all annotation steps as defined for the repository – an addi-
tional call to the Annotate API is therefore not required.

As parameters, the Rest API expects content to be provided as either:

● tokenized content, where
○ sentences are provided
○ no content is provided

● a json string content (text/html, text/plain), where
○ content and content_type are provided
○ no sentences provided

ASAP FP7 Project D6.3 InfoViz Services v2

-- 40 --

If both plain text and tokenized content or neither are provided, a processing error
(4xx) will be returned. For further information on valid document structure to be send
to the Document API, please refer to webLyzard Document Format section.

To create a new document, send a POST request to the /<repository> API endpoint,
with the body of the request containing the document.

{
 "repository_id": "repository",
 "title": "document title",
 "uri": "the document's uri",
 "content": "Therefore we could show that \"x>y\" and \"y<z.\".",
 "content_type": "text/plain"
}

Listing 1: A minimal document

$ curl -H “Authorization: Bearer <access_token>” -H “Content-Type: ap-
plication/json” -d @document.json -XPOST
https://api.weblyzard.com/0.1/documents/<repository>

Listing 2: Adding a document ‘document.json’ to

a webLyzard repository via the Document API
If the document has been successfully stored, the server responds with a “201 Cre-
ated” status code and the “Location” header field contains the unique <identifier>
created for this document.

HTTP/1.1 201 Created
Location:
https://api.weblyzard.com/0.1/documents/<repository>/<identifier>
Content-Type: application/json; charset=UTF-8
Content-Length: ...

{“created”:true, “_id”:”<identifier>”}

Listing 3: REST response from the Document API (document add)

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 41 --

Retrieving Documents

The most recent version of a document can be retrieved by sending a GET request
to the <identifier> of the document:

$ curl -H “Authorization: Bearer <access_token>” -XGET
‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>’

Listing 4: Retrieving a document from a webLyzard repository via the Document API

The server responds with a “200 OK” status code and the JSON representation of
the document (as specified by the webLyzard document specification):

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“_id”:”<identifier>”, “repository”:”<repository>”, “title”:...}

Listing 5: REST response from the Document API (document retrieve)

If the document does not exist, the server sends a “404 Not Found” response.

Updating Documents

Documents can be overwritten with a newer version of the same document.

$ curl -H “Authorization: Bearer <access_token>” -H “Content-Type: ap-
plication/json” -d @document.json -XPUT
https://api.weblyzard.com/0.1/documents/<repository>/<identifier>

Listing 6: Updating a document in a webLyzard repository via the Document API

For further information on valid document structure to be send to the Document API,
please refer to webLyzard Document Format section. On success, the server re-
sponds with a “200 OK” status code:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“created”:false,”updated”:true,”_id”:”<identifier>”}

Listing 7: REST response from the Document API (document update)

ASAP FP7 Project D6.3 InfoViz Services v2

-- 42 --

If there is no document referenced by <identifier> available, the server will respond
with a “400 Bad Request” error and the document should be added using the syntax
for adding documents; i.e., <identifier> is always created by the server and cannot
be set arbitrarily by the client.

Deleting Documents

Documents can be deleted by issuing a DELETE request on the identifier of the doc-
ument:

$ curl -H “Authorization: Bearer <access_token>” -XDELETE
‘https://api.weblyzard.com/0.1/documents/<repository>/<identifier>’

Listing 8: Deleting a document from a webLyzard repository via the Document API

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“deleted”:true,”_id”:”<identifier>”}

Listing 9: REST response from the Document API (document delete)

Annotating Documents

Instead of storing and annotating a document to a repository, users can request to
have a document annotated only – without permanently storing the document in a
repository.

The webLyzard Document API currently supports the following document annota-
tions:

1. sentiment, extracts document and sentence level polarity from a document
(also runs sentence tokenization and POS tagging as a prerequisite, if not
provided by the user)

2. namedentities, identifies named entities in a document using our Named
Entity Recognition (NER) tool, Recognyze.

For information on valid document structures to be send to the annotation service,
please refer to the webLyzard Document Format section.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 43 --

$ curl -H “Authorization: Bearer <access_token>” -H “Content-Type: ap-
plication/json” -d @document.json -XPOST
https://api.weblyzard.com/0.1/annotate

Listing 10: Annotating a document via the Document API

If successful, the server responds with a “200 OK” response code and returns the
annotated document:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{...}

Listing 11: REST response from the Annotate API (document annotate)

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed.

To add specific annotations only, the annotation type can be included in the request:

$ curl -H “Authorization: Bearer <access_token>” -d @document.json -
XPOST http://api.weblyzard.com/0.1/annotate/sentiment

$ curl -H “Authorization: Bearer <access_token>” -d @document.json -
XPOST http://api.weblyzard.com/0.1/annotate/sentiment+namedentities

Listing 12: Annotating a document via the Annotate API with different workflows

ASAP FP7 Project D6.3 InfoViz Services v2

-- 44 --

Statistical Data API

Introduction

The Statistical Data API is used to insert statistical data into the webLyzard reposito-
ries in order to visualize it through our portals or stand-alone interfaces.

The terminology used in this document reflects the one used in statistical data pro-
cessing. An observation is a special type of document that corresponds to a data-
point in a visualization (or a datapoint in a time series). An indicator (sometimes re-
ferred to as dataset) is a collection of such observations that share the same attrib-
utes. All observations need to include data about their provenance (publisher, date,
etc.).

The main object consumed by this API is Observation.

To use the functionality provided by this API, the user will need to have at least one
webLyzard statistical repository configured in which it will be able to upload up to 100
million observations.

If the user plans to upload multiple indicators / datasets in the same repository, the
user will need to assign unique identifiers across all the indicators / datasets that will
be stored in this repository (e.g., adding the short name of the indicator in front of the
identifier is a quick method to create unique identifiers within a repository).

If the user plans to upload multiple large datasets (e.g., datasets bigger than 100 mil-
lion records or bigger than 2 TB) or has different needs in terms of how to deploy the
API for certain projects (e.g., production and dev/test environments) it is advisable to
contact us and discuss such use cases as early as possible.

This API was designed to accommodate time series and provides CRUD functionali-
ty for handling statistical data. Currently the following operations are supported:

1. Adding an observation to a given repository.
2. Retrieving an observation from a given repository.
3. Updating an observation from a given repository.
4. Deleting an observation from a given repository.

Currently it is possible to load entire datasets on the fly via custom Python or Java
scripts. Next version of the API will also include the ability to bulk load data sets on
the fly.

Adding Observations (Create)

An observation is similar to a document consumed by the Document API, but has
different fields. Each observation has to adhere strictly to the webLyzard Statistical
Data specification (see below).

ASAP FP7 Project D6.3 InfoViz Services v2

-- 45 --

Adding a new observation will result in:
1. Pushing the data in the Statistical Data repository configured for the respec-

tive user
2. Execution of additional calls if other data processing steps are defined.

To create a new observation, send a POST request to the /<repository> API end-
point, with the body of the request containing the observation. While location is not a
required field, it is generally expected that an observation will have an associated
location if the use case requires visualizing that observation on a map.

{
 "_id": "example_1",
 "uri": "http://example.com/example-1",
 "added_date": "2014-09-10T15:01:48.623816",
 "date": "2004-01-01T00:00:00",
 "indicator_id": "esairtrans2",
 "indicator_name": "ES Air Trans 2",
 "value": "1000"
}

Listing 13: A minimal observation.

$ curl -XPOST
‘https://api.weblyzard.com/0.1/observations/<repository_name>/<indicator
_id>’ -d ‘{
 “_id” : “...”,
 “uri” : “...”,
 …
}’

Listing 14: Creating an observation with the Statistical API

If the observation has been successfully stored, the server responds with a “201
Created” status code and the “Location” header field contains the unique identifier
created for this document.

HTTP/1.1 201 Created
Location:
https://api.weblyzard.com/0.1/observations/<repository_name>/<indicator_
id>/<observation_id>
Content-Type: application/json; charset=UTF-8
Content-Length: ...

{“created”:true, “_id”:”<identifier>”, “version”:”<version>”}

Listing 15: Response from the REST API that indicates an observation was created

ASAP FP7 Project D6.3 InfoViz Services v2

-- 46 --

In case of error, the server will return one of multiple error codes and a description of
the error. A 4xx error will be returned in case the request is malformed (e.g. “400
Bad Request”) or the user does not have the appropriate access rights (e.g. “403
Forbidden”). A 5xx error will be returned if processing on the server failed. In case a
dataset or indicator is not complete, you can add the missing observations later.

Retrieving Observations

The most recent version of an observation can be retrieved by sending a GET re-
quest to the <identifier> of the document:

$ curl -XGET
‘https://api.weblyzard.com/0.1/observations/<repository_name>/<indicator
_id>/<observation_id>’

Listing 16 Retrieving latest version of an observation

The server responds with a “200 OK” status code and the JSON representation of
the observation (as specified by the webLyzard Statistical Data specification):

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“_id”:”<identifier>”, “repository”:”<repository_name>”,...}

Listing 17: Observation retrieved successfully

If the observation does not exist, the server sends a “404 Not Found” response.

Updating Observations

Similar to updating a document in the Document API. Observations can be updated
(overwritten) with a newer version of the same observation.

$ curl -XPUT
‘https://api.weblyzard.com/0.1/observations/<repository_name>/<indicator
_id>/<observation_id>’ -d ‘{
 “uri” : “...”,
 “content-type” : “...
 …
}’

Listing 18: Updating an observation via the API

ASAP FP7 Project D6.3 InfoViz Services v2

-- 47 --

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“creat-
ed”:false,”updated”:true,”_id”:”<identifier>”,”version”:”<version>”}

Listing 19: The update was successful

If there is no observation referenced by <identifier> available, the server will respond
with a “400 Bad Request” error and the observation should be added using the syn-
tax for adding observations (i.e. <identifier> is always created by the server and can-
not be set arbitrarily by the client).

Deleting Observations

Similar to deleting a document in the Document API.
Observations (either a specific version or all versions of an observation) can be de-
leted by issuing a DELETE request on the identifier of the observation:

$ curl -XDELETE
‘https://api.weblyzard.com/0.1/observations/<repository_name>/<indicator
_id>/<observation_id>’

Listing 20: Deleting observations

On success, the server responds with a “200 OK” status code:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Content-Length: …

{“deleted”:true,”_id”:”<observation_id>”}

Listing 21: Delete operation was successful

ASAP FP7 Project D6.3 InfoViz Services v2

-- 48 --

Search API

Clients need to send Content-Type:application/json and Accept:application/json
headers.

General query structure

A search query conforms to the following JSON document:

{
 "sources" : [],
 "fields" : [],
 "query" : {},
 "filter" : {},
 "count" : 10,
 "offset" : 0,
 "ranking" : {}
}

Search

Request Fields

source A list of strings, specifying the set of sources the query should be run
against.

fields A list of strings, specifying which fields should be returned for each
document. Possible values:

contentid
the internal content id of the document

title
the title of the document

url
the original URL of the document

summary
a summary of the full text content of the document

snippet
a short snippet of content around the best query match in the document

quote
a longer snippet of content around the best query match in the docu-
ment

sourceid
an internal identifier for the source of the document

ASAP FP7 Project D6.3 InfoViz Services v2

-- 49 --

query Each query object can contain one of the following types of query:

bool
a Boolean query
supported query types: bool

title
search for text matches in the title
supported query types: phrase, regexp, term

text
search for text matches in the full text
supported query types: phrase, regexp, term

date
limit search results to a date range
supported query types: range

sentiment
limit search results to a sentiment range
supported query types: range

url
limit search results to matching URLs
supported query types: regexp, term, wildcard

filter The filter object supports the same syntax as the query object, but does
not affect search result ranking. Try to use filters as much as possible
to speed up query times (e.g. date and sentiment should always be put
into a filter, as it makes no sense to rank based on these) and only use
queries for fulltext queries that should affect the order of documents.

count The number of matches to return.

offset Offset for the documents to return.

ranking Allows to influence the order of search results in the response.

boost A list of boosting queries to influence search result order.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 50 --

Query Types

Bool Query

A Boolean query combines any other queries into a single, aggregated query:

"bool" : {
 "must" : [],
 "should" : [],
 "must_not: []

}

must – each of the sub-queries must match.
should – any of the sub-queries should match.
must_not – none of the sub-queries must match.

Phrase Query
A phrase query tries to match the given string as a phrase in the field:

"text" : {
 "phrase" : "climate change
}

Regexp Query
A regexp query tries to match the given string as a regular expression in the field:

"title" : {
 "regexp" : "climate(|-)change
}

Allowed regular expression operators:
() grouping
| alternatives
? optional parts

Term Query
Match the given string to the full content of the field:

"title" : {
 "term" : "Media Watch on Climate Change"
}

ASAP FP7 Project D6.3 InfoViz Services v2

-- 51 --

Wildcard Query
Match the given string to the full content of the field, supporting wildcards:

"url" : {
 "wildcard" : "www.google.com/*"
}
where * matches any number of characters and ? matches a single character.

Range Query
A query that supports matching values in a range:

"sentiment" : {
 "lt" : 0,
 "gt" : -0.5
}

"date" : {
 "gte" : "2014-01-01",
 "lte" : "2014-12-31"
}

eq – value equals the given value
lt – value is less than the given value
gt – value is greater than the given value
lte – value is less than or equal to the given value
gte – value is greater than or equal to the given value

Supported date formats:
yyyy-MM-dd
yyyyMMdd
dd-MM-yyyy
ddMMyyyy

Boosting Queries
Query ranking can be influenced by setting boosting queries, where each boosting query has
the following attributes:

● query ranking weights for documents matching the query are changed
● mode score replacement mode (supported values: replace, sum, mult)
● boost weight that influences the score.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 52 --

Response
{
 "more" : true|false,
 "hits": [],
 "total": 0
}

more – true if more hits than the returned exist
hits -a list of documents
total – the total number of documents matching the query

Note: if only document counts need to be retrieved, put all queries inside the filter attribute
and set count to 0 for best performance.

Examples

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "summary"],
 "query" : {
 "text" : {
 "phrase" : "climate change"
 }
 },
 "filter" : {
 "date" : {
 "gte" : "2015-01-01",
 "lte" : "2015-01-31"
 }
 },
 "count" : 100,
 "offset" : 0,
 "ranking" : {}
}

Example 1: Search for 100 documents matching "climate change" as a phrase in the

full text in January 2015 in News Media in the Media Watch on Climate Change, return-
ing title and summary

ASAP FP7 Project D6.3 InfoViz Services v2

-- 53 --

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "summary"],
 "query" : {
 "bool" : {
 "must" : [{
 "text" : {
 "phrase" : "climate change"
 }
 }, {
 "title" : {
 "phrase" : "climate change"
 }
 }]
 }
 },
 "filter" : {
 "bool" : {
 "must" : [{
 "date" : {
 "gte" : "2015-01-01",
 "lte" : "2015-01-31"
 }
 }, {
 "sentiment" : {
 "lt" : 0
 }
 }]
 }
 },
 "count" : 100,
 "offset" : 0,
 "ranking" : {}
}

Example 2: Search for 100 negative documents matching "climate change" as a
phrase in the full text and in the title in January 2015 in News Media in the Media

Watch on Climate Change, returning title and summary

ASAP FP7 Project D6.3 InfoViz Services v2

-- 54 --

{
 "sources" : ["climate2_media"],
 "fields" : ["title", "url"],
 "query" : {
 "text" : {
 "phrase" : "climate change"
 }
 },
 "filter" : {
 "date" : {
 "gte" : "2015-01-01",
 "lte" : "2015-01-31"
 }
 },
 "count" : 100,
 "offset" : 0,
 "ranking" : {
 "boost" : [{
 "query" : {
 "url" : {
 "wildcard" : "*.cnn.com/*"
 }
 },
 "mode" : "mult",
 "boost" : 10
 }]
 }
}

Example 3: Search for 100 documents matching "climate change" as a phrase in the
full text in January 2015 in News Media in the Media Watch on Climate Change, return-

ing title and url, favoring matches on CNN

ASAP FP7 Project D6.3 InfoViz Services v2

-- 55 --

Visualization API

The webLyzard dashboard offers a feature-rich and customizable solution for visual
analytics, semantic search and Web intelligence applications. To support use cases
that require a more granular approach, the webLyzard Visualization API enables the
integration of distinct portal components into third-party Web applications.

Version 1 uses <iframe> tags to embed these components. While this approach en-
sures ease of use and widespread compatibility across platforms, it also comes with
shortcomings if a deeper integration is desired. This will be addressed by additional
features in future versions of the API, complementing (but not replacing) the
<iframe> approach.

<iframe>

Attribute Fields
The iframe should be provided with all necessary attributes, width and height could be
preset to the desired dimensions, similar to the approach of e.g. YouTube.

width int
width in pixels

height int
height in pixels

frameborder int
should always be `0`

seamless Boolean
`true` if you want to inherit styles from the parent window and open
links in the parent window

sandbox string
not required, but if present a value of `'allow-same-origin allow-
scripts'` is required

src string
see next section “URL Schema”

ASAP FP7 Project D6.3 InfoViz Services v2

-- 56 --

URL Schema

/embed/:view view:string
`:view` determines the desired map to be shown in the
iframe. One of `documents`, `quotes`, `frequency`, `distri-
bution`, `tags`, `keywords`, `cluster` or `geo`

/api/:view?format=:format view:string, format:string
Similar to above but more generic by using a query pa-
rameter to determine the format: one of `html`, `xml`,
`xls`, `csv`, `png`, `svg` or `json`

Query-String Schema
Additional (optional) query-strings allow the configuration of the embedded visualization.

search string
optionally this supports a comma separated list of search strings,
which will be treated as individual searches to support multiple
lines or slices in the trend chart and donut chart

begindate string

enddate string

topics string
a comma separated list of unique numerical IDs, representing pre-
defined topic definitions

indicator String
a comma separated list of unique string IDs, representing prede-
fined statistical indicators

Examples

<!-- The tag cloud using the default search term -->
<iframe width='400' height='600' src='/embed/tags' frameborder='0'>

<!-- The geo map using a custom search term -->
<iframe width='400' height='600' src='/embed/geo?search=fracking' frameborder='0'>

ASAP FP7 Project D6.3 InfoViz Services v2

-- 57 --

Authentication and Authorization

Authentication and authorization is handled using JSON Web Tokens (JWT). Until tokens
are issued using the global webLyzard login server, new tokens can be obtained using the
/token API endpoint using Basic Authentication.
A token is valid for 8 hours, after which the token will be rejected by the API and a new token
must be generated.

Obtaining a new token

To obtain a new token, do a GET request to the /token endpoint:

$ curl -i -u <user>:<pass> https://api.weblyzard.com/0.1/token

The server responds with the issued token for the user:

HTTP/1.1 200 OK
Date: Tue, 17 Nov 2015 12:43:10 GMT
Server: Apache/2.4.7 (Ubuntu)
Content-Length: 626
Connection: close

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9.eyJwZXJtaX...

Calling API methods using the obtained token

All API calls must be authenticated using a valid token (see above). Pass the token using the
“Authorization: Bearer” request header:

$ curl -i -H “Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9.eyJwZXJtaX..."
https://api.weblyzard.com/0.1/documents/test/12345

ASAP FP7 Project D6.3 InfoViz Services v2

-- 58 --

Document Format
The webLyzard document format consists of three related object structures: the Document,
the Sentence, and the Annotation. These three data structures strongly depend on each
other, but only Document is essential.

The Document structure models a single document to be uploaded. It provides the system
with the basic information required to process this single document. Fully tokenized and/or
annotated documents can be provided via the Annotation (surface form annotations such as
Named Entity (NE) and target sentiment) and the Sentence (tokenization/ POS/sentiment)
formats as documented below.

Accepted document encoding is limited to UTF-8.

Document

Required Fields

uri string
the unique identifier of the document, e.g. a URL. Must be a valid
URI.

title string
a title string

Optional Fields

repository_id string
a unique ID consisting of a repository name + fqdn of the content
provider, source or project – for example: mobile.asap-fp7.eu, me-
dia.ecoresearch.net, or social.weblyzard.com.

language_id string
ISO language identifier. Supported are
['en','es','fr','de']

content_type string
only required if content is provided, specifies how the content
should be interpreted, supported are text/html, text/plain

content variable
the document content as json string, with content_type specify-
ing the respective content format. If content is provided, then
sentences must not be provided. Providing both content and
sentences will result in an error. Providing content without con-
tent_type will result in an error.

sentences list
an ordered list of tokenized webLyzard sentence objects. If sen-
tences are not provided, content and content_type must be
provided.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 59 --

annotations list
a list object of webLyzard annotation. Currently supported by the
visualization components are sentiment and named_entity
types, but may be used also for other annotations types (such as
rumours, opinion targets, etc.).

meta_data dict
a dictionary describing arbitrary document metadata that provides
additional document-level information, for example:
author the author of the document

published_date a date string determining when a docu-
ment was published (and therefore when it
will be visible in the portal). If no pub-
lished_date is provided, we will try to ex-
tract one from the content. If this fails, the
submission date of the document is used
as the published_date

polarity document-level sentiment polarity

document_linkage 1) 'refers-to', n-to-n, for retweets, quotes,
etc...
2) 'child-of', 1-to-1, to model nested con-
versations (threaded dialogues)
3) 'part-of' , n-to-n, document belongs to
e.g. story cluster / other collection

features dict
A dictionary describing arbitrary data as key value-pairs, which
complements the more well-defined meta_data field. These key
value-pairs are disregarded in the visual analytics dashboard, un-
less custom frontend functions were developed to process them.

relations dict
A dictionary describing arbitrary document-to-document relations
as key-value pairs. Document relations do not have any impact in
the portal unless explicitly requested.

Examples

{
 "repository_id": "media.ecoresearch.net",
 "uri": "http: //www.bbc.com/news/science-environment-33524589",
 "content_type": "text/plain",
 "title": "New Horizons: Nasa spacecraft speeds past Pluto",
 "content": " Nasa’s spacecraft speeds past Pluto",
 "meta_data": {
 "author": "Jonathan Amos"
 }
}

ASAP FP7 Project D6.3 InfoViz Services v2

-- 60 --

{
 "repository_id": "media.ecoresearch.net",
 "uri": "http: //www.bbc.com/news/science-environment-33524589",
 "title": "New Horizons: Nasa’s spacecraft speeds past Pluto",
 "sentences": [
 {
 "id": "595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasa’s spacecraft speeds past Pluto",
 "is_title": "TRUE",
 "pos_list": "NN NN : \' NN : NN CC JJ NN . \'",
 "tok_list": "0,2 3,19 19,20 21,22 22,33 33,34 35,42 43,46 47,55
56,62 62,63 63,64",
 "sentence_number": 0,
 "polarity": -0.783
 }
],
 "annotations": [
 {
 "start": 12,
 "end": 16,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surface_form": "Nasas",
 "annotation_type": "OrganizationEntity",
 "key": "http://dbpedia.org/page/Nasa"
 },
 {
 "start": 40,
 "end": 44,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surface_form": "Pluto",
 "key": "http://dbpedia.org/page/Pluto",
 "annotation_type": "GeoEntity"
 }
],
 "meta_data": {
 "polarity": "0.342",
 "published_date": "2015-07-14"
 }
 }
}

Sentence

Required Fields

id string
the unique identifier of the sentence, i.e. a sentence hash (md5)

ASAP FP7 Project D6.3 InfoViz Services v2

-- 61 --

value string
the sentence text

pos_list string
a whitespace separated list of part-of-speech tags (POS), one per
token. Currently supported POS by language are specified at
weblyzard-api.readthedocs.org/en/latest/weblyzard_api.

 data_format.pos-tags.html

tok_list string
a whitespace separated list of sentence tokens (words), encoded
as space-separated string of comma-separated sentence offset
tuples: start_offset,end_offset, e.g. "0,2 3,19"

Optional Fields

is_title Boolean
is the sentence part of the title, defaults to False
If the document-level attribute “title” is also set, the value of this
sentence must match that attribute.

dep_tree string
a whitespace separated list of pointers to the parent of a token in
the dependency tree. -1 denotes the root node.

sentence_number int
0-based sentence sequence number, e.g. the index of a sentence
in the list of all document sentences

paragraph_number int
0-based paragraph sequence number, e.g. the index of a para-
graph in the list of all document paragraphs

polarity float
sentence-level sentiment polarity as floating point in range [-0..1]

polarity_class string
sentence-level sentiment polarity class, with possible values
[‘positive’, ‘negative’, ‘neutral’]

Examples

{
 "id": "595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasa’s spacecraft speeds past Pluto.",
 "is_title": False,
 "pos_list": "NNP NNP : NNP POS NN NNS IN NNP .",
 "tok_list": "0,3 4,12 12,13 14,18 18,20 21,31 32,38 39,43 44,49 49,50",
 "sentence_number": 0,
 "polarity": -0.783,
 "polarity_class": "negative"
}

ASAP FP7 Project D6.3 InfoViz Services v2

-- 62 --

{
 "id": "595f44fec1e92a71d3e9e77456ba80d1",
 "value": "New Horizons: Nasa’s spacecraft speeds past Pluto."
}

Annotation

Required Fields

start int
the start offset of the annotation, relative to the absolute document
content (not tokenized).

end int
the end offset of the annotation, relative to the absolute document
content (not tokenized).

surface_form string
the surface form of the annotation (e.g. how the annotation actually
appears in the document)

annotation_type string
the type of the annotation. Supported by the visualization compo-
nents are Sentiment, GeoEntity, PersonEntity, Organiza-
tionEntity. Arbitrary other sentence-level annotations are al-
lowed, but not currently supported by the visualization compo-
nents.

Optional Fields

key string
reference key, e.g. Linked Open Data (LOD)

sentence_id string
the id of the sentence object to which the annotation’s start and
end positions refer to. If no sentence id is specified, the annotation
positions are applied on the document level.

display_name string
searchable field in the portal

polarity float
sentence-level sentiment polarity as floating point in range [-0..1]

polarity_class string
document-level sentiment polarity, with possible values [‘posi-
tive’, ‘negative’, ‘neutral’].
 Requires annotation_type to be sentiment.

ASAP FP7 Project D6.3 InfoViz Services v2

-- 63 --

properties dict
a dictionary of additional properties associated with the annotation.
The expected key value tuples in the properties depend on the
type of the entity defined on the webLyzard document level (e.g.
the key to the annotation list).
Supported properties by the portal are:
lat, long, population, birth_date, abstract

Examples

{
 "start": 87,
 "end": 92,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surface_form": "Apple",
 "key": "http://dbpedia.org/page/Apple_Inc",
 "annotation_type": "OrganizationEntity",
 "display_name": "Apple Incorporated",
 "properties": {
 "founders": "Steve Jobs,Steve Wozniak,Ronald Wayne"
 }
}

{
 "start": 12,
 "end": 14,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surface_form": "USA",
 "key": "http://dbpedia.org/page/United_States",
 "annotation_type": "GeoEntity",
 "display_name": "U.S.A",
 "properties": {
 "population": "318.900.000",
 "lat": "100.0",
 "long": "30.0"
 }
}

{
 "start": 12,
 "end": 14,
 "sentence": "595f44fec1e92a71d3e9e77456ba80d1",
 "surface_form": "USA",
 "polarity": 0.655,
 "annotation_type": "Sentiment"
}

{
 "start": 12,
 "end": 14,
 "surface_form": "USA",
 "annotation_type": "GeoEntity"
}

ASAP FP7 Project D6.3 InfoViz Services v2

-- 64 --

Statistical Data Format

Datasets from partners and clients (e.g., phone call data, tourism statistics), open govern-
ment sources, or international organizations such as Eurostat and the World Bank are often
statistical in nature – each data point corresponds to an observation with timestamp, value,
unit of measurement and several other attributes or dimensions. Such data comes in multi-
ple formats including JSON, RDF (Classic RDF, SDMX or RDF Data Cube), and XML.

The following JSON format based on the popular RDF Data Cube (QB) standard ingests
such heterogeneous data into into the visualization pipeline. Each data point can be consid-
ered the equivalent of a document in the Document API, but the Statistical Data API is sepa-
rate – there are no dependencies among data types.

Statistical Data

Required Fields

_id string
the unique identifier of an observation. All identifiers need to be
considered unique per partner/client and not per indicator.

uri string
the unique identifier of the document, e.g. a URL of the respec-
tive observation
Example: http://eurostat.linked-
statistics.org/data/ttr00012#A,PASS,CZ,2004

added_date date
the date when the observation was added to the index – current
date

date date
the observation date
Format: 2004-01-01T00:00:00

indicator_id string
a short string representing a unique identifier of the indicator
without any whitespaces.
Indicator_id should be similar to variable names.
Example:
esairtrans – might represent an indicator_id for the indicator Eu-
rostat Air Transport (see the next field).

indicator_name string
a short or long name of the indicator. This is the name that will be
displayed for the respective indicator in our portals so it needs to
give a clear indication of the provenance and significance of the
data.

in case the data does not come from a statistical database
(therefore it is not organized around indicators), this field should

ASAP FP7 Project D6.3 InfoViz Services v2

-- 65 --

contain a short descriptive name of what type of data we have
(e.g., European phone calls, Italian tourism data).

In general we recommend the following convention for naming
indicators: provenanceCode + short description.

This field can contain whitespaces. Indicator_name should be
similar to label names, as it is in fact a label for the indicator
name.

In certain cases it is also allowed to have indicator_name exactly
the same as the indicator_id, though of course it will not include
spaces in such a scenario.

Example:
ES Air Trans – stands for Eurostat (ES) Air Transport – ES des-
ignates provenance (Eurostat, ES) and Air Trans is a short
meaningful description of what the indicator represents (Air
Transport)

value float
the observation value

repository_id string
the unique identifier of a repository from webLyzard where this
information is stored.

Optional Fields

year, month, day,
hour

string
you can use shortcuts for year, month, day, hour to ease the
search

location_id string
If location information is available as GeoJSON and in other for-
mats, it is recommended to use this field and add the id of the
location in it (the region id, or the GeoJSON file id, etc.).

target_type string
the type of geographical unit that we find in the target.
In general the locations that are not geo political / administrative
(city, country, region) should be marked as points of interests
(poi).

Accepted values: {city, country, region, poi}

target_poi_type string
the type of poi in order to distinguish e.g. landmarks, historical
places, monuments, parks, office buildings, etc.

target_country string
2 letter ISO code of the target country

ASAP FP7 Project D6.3 InfoViz Services v2

-- 66 --

target_location geolocation
the geolocation of the target – can include name and the geo co-
ordinates (lat and long).

Example:
{

"name": "New Zealand",
"point": {

 "lat": "-42.0",
 "long": "174.0"

}
}

source_type similar to target_type

source_poi_type similar to target_poi_type

source_country similar to target_country

source_location similar to target_location

producer string
the name of the institution who published the data

Example: Eurostat, World Bank, etc.

frequency string
the sampling frequency

Example: {year, month, day}

description string
a description of the indicator

unit_of_measuremen
t

string
while many of the datasets published today do not contain a unit
of measurement, it would be recommended to add such a field if
this information is present in your dataset

type string
the default type is observation;
you could use this field if you also decide to save other values
like averages, clustering results for observation groups and not
just the raw observations

Examples

EUROSTAT data
(required fields marked with bold)
Current example does not follow identifier convention.

{
 "_id": "111",
 "uri": "http://eurostat.linked-statistics.org/data/ttr00012#A,PASS,CZ,2004",
 "added_date": "2014-09-10T15:01:48.623816",

ASAP FP7 Project D6.3 InfoViz Services v2

-- 67 --

 "date": "2004-01-01T00:00:00",
 "indicator_id": "esairtrans",
 "indicator_name": "ES Air Trans",
 "value": 9950314,
 "repository_id": "eurostat",
 "description": "Air transport of passengers",
 "producer": "Eurostat",
 "sample": "tourism_statistics",
 "frequency": "year",
 "year": 2004,
 "target_country": "CZ",
 "target_type": "country",
 "target_location": [
 {
 "name": "Czech Republic",
 "point": {
 "lat": 49.75,
 "long": 15.0
 }
 }
],
 "observation_type": "observation"
}

WORLD BANK data EUROSTAT data
(required fields with bold)
Current example does not follow identifier convention.

{
 "_id": “11102",
 "uri": "http://worldbank.270a.info/dataset/world-bank-
indicators/PA.NUS.FCRF/NZ/1982",
 "added_date": "2014-09-10T15:00:02.294083",
 "date": "1982-01-01T00:00:00",
 "indicator_id": "wbexchgrate",
 "indicator_name": "WB Exchange rate",
 "value": 1.33260833233333,
 "repository_id": "worldbank",
 "description": "Official exchange rate (LCU per US$, period average)",
 "producer": "World Bank",
 "sample": "tourism_statistics",
 "frequency": "year",
 "year": 1982,
 "target_country": "NZ",
 "target_type": "country",
 "target_location": [
 {
 "name": "New Zealand",
 "point": {
 "lat": -42,
 "lon": 174
 }
 }
],
 "observation_type": "observation"
}

ASAP FP7 Project D6.3 InfoViz Services v2

-- 68 --

FP7 Project ASAP
Adaptable Scalable Analytics Platform

End of ASAP
D6.3 InfoViz Services v2

WP 6 – Information Visualization
webLyzard technology

Nature: Report
Dissemination: Public

